
Appendix:
Learning Compact Representations of Neural

Networks using DiscriminAtive Masking (DAM)

A Analysis of the DAM Gate Function Dynamics During Training

In this section, we theoretically analyze the dynamics of the DAM mask gi at the i-th layer as the
training process unfolds. This can be characterized by the movement of the gate function (or gate)
during the training process, which is solely dominated by changes in the learnable offset parameter
βi.

A.1 Gradients of DAM Learning Objective w.r.t. βi

Building on the notations introduced in Section 3 of the main paper, let us denote the mask value gij
at the j-th neuron at i-th layer as a function of βi, i.e., ξj : (βi, j)→ gij , where

gij = ξj(βi, j) = max [tanh (αi (kj/ni + βi)) , 0] (1)

Let f denote the continuous function expressed by our neural network with learnable parameters
Θ. The loss function for training the neural network for the target task can then be denoted as L =
L(f(x,Θ, βi)) (e.g., cross-entropy loss for supervised structured pruning problems and reconstruction
error for representation learning problems), where x denotes the input features to the neural network.
Using gradient descent methods with a learning rate of η, the expected update formula of βi in DAM
is given by:

∆βi = −η Ex∼Dtr
[∇βi
L(f(x,Θ, βi)) + λ∇βi

βi/(l − 1)] (2)
= −η Ex∼Dtr

[∇βi
L(f(x,Θ, βi))]− ηλ/(l − 1) (3)

Let hi be the layer output before applying the DAM mask, and the masked output be represented as
oi = hi ◦ gi after applying the gate. The gradient of the loss w.r.t. βi can be obtained by applying
the chain rule of differentiation as follows:

∇βi
L(f(x,Θ, βi)) =

∂L(f(x,Θ, βi))

∂oi

∂oi
∂gi

∂gi
∂βi

=

ni∑
j=1

∂L(f(x,Θ, βi))

∂oij

∂oij
∂gij

∂gij
∂βi

(4)

Let us analyze this gradient by observing the last term of this equation, ∂gij/∂βi. For the j-th neuron,
∂gij/∂βi = 0 if and only if ∂ξj(βi)/∂βi = 0. Since tanh(z) has non-zero gradients for z > 0, the
gradient of ξj(βi) is 0 only when kj/ni + βi ≤ 0, i.e., the mask value of the neuron is 0 (or in other
words, it is deactivated or dead). Let us denote the set of all neuron indices with non-zero mask
values (also referred to as active neurons) as J . Equation 4 can then be simplified as:

∇βiL(f(x,Θ, βi)) = αi
∑
j∈J

∂L(f(x,Θ, βi))

∂oij
hij
(
1− g2

ij

)
︸ ︷︷ ︸

qij

, (5)

= αi
∑
j∈J

qij , (6)

where qij represents the contribution of the j-th neuron to the gradient of the loss term with respect
to betai. We can make the following two observations: (i) only those neurons that are active (i.e.,
have non-zero mask values) have a contribution towards updating βi and moving the gate function.
(ii) If the mask value of a neuron is 1 (i.e., gij = 1), then their contribution to the gradient of the
loss w.r.t. βi is again 0. It shows that the neurons that play an important role in the dynamics of the
gates are the ones with non-zero activation hij and mask values that have not saturated to 1 (i.e.,

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

gij < 1). We name these neurons as support neurons and their position in the ordering of neurons as
the transitioning zone of the gate function. Similarly, neurons with zero mask values are termed as
deactivated neurons and the neurons with mask values close to 1 as privileged neurons (since they
are never turned off).

A.2 Equilibrium of DAM Gate Function upon Convergence

We next study the properties of the equilibrium solution of βi that we arrive upon convergence of the
DAM training process. Suppose that we have converged to β∗i for the offset parameter for the i-th
layer. This would mean that the gradient of the DAM learning objective w.r.t. β∗i would be equal to 0
as follows:

∇β∗
i
L(f(x,Θ, β∗i)) + λ/(l − 1) = 0 (7)

Substituting the value of∇βiL(f(x,Θ, βi)) from Equation (6) and rearranging terms, we get∑
j∈J

qij = −λ/(αi(l − 1)). (8)

Since λ, αi > 0, the equilibrium exists only when the sum of qij is negative. This happens when
decreasing the masked outputs oij of the support neurons in the transitioning zone leads to an increase
in the loss function, signifying that any further pruning can lead to loss of accuracy. In other words,
the training dynamics of the gate function stops when the features learned at the support neurons are
useful enough that their pruning is detrimental to the generalization performance of the network.

A.3 Additional Remarks on the Effects of αi and λ On DAM Convergence

Equation 8 also implies that a large value of αi or a low value of λ may make the equilibrium easy
to reach, thus leading to premature convergence to a pruned network that has not been fully trained
to capture refined features at its support neurons. This is supported by our empirical observations
that large values of αi tends to prevent DAM layers to reach higher sparsity. We thus set αi = 1 in
all our experiments. On the other hand, the choice of λ also plays a big role as we observed in our
experiments (e.g., as is shown in Section C via hyperparameter sensitivity analysis).

Further note that the masking dynamics of DAM involve a smooth transition from an unpruned
network to a pruned network where at every training epoch, some of the neurons (or channels)
gradually die out while the rest remain unaffected. The neurons at the edge of being dropped out are
gradually assigned low gate values such that the other neurons can slowly re-adapt themselves to pick
up or recover the features that are being dropped out. However, steep gate function choices (that have
narrow transitioning zones) may cause this transition to be too fast such that the network suffers a
drop in accuracy as neurons on the edge are dropped while the other neurons do not have sufficient
time to recover the dropped features. In our formulation, choosing a very large value of αi can make
the gate function too steep for effective pruning (we thus choose αi = 1). For other alternate choices
of gate function, ξj(βi), than what we used in our current implementation, similar considerations
need to be observed to avoid the gate function from becoming too steep.

B Theoretical Results And Technical Proofs For Section 4

We empirically observed in Section 4 of the main paper that for the linear dimensionality reduction
case, we always converged to the same solution for a constant setting of hyper-parameters regardless
of the random initialization of the neural network. To theoretically understand if DAM is capable
of converging to the optimal solution (where the pruned bottleneck dimension is exactly same as
the rank of the input data matrix), we provide further theoretical analysis for the ability of DAM to
perform linear dimensionality reduction (DR) in the following.

Problem Statment: Let G = diag(g), where g ∈ Rn is the vector of mask values at the bottleneck
layer given by

g = max [tanh(µ+ β1), 0] (9)
and the j-th element in µ is given by µj = kj/n, while β ∈ R is a scalar learnable parameter. Let
the real matrices A1, A2 define two linear transformations A1 : Rn −→ Rd and A2 : Rd −→ Rn. Let

2

us consider a bounded input data matrix, X ∈ Rd×N , that is rank-deficient (with rank m), where N
is the number of data samples and d is the number of features, N � d > m. Then, the input X and
its reconstruction X̂ are related by the following equation:

X̂ = A1GA2X. (10)

Let Θ = {A1, A2, β} be the set of learnable parameters. For a given X , let us define the multi-
objective minimization problem as

min
Θ

(∥∥∥X̂ −X∥∥∥2

F
, β

)
, (11)

where ‖.‖2F denotes the Frobenius norm of a matrix. We are interested in reaching a Pareto optimal
solution with a predefined trade-off hyper-parameter between the two objectives using the gradient
descent algorithm.

Optimization Scheme: Let L =
∥∥∥X̂ −X∥∥∥2

F
+ λβ and initial values for the learnable parameters

be A(0)
1 , A

(0)
2 , β(0), where λ > 0 is the trade-off hyper-parameter. Using gradient descent (GD), for

every parameter θ ∈ Θ, the updating rule for the t-th iteration can be written as

θ(t+1) = θ(t) − η(∇θL)(t) (12)

where η ∈ R+ is the step size. We assume that we allow the network to perform sufficient number of
iterations of gradient updates before it reaches convergence.
Theorem 1. (Existence of Optimal Solution) Assuming all the m singular values of X are non-trivial
(i.e., they are all greater than some positive value ε), there exists λ > 0 such that at the minima
solution of L, X̂ = X and the number of non-zero entries of g equals m.

Proof: Let Ã2 = GA2. Then, we can rewrite X̂ as a function of Ã2 as follows

X̂ = A1Ã2X. (13)

Using this value of X̂ as a function of Ã2, we can decouple the combined learning objective into the
following two optimization problems:(

min
{A1,Ã2}

∥∥∥A1Ã2X −X
∥∥∥2

F
, min

β
λβ

)
, (14)

where the first term only depends on the variables A1, Ã2, while the second term only depends on β.
Optimizing the second term is trivial since it is a linear function of β. On the other hand, the first
term has its minimum value at

A1Ã2X = X

A1 = Ã2
+

(15)

where Ã2
+

is the Moorse-Penrose Inverse of Ã2. Moreover, whenever A1 = Ã2
+

, the following
relationship would also hold

rank(Ã2) ≥ rank(A1Ã2X) = rank(X) = m. (16)

and rank(Ã2) = rank(GA2) ≤ rank(G). Thus, rank(G) ≥ m. Assuming the diagonal matrix G
has m′ nonzero entries, then m′ = rank(G) ≥ m. This means that the lowest value that m′ can take
is m, and we want to study if there exists some setting of A1, Ã2, and β that leads to m′ = m. We
specifically explore the setting where the rank of G (the number of non-zero values of g) is equal
to m. Note that in our DAM formulation, the number of non-zero entries of the mask vector g is
directly related to β as follows (see Section 3 of main paper for more details):

m′ = ‖G‖0 = dn(1 + β/k)e = m, (17)

which means that if we remove the ceiling operator, the following inequality holds:

3

β

βA

βBm’=m - 1
 m’=m

β*
m’=m

L

0

Figure 1: Schematic plot showing variations in the learning objective value L as a function of β near
the minima of L (shown as red β∗).

m ≥ n(1 + β/k) > m− 1 (18)

k
(m
n
− 1
)
≥ β > k

(
m− 1

n
− 1

)
(19)

As illustrated in Figure 1, we seek to show that a critical point of L in terms of β exists such that
m′ = m. Let βA = k

(
m−1
n − 1

)
, βB = k

(
m
n − 1

)
and denote their corresponding values of L as

LA and LB respectively. As we showed in previous discussions, with m′ ≥ m, as long as A1 = Ã2
+

,
then the first term of L is 0. Thus, there exists a β′ < βB such that m′ = m (β′ > βA), and its
corresponding value of L is smaller than LB (because of a smaller second term). On the other hand,
we want to discuss whether the optimization over Eq. (14) will lead to a smaller β such that G has
more nonzero entries (consequently making the second term of Eq. (14) smaller). In particular, when
m′ < m, then

rank(X̂) = rank(A1Ã2X) ≤ rank(Ã2) ≤ rank(G) ≤ m′ < m. (20)

Since X has no trivial singular values, when rank(X̂) < m, then
∥∥∥X̂ −X∥∥∥2

F
would also take

non-trivial values, i.e.,
∥∥∥X̂ −X∥∥∥2

F
> cε, where c is some positive constant. Thus, assuming λ is

reasonably small, there exists a β′ > βA such that m′ = m (β′ ≤ βB), and its corresponding value
of L is smaller than βB’s corresponding value of LA (because of a smaller first term).

Thus, there exists a critical point of L (denoted as β∗) between βA and βB , which is the minima of L.
For β∗, we have m′ = m. Therefore we have proven the existence of an optimal solution of DAM.
In summary, the optimal set is

Θ∗ =

{
A1, A2, β|∀A1 ∈ Rd×n,∀A2 ∈ Rn×d,∀β ∈ R, s.t.

A1 = (GA2)+, k
(m
n
− 1
)
≥ β > k

(
m− 1

n
− 1

)} (21)

C Hyperparameter Sensitivity

We have demonstrated that DAM performs very well in the representation learning experiments
for dimensionality reduction. Here, we study how stable DAM is with respect to variations in
hyperparameter settings. We specifically examine three hyperparameters: learning rate, trade-off
parameter, λ, and the initial value of β, β0. The results of this experiemnt are shown in the form of
heatmaps of bottleneck dimension and reconstruction loss upon convergence in Figures 2, 3 and 4.

We can observe that as we vary the learning rate from 0.0001 to 0.1 (which represents a range
covering three orders of magnitude), the results for all three cases show variations, where the best
results are obtained in the medium range of values (from 0.001 to 0.01), which are common choices
of learning rates used in conventional deep learning frameworks. This variation of our results with
learning rate is common to any other algorithm based on gradient descent methods. However, for

4

a fixed learning rate, we can see that the results of DAM are quite stable to the choice of λ and β0.
For example, we can see that the results of DAM are consistent across different choices of cold-start
(β(0)) for all choices of learning rates in the three cases. The sensitivity in terms of λ is also low
but increases as the feature correlations gets more and more complicated, i.e., as we transition from
linear to quadratic to neural network cases. In fact, we observe that small λ values result in slower or
premature convergence, while too large λ can break the model by pruning out all of the parameters.
In summary, we can say that by using common choices of learning rate (e.g., 0.01 or 0.001), DAM is
able to produce consistent results with reasonable choice of λ (e.g., λ = 0.01).

D Experimental Setups

D.1 Representation Learning (Section 4)

Datasets: For dimensionality reduction experiments, we created three synthetic datasets for each
of the mapping functions. To generate each dataset, we used two matrices, one as as an encoder
and another one as a decoder. For the linear case, the the two matrices were initialized with values
sampled from a normal distribution. For the quadratic case, we used a three-layer MLP as the
encoder and one QRes layer [1] as the decoder for the quadratic mapping function. For the neural
network case, we used a three-layer MLP as the encoder and two-layer MLP as the decoder. We
varied the underlying factor (r) from 5 to 20 to generate these datasets. For the recommendation
system experiments, we used three benchmark datasets Flixter [2], Douban [3], and Yahoo-Music
[4]. For graph representation learning, we used three popular citation networks: Cora, CiteSeer, and
PubMed [5]. We further used the MNIST [6] dataset to compare between DAM and L1-norm based
auto-encoders.

DAM Implementation Specifications:

• Table 1 provides full details of the hyper-parameter choices and implementation details of
DAM used for generating all of the results in representation learning experiments of Section
4. We used Adam optimizer for all these experiments.

• All our results are reported by taking the mean and standard deviation over five independent
random runs.

• We used the linear activation function for the linear dimensionality reduction experiments,
LeakyRelu activation function for the quadratic experiments, and the ELU activation function
for the neural network mapping experiments. Note that non-linear activation functions were
required for the quadratic and neural network experiments, because of the non-linearity of
the problem. We added a DAM layer between the encoder and decoder models to perform
dimensionality reduction on the bottleneck layer.

• We use the official implementation of IGMC 1 to run the recommendation systems experi-
ments on Flixter, Douban, and Yahoo-Music datasets.

• We use the PyTorch Geometric implementation of GAE 2 for our graph representation
learning experiments.

• We kept the same architecture as the official implementations of IGMC and GAE for all the
recommendation system and graph representation learning experiments. For IGMC-DAM
and GAE-DAM, we simply added one DAM layer after the bottleneck layer to perform
pruning of the bottleneck dimension.

• For the dimensionality reduction experiments on the MNIST dataset, we used a plain
autoencoder setup. We used four layers with 784, 64, 32, 50 neurons for the encoder, and
for the decoder, we used four layers with 50, 32, 64, and 784 neurons. ReLU was used as
the activation function. After the encoder layer, we used a DAM layer for dimensionality
reduction. Likewise, we append an L1-norm layer after the encoder layer for the L1-norm-
based dimensionality reduction.

• We varied λ values for the graph representation learning experiments and MNIST dataset
as follows. We varied the λ from 0.01 to 5 for both GAE and GAE-DAM for graph

1https://github.com/muhanzhang/IGMC
2https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py

5

https://github.com/muhanzhang/IGMC
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py

Table 1: Experiment Setups And Implementation Details For Representation Learning (Section 4).
Source Dataset Model Learning Rate Epochs λ Cold-Start
Fig. 3a Synthetic Linear 0.01, L2 = 10−6 2,000 0.01 β(0) = 1, 0 epochs
Fig. 3b Synthetic Quadratic 0.01, L2 = 10−6 5,000 0.01 β(0) = 5, 0 epochs
Fig. 3c Synthetic NN 0.001, L2 = 0 10,000 0.1 β(0) = 1, 0 epochs
Tab. 2 Flixter IGMC 0.001, L2 = 0 100 - -
Tab. 2 Flixter IGMC-DAM 0.001, L2 = 0 100 0.1 β(0) = 1, 0 epochs
Tab. 2 Douban IGMC 0.001, L2 = 0 100 - -
Tab. 2 Douban IGMC-DAM 0.001, L2 = 0 100 0.1 β(0) = 1, 0 epochs
Tab. 2 Yahoo-Music IGMC 0.001, L2 = 0 100 - -
Tab. 2 Yahoo-Music IGMC-DAM 0.001, L2 = 0 100 50.0 β(0) = 1, 0 epochs
Fig. 4a Cora GAE-DAM 0.01, L2 = 0 1,000 variable β(0) = 1, 0 epochs
Fig. 4a CiteSeer GAE-DAM 0.01, L2 = 0 1,000 variable β(0) = 1, 0 epochs
Fig. 4a PubMed GAE-DAM 0.01, L2 = 0 1,000 variable β(0) = 1, 0 epochs
Fig. 5 MNIST L1-norm 0.001, L2 = 0 100 variable -
Fig. 5 MNIST DAM 0.001, L2 = 0 100 variable β(0) = 1, 0 epochs

representation learning experiments. We varied the λ from 0.01 to 10 for the DAM model on
the MNIST dataset. Likewise, we changed the range of λ from 0.01 to 25 for the L1-norm
model.

• We observed some improvement in the performance of the baseline IGMC model for 100
epochs, although the official implementation used 40 epochs. We kept all other hyperparam-
eters same as the official implementation.

D.2 Structured Network Pruning (Section 5)

DAM Implementation Specifications:

• All the models were trained using SGD optimizer.
• Table 2 provides full details of the hyperparameter choices and implementation details of

DAM for all structured network pruning experiments.
• For running time comparisons, we used an NVIDIA TITAN RTX graphic card with Intel

Xeon Gold 6240 CPU on Ubuntu 18.04 LTS system. The channel pruning ratio for Net-Slim
and ChipNet is set to 0.4 in all our experiments.

• For pruning experiments, we used learning rate decay as adopted in the ChipNet official
implementation3. Table 2 only shows the initial learning rate in these experiments.

• For all methods, the epochs are shown in the format of training epochs + pruning epochs +
finetuning epochs. We can see that DAM requires 0 pruning epochs and 0 finetuning epochs,
Net-Slim has 0 finetuning epochs, whereas ChipNet has non-zero epochs for all three stages.

• For Figure 6, on CIFAR-10 we use the following range of λ values for DAM, λ =
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75}. For ChipNet and Net-Slim, we used the following range
of values for pruning ratios: {0.1, 0.2, 0.4, 0.6, 1.0} and {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0},
respectively. For CIFAR-100, we use λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0} for DAM, and
pruning ratios of {0.2, 0.4, 0.6, 1.0} and {0.2, 0.3, 0.4, 0.5, 0.6, 1.0} for ChipNet and Net-
work Slimming, respectively. We did not report the 0.1 pruning ratio on CIFAR-100 since
both ChipNet and Network Slimming demonstrated unstable results.

E Additional Experimental Results

E.1 Effect of Gradient Noise and Activation Functions on MNIST Dataset

We performed further experiments to evaluate the network pruning performance of DAM using
LeNet-5 on MNIST dataset, which is a common dataset for experiments adopted by many previous

3https://github.com/transmuteAI/ChipNet

6

https://github.com/transmuteAI/ChipNet

Table 2: Experiment Setups For Structured Network Pruning (Section 5).
Source Dataset Model Learning Rate Epochs λ Cold-Start
Fig. 6 CIFAR-10 DAM 0.05, L2 = 10−3 200+0+0 variable β(0) = 1, 20 epochs
Fig. 6 CIFAR-10 Net-Slim 0.05, L2 = 10−3 200+0+50 - -
Fig. 6 CIFAR-10 ChipNet 0.05, L2 = 10−3 200+20+50 - -
Fig. 6 CIFAR-100 DAM 0.05, L2 = 10−3 200+0+0 variable β(0) = 1, 20 epochs
Fig. 6 CIFAR-100 Net-Slim 0.05, L2 = 10−3 200+0+50 - -
Fig. 6 CIFAR-100 ChipNet 0.05, L2 = 10−3 200+20+50 - -
Fig. 7 CIFAR-10 DAM 0.05, L2 = 10−3 200+0+0 0.4 β(0) = 1, 20 epochs
Fig. 7 CIFAR-10 Net-Slim 0.05, L2 = 10−3 200+0+50 - -
Fig. 7 CIFAR-10 ChipNet 0.05, L2 = 10−3 200+20+50 - -
Tab. 2 CIFAR-10 DAM 0.05, L2 = 10−3 200+0+0 0.4 β(0) = 1, 20 epochs
Tab. 2 CIFAR-10 Net-Slim 0.05, L2 = 10−3 200+0+50 - -
Tab. 2 CIFAR-10 ChipNet 0.05, L2 = 10−3 200+20+50 - -

works. Table 3 (a) shows the results of DAM for pruning the LeNet model at varying values of λ.
Figure 5 also shows how test accuracy and pruning ratio varies as we change λ. We can see that
the pruning keeps on continuing even with aggressively large values of λ (close to 2), which again
demonstrates that DAM does not suffer from the saturation effects of L1-based regularization, as
was described in Section 4 of the main paper. In addition to pruning the LeNet, we also examine
how adding gradient noise [7] at every epoch of neural network training affects the results. Table
3 (b) shows that by adding gradient noises to the training process leads to slight improvements in
accuracy and pruning fractions, implying that more stochasticity in the training process may improve
the ability of DAM to perform network pruning. Table 3 (c) further shows the results of DAM on
LeNet-5, where we replace all the activation functions with the sine activation function as proposed
in [8]. Interestingly, the results are much better with sine activation function, implying that the DAM
may be compatible with periodic activation functions.

E.2 Additional Results on CIFAR Datasets

Table 4 presents additional results of DAM on CIFAR datsets for many other neural network archi-
tectures than what was shown in the main paper, including VGG-19, PreResnet-20, PreResNet-56,
and PreResnet-110. Note that the DAM results presented in the main paper were obtained using an
implementation of our algorithm based on the ChipNet source code [9], which was published just a
few weeks before the time of our submission. Given the recentness of this implementation, we were
not able to complete extensive evaluations on all architectures using this implementation. Instead,
the results presented in this section are based on an alternate implementation of our DAM algorithm
based on the stable source code provided in an older well-established previous work [10]. In this
implementation, the DAM is trained for 160 epochs using AdaBelief [11] optimizer. We release both
implementations of our DAM algorithms in the anonymous link of the source code provided in the
main paper.

E.3 Analyzing Similarity in Pruned Features

A useful property of compact features learned at the hidden layers of a neural network is that they
show express ‘distinct’ features upon convergence, such that pruning the neurons any further would
lead to drop in accuracy. To evaluate the similarity in the features extracted by comparative structured
network pruning methods, we compute the centered kernel alignment (CKA) similarity [12] matrix
for all pairs of neurons with non-zero mask values at the 54-th layer in the PreResNet-164 architecture
pruned using DAM, Net-Slim, and ChipNet. Note that we chose the 54-th layer as it represents one
third of the total number of layers at the end of the first ‘BaseBlock’ of PreResNet-164 for ease of
implementation, although these results can be visualized for any other layer number too. The CKA
similarity matrices of the unpruned network and the three pruned networks are shown in Figure 6,
where higher off-diagonal values in these matrices represent higher similarity among the features. To
further quantify the differences between DAM and the baseline methods, we compute the statistics
of the values in the off-diagonal elements of the CKA matrices in Table 5. We can observe observe
that DAM shows lowest CKA similarity on the off-diagonal elements as compared to Net-Slim and

7

Table 3: DAM on MNIST Dataset, LeNet-5 (# Neurons 6-16-120)

(a) Tanh Activation w.o. Gradient Noise

λ 0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0
Parameters 60.0k 33.6k 18.7k 7.0k 3.9k 1.9k 1.4k 1.3k 1.0k 0.7k
Pruned (%) 0.00 44.15 68.82 88.41 93.59 96.78 97.71 97.85 98.31 98.90

Accuracy (%) 98.85 98.61 98.47 98.16 97.49 96.54 95.47 94.79 93.70 90.12

(b) Tanh Activation with 5% Gradient Noise

λ 0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0
Parameters 60.0k 35.0k 18.8k 5.9k 3.9k 1.8k 1.4k 1.3k 1.0k 0.6k
Pruned (%) 0.00 41.71 68.70 90.19 93.53 96.97 97.67 97.85 98.31 99.00

Accuracy (%) 98.78 98.57 98.69 98.03 97.69 96.61 95.64 94.78 94.16 90.16

(c) Sine Activation w.o. Gradient Noise

λ 0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6
Parameters 60.0k 21.5k 9.2k 3.4k 1.9k 1.5k 1.1k 1.2k 0.8k 0.6k
Pruned (%) 0.00 64.24 84.64 94.27 96.84 97.44 98.12 98.05 98.59 98.95

Accuracy (%) 98.93 99.00 98.85 98.53 98.38 97.12 96.12 96.63 94.91 95.49

ChipNet, indicating that the features learned by DAM are more distinct from one another. Also note
that in Figure 6, the size of the pruned features (with non-zero values) extracted by DAM is quite
smaller than what we obtain from Net-Slim and ChipNet using their standard implementations made
available by their authors. This is because some proportion of pruned channels become nonzero
after finetuning in Net-Slim (see details of mask implementation here4) and ChipNet. Their current
implementations thus result in smaller actual pruning ratios after finetuning for practical use than
what is reported (before finetuninng).

E.4 Visualization of Pruned Architectures

PreResNet-164: Figures 7 and 8 show the visualizations of architectures used in Section 5 of the
main paper. For small trade-off parameters λ, the DAM tends to prune evenly across layers. For
extreme pruning ratios (λ = 1.0), the DAM prunes a lot of blocks, showing that it is more in favor of
widths than depths (which happens to agree with the idea of WideResNet [13]).

Permutation Invariance: In order to further support the permutation invariance of DAM (reported
in the main paper), we plot the architectures of PreResNet-164 pruned using DAM after randomly
permuting the neuron ordering. We can see from Figure 9 that the resulting architectures are consistent
across different permutations.

Hinged Variant of DAM: Most of the pruning algorithms result in uneven pruning across different
layers which may create difficulty for pruning over the sparsified models, especially for models
with shortcut connections like ResNet and DenseNet. To show that DAM is easy to use and easily
customizable according to the needs of the base network architecture, we present a Hinged variant of
DAM, where the major difference is that the bottleneck dimensions of the ResNet are hinged to be
the same. The pruned architectures of PreResNet-20, PreResNet-56 and PreResNet-110 are shown in
Figures 10 and 11, where we can see that the Hinged variant of DAM produces comparable results as
the normal DAM.

4https://github.com/Eric-mingjie/network-slimming/tree/master/mask-impl

8

https://github.com/Eric-mingjie/network-slimming/tree/master/mask-impl

Table 4: Additional results of pruning different architectures using DAM on CIFAR datasets.
Network Dataset λ Top-1 (%) Params (k) Pruned C. (%) Pruned P. (%)
VGG-19 CIFAR-10 0.1 93.39 1,627 71.28 91.88
VGG-19 CIFAR-10 0.5 90.92 264 89.17 98.68
VGG-19 CIFAR-100 0.1 73.40 6,190 41.30 69.17
VGG-19 CIFAR-100 0.5 67.17 664 79.81 96.69
PreResNet-20 CIFAR-100 0.1 67.33 228 2.72 5.88
PreResNet-20 CIFAR-100 0.2 66.53 217 5.37 10.50
PreResNet-20 CIFAR-100 0.3 66.46 206 7.72 15.13
PreResNet-20 CIFAR-100 0.4 65.83 191 11.25 21.18
PreResNet-20 CIFAR-100 0.5 66.17 183 14.12 24.67
PreResNet-20 CIFAR-100 1.0 63.15 121 31.84 50.05
PreResNet-20 CIFAR-100 2.0 54.79 47 62.35 80.45
PreResNet-56 CIFAR-100 0.1 72.74 573 3.33 6.60
PreResNet-56 CIFAR-100 0.2 72.64 526 7.93 14.35
PreResNet-56 CIFAR-100 0.3 72.49 493 10.72 19.67
PreResNet-56 CIFAR-100 0.4 72.28 466 14.62 24.14
PreResNet-56 CIFAR-100 0.5 71.73 419 19.17 31.73
PreResNet-56 CIFAR-100 1.0 69.94 314 33.60 48.77
PreResNet-56 CIFAR-100 2.0 64.31 153 62.94 75.05
PreResNet-110 CIFAR-10 0.1 94.51 975 9.72 15.01
PreResNet-110 CIFAR-10 0.2 93.73 808 20.71 29.54
PreResNet-110 CIFAR-10 0.3 93.28 646 31.10 43.65
PreResNet-110 CIFAR-10 0.4 93.35 560 37.08 51.18
PreResNet-110 CIFAR-10 0.5 92.97 482 46.55 58.00
PreResNet-110 CIFAR-10 1.0 91.61 208 72.51 81.85
PreResNet-110 CIFAR-10 2.0 88.90 89 84.99 92.21
PreResNet-110 CIFAR-100 0.1 75.55 1110 4.20 5.15
PreResNet-110 CIFAR-100 0.2 74.73 1010 10.24 13.70
PreResNet-110 CIFAR-100 0.3 75.08 940 14.54 19.63
PreResNet-110 CIFAR-100 0.4 73.93 873 18.37 25.41
PreResNet-110 CIFAR-100 0.5 73.44 817 21.87 30.17
PreResNet-110 CIFAR-100 1.0 71.63 547 39.68 53.21
PreResNet-110 CIFAR-100 2.0 68.32 261 66.45 77.72

Table 5: Statistics of CKA similarity between different features learned at layer 54 of PreResNet-164
after pruning (calculated using the off-diagonal elements in Figure 6).

CKA Unpruned DAM Net-Slim ChipNet
mean 0.273 0.229 0.328 0.295
std 0.018 0.013 0.021 0.020
max 0.840 0.740 0.893 0.964

9

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

46 50 50 50 50 50

43 50 50 50 50 50

42 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 18 19 19 19 20

11 13 14 13 13 12

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.1

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

(a) Bottleneck Dimension.

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

3.2e-09 2.2e-09 7.8e-10 5.9e-10 5.3e-10 5.4e-10

4.6e-09 3.3e-09 7.4e-10 5.7e-10 5.5e-10 5.4e-10

5.3e-09 3.6e-09 7.5e-10 5.9e-10 5.2e-10 5.1e-10

7.4e-09 3.2e-09 7.4e-10 5.9e-10 5.3e-10 5.4e-10

7.9e-09 3.3e-09 7.9e-10 5.5e-10 5.5e-10 5.5e-10

6.1e-09 4.2e-09 7.5e-10 5.6e-10 5.7e-10 5.4e-10

5.3e-09 3.2e-09 7.5e-10 5.4e-10 5.3e-10 5.3e-10

6.5e-09 3.2e-09 7.6e-10 5.5e-10 5.4e-10 5.5e-10

7.1e-09 3.6e-09 7.4e-10 5.7e-10 5.6e-10 5.3e-10

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

9.9e-08 1.7e-07 1.7e-07 1.8e-07 1.3e-07 1.2e-07

2.3e-07 3.2e-07 5.4e-07 1.1e-07 1.3e-07 1.8e-07

2.6e-07 3.7e-07 7.1e-07 9.4e-07 2.9e-07 3e-07

1.2e-06 1.3e-06 1.1e-05 6.1e-07 1.4e-06 3.9e-06

1.7e-06 7.9e-07 2.2e-06 3.1e-06 3e-06 2.1e-06

1.1e-05 0.014 0.0055 0.0061 0.0057 5e-05

0.084 0.063 0.048 0.064 0.063 0.075

0.33 0.33 0.34 0.33 0.34 0.34

0.34 0.33 0.33 0.33 0.32 0.33

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

1.8e-05 6.9e-06 6.6e-07 1.7e-07 1.4e-05 6.2e-06

1.4e-05 1.7e-05 6.7e-07 3.1e-06 8.8e-06 1.1e-06

4.3e-06 6.7e-07 2.9e-07 5.4e-06 2.7e-07 1.2e-05

3.1e-06 1.2e-05 3.9e-06 2.2e-06 4.6e-06 6.5e-06

3.2e-05 4.7e-06 1.5e-05 3.2e-05 9.7e-05 2.3e-05

0.33 0.33 0.31 0.33 0.33 0.33

0.33 0.33 0.34 0.34 0.33 0.33

0.33 0.34 0.34 0.32 0.34 0.33

0.34 0.33 0.33 0.34 0.34 0.34

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.34 0.34 0.5 0.34 0.33 0.38

0.33 0.42 0.32 0.37 0.36 0.49

0.34 0.35 0.34 0.33 0.42 0.34

0.34 0.32 0.34 0.33 0.34 0.32

0.34 0.32 0.33 0.33 0.34 0.34

0.35 0.33 0.35 0.33 0.34 0.33

0.33 0.34 0.34 0.33 0.33 0.33

0.33 0.33 0.33 0.32 0.33 0.32

0.34 0.32 0.33 0.33 0.33 0.33

Learning Rate = 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

(b) Reconstruction Loss.

Figure 2: Hyper-parameter sensitivity of DAM for dimensionality reduction (Section 4, Linear).

10

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

45 50 50 50 50 50

42 49 50 50 50 50

40 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

22 21 24 23 22 27

20 20 21 21 20 20

21 20 20 20 20 20

21 20 21 20 20 20

20 21 20 21 21 21

21 21 20 20 21 20

20 20 20 20 20 20

5 8 5 7 6 3

0 0 0 0 0 0

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

20 20 20 20 20 20

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

36 45 45 44 4 0

31 44 0 50 0 50

34 40 45 50 0 50

0 36 0 34 50 48

34 41 48 22 50 50

29 47 48 38 0 0

35 48 0 50 0 0

0 40 42 10 0 0

17 37 34 40 0 0

Learning Rate = 0.1

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

(a) Bottleneck Dimension.

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

0.0013 0.0011 0.0011 0.0011 0.0012 0.0012

0.0011 0.0012 0.0012 0.0012 0.0011 0.0012

0.0014 0.0011 0.0011 0.0012 0.0011 0.0011

0.0012 0.0012 0.0012 0.0012 0.0011 0.0012

0.0012 0.001 0.0011 0.0012 0.0011 0.0012

0.0012 0.0011 0.0012 0.0013 0.00099 0.0012

0.0015 0.0011 0.0012 0.0012 0.0011 0.0012

0.0011 0.0012 0.0011 0.0012 0.0012 0.0014

0.0012 0.0012 0.0011 0.0012 0.0012 0.0012

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.00091 0.00077 0.0008 0.00082 0.00077 0.00077

0.00096 0.00093 0.00073 0.00084 0.00084 0.00075

0.00092 0.00087 0.00078 0.00081 0.00089 0.0008

0.00096 0.00086 0.00084 0.00088 0.00096 0.00085

0.00098 0.00099 0.00082 0.0011 0.00097 0.00094

0.00099 0.00099 0.0011 0.001 0.00081 0.0012

0.0011 0.0013 0.0012 0.001 0.0013 0.0012

0.3 0.21 0.29 0.24 0.26 0.34

0.45 0.45 0.46 0.48 0.46 0.44

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

0.0018 0.0011 0.0017 0.0014 0.00075 0.0018

0.0023 0.0004 0.00037 0.00074 0.0015 0.00045

0.00039 0.002 0.0006 0.0011 0.0015 0.00044

0.0014 0.0011 0.0013 0.0012 0.0015 0.0019

0.0033 0.00047 0.0013 0.0007 0.0013 0.0009

0.47 0.45 0.46 0.46 0.44 0.43

0.45 0.45 0.46 0.47 0.46 0.43

0.44 0.44 0.45 0.45 0.45 0.44

0.45 0.44 0.44 0.46 0.43 0.46

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.47 0.43 2.9 0.64 0.45 38

0.49 0.44 3.6e+09 0.63 35 1.1

0.52 0.5 0.91 0.84 2.1e+13 0.63

1.1e+10 0.45 9.2e+10 0.52 0.45 0.47

0.55 0.4 0.55 0.65 1.7 54

0.49 0.76 0.79 17 0.44 23

0.42 0.49 1.1e+08 1.2 0.44 0.47

3.3e+09 0.52 7e+02 0.45 0.47 0.72

0.42 0.55 1.5 0.75 0.45 2

Learning Rate = 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

(b) Reconstruction Loss.

Figure 3: Hyper-parameter sensitivity of DAM for dimensionality reduction (Section 4, Polynomial).

11

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

42 49 50 50 50 50

40 49 50 50 50 50

40 50 50 50 50 50

40 50 50 50 50 50

40 49 50 50 50 50

40 50 50 50 50 50

40 49 50 50 50 50

39 49 50 50 50 50

39 49 50 50 50 50

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

34 40 41 44 46 43

21 24 23 23 24 24

21 20 21 20 20 23

20 20 20 20 20 20

20 20 20 20 20 20

15 15 15 18 15 15

7 10 6 8 9 10

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

14 18 24 17 19 19

8 7 9 11 11 8

11 9 7 12 11 6

1 4 9 8 1 5

0 0 0 0 0 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

35 47 50 50 0 50

39 49 50 50 48 50

33 44 50 0 20 8

33 33 38 3 50 0

31 0 29 0 17 0

13 25 16 16 0 0

26 37 0 0 0 0

50 38 21 0 0 0

2 0 0 0 0 0

Learning Rate = 0.1

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

(a) Bottleneck Dimension.

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

0.00036 0.00032 0.0003 0.00029 0.00027 0.00028

0.00042 0.00027 0.00027 0.0003 0.00027 0.00031

0.00046 0.00032 0.00029 0.00028 0.0003 0.0003

0.00046 0.00033 0.00027 0.00029 0.00029 0.0003

0.00051 0.00029 0.00028 0.00032 0.00027 0.00028

0.00049 0.0003 0.00029 0.00029 0.00028 0.00035

0.0005 0.00031 0.0003 0.0003 0.00029 0.00031

0.00042 0.0003 0.00029 0.00029 0.00027 0.00026

0.0004 0.00028 0.00028 0.00028 0.00025 0.00027

Learning Rate = 0.0001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.00021 0.0002 0.00018 0.00021 0.00022 0.00019

0.00035 0.00036 0.00028 0.00035 0.00044 0.00036

0.00031 0.00027 0.00037 0.00037 0.00043 0.0004

0.00039 0.00031 0.00045 0.00046 0.00043 0.00048

0.0004 0.0004 0.00036 0.00047 0.00049 0.00075

0.0062 0.0058 0.006 0.0024 0.0069 0.0077

0.029 0.017 0.032 0.027 0.024 0.019

0.075 0.082 0.081 0.071 0.081 0.079

0.075 0.081 0.084 0.078 0.082 0.073

Learning Rate = 0.001

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.001

0.005

0.01

0.05

0.1

0.5

1

5

10

λ

0.071 0.078 0.059 0.07 0.07 0.07

0.034 0.035 0.022 0.075 0.029 0.067

0.056 0.035 0.058 0.028 0.066 0.041

0.066 0.039 0.02 0.025 0.07 0.033

0.081 0.077 0.08 0.075 0.074 0.048

0.073 0.079 0.078 0.079 0.083 0.077

0.08 0.076 0.076 0.077 0.082 0.081

0.077 0.078 0.077 0.084 0.077 0.075

0.076 0.084 0.082 0.082 0.081 0.082

Learning Rate = 0.01

0.0 1.0 2.0 3.0 4.0 5.0
Cold-Start

0.078 0.079 0.08 0.077 1.3e+09 0.083

0.078 0.077 0.081 0.083 0.078 0.077

0.072 0.078 0.079 3.2e+06 0.083 0.074

0.08 0.078 0.074 0.079 0.08 3.4e+05

0.079 9.9e+08 0.079 5.2e+05 1.6e+02 1.8e+03

0.073 0.08 0.084 0.074 10 6.2e+05

0.079 0.083 5.5e+05 0.078 37 0.2

1.3e+03 0.078 0.079 24 23 51

0.1 0.082 0.086 0.75 3.8e+06 0.69

Learning Rate = 0.1

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

(b) Reconstruction Loss.

Figure 4: Hyper-parameter sensitivity of DAM for dimensionality reduction (Section 4, Neural
Network).

12

0 50 100
Prune Ratio (Paramters)

85

90

95

100

Te
st

A
cc

ur
ac

y
(%

)

0 1 2
Coefficient λ

85

90

95

100

Te
st

A
cc

ur
ac

y
(%

)

0 1 2
Coefficient λ

100

101

102

R
em

ai
ni

ng
Pa

ra
m

s
(%

)

Figure 5: Results of DAM trained with varying λ on MNIST dataset. Accuracy is reported using the
mean values of 5 random runs.

0.0

0.2

0.4

0.6

0.8

1.0

(a) Unpruned

0.2

0.4

0.6

0.8

1.0

(b) DAM

0.0

0.2

0.4

0.6

0.8

1.0

(c) Net-Slim

0.0

0.2

0.4

0.6

0.8

1.0

(d) ChipNet

Figure 6: CKA similarity between features learned at layer 54 of PreResNet-164 model, before
pruning, and after pruning using the three methods.

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(a) Lambda = 0.0

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(b) Lambda = 0.1

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(c) Lambda = 0.2

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(d) Lambda = 0.3

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(e) Lambda = 0.4

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(f) Lambda = 0.5

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(g) Lambda = 0.75

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(h) Lambda = 1.0

Figure 7: Visualization of PreResNet-164 Pruned on CIFAR-10

13

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(a) Lambda = 0.0

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(b) Lambda = 0.1

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(c) Lambda = 0.2

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(d) Lambda = 0.3

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(e) Lambda = 0.4

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(f) Lambda = 0.5

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(g) Lambda = 0.75

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

initial
pruned

(h) Lambda = 1.0

Figure 8: Visualization of PreResNet-164 Pruned on CIFAR-100

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(a) Run 1

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(b) Run 2

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(c) Run 3

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(d) Run 4

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

initial
pruned

(e) Run 5

Figure 9: Permutation Invariance Experiment (Table 2 in Section 5) on CIFAR-10

14

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-10)

(a) Depth-110 with Lambda = 0.1

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-10)

(b) Depth-110 with Lambda = 0.3

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-10)

(c) Depth-110 with Lambda = 0.5

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-10)

(d) Depth-110 with Lambda = 2.0

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

(e) Depth-164 with Lambda = 0.1

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

(f) Depth-164 with Lambda = 0.3

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

(g) Depth-164 with Lambda = 0.5

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-10)

(h) Depth-164 with Lambda = 2.0

Figure 10: Hinged-Variant of various PreResNet architectures Pruned on CIFAR-10

15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-20 Pruning on Channels (CIFAR-100)

(a) Depth-20 with Lambda = 0.1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-20 Pruning on Channels (CIFAR-100)

(b) Depth-20 with Lambda = 0.3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-20 Pruning on Channels (CIFAR-100)

(c) Depth-20 with Lambda = 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-20 Pruning on Channels (CIFAR-100)

(d) Depth-20 with Lambda = 2.0

0 10 20 30 40 50
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-56 Pruning on Channels (CIFAR-100)

(e) Depth-56 with Lambda = 0.1

0 10 20 30 40 50
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-56 Pruning on Channels (CIFAR-100)

(f) Depth-56 with Lambda = 0.3

0 10 20 30 40 50
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-56 Pruning on Channels (CIFAR-100)

(g) Depth-56 with Lambda = 0.5

0 10 20 30 40 50
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-56 Pruning on Channels (CIFAR-100)

(h) Depth-56 with Lambda = 2.0

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-100)

(i) Depth-110 with Lambda = 0.1

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-100)

(j) Depth-110 with Lambda = 0.3

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-100)

(k) Depth-110 with Lambda = 0.5

0 20 40 60 80 100
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-110 Pruning on Channels (CIFAR-100)

(l) Depth-110 with Lambda = 2.0

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

(m) Depth-164 with Lambda = 0.1

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

(n) Depth-164 with Lambda = 0.3

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

(o) Depth-164 with Lambda = 0.5

0 20 40 60 80 100 120 140 160
Layer Index

0

50

100

150

200

250

N
um

be
r

of
C

ha
nn

el
s

Resnet-164 Pruning on Channels (CIFAR-100)

(p) Depth-164 with Lambda = 2.0

Figure 11: Hinged-Variant of various PreResNet architectures Pruned on CIFAR-100

16

References
[1] Jie Bu and Anuj Karpatne. Quadratic Residual Networks: A New Class of Neural Networks

for Solving Forward and Inverse Problems in Physics Involving PDEs, pages 675–683. SIAM,
2021.

[2] Mohsen Jamali and Martin Ester. A matrix factorization technique with trust propagation
for recommendation in social networks. In Proceedings of the fourth ACM conference on
Recommender systems, pages 135–142, 2010.

[3] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. Recommender systems
with social regularization. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 287–296, 2011.

[4] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo! music
dataset and kdd-cup’11. In Proceedings of KDD Cup 2011, pages 3–18. PMLR, 2012.

[5] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

[6] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[7] Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles
with stochastic gradients. In International Conference on Machine Learning, pages 1155–1164.
PMLR, 2018.

[8] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS,
2020.

[9] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak Gupta. Chipnet: Budget-aware
pruning with heaviside continuous approximations. In ICLR, 2021.

[10] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In ICLR, 2018.

[11] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. Conference on Neural Information Processing Systems, 2020.

[12] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pages
3519–3529. PMLR, 2019.

[13] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [No] Our work

aims to learn compact representations either through network pruning or dimensionality
reduction. Hence, there are no direct negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

17

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and Appendix A, B.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3 and
Appendix A, B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] All our codes
and datasets are available at: https://github.com/jayroxis/dam-pytorch.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C and D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 4, 5, and Appendix E.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18

https://github.com/jayroxis/dam-pytorch

	Analysis of the DAM Gate Function Dynamics During Training
	Gradients of DAM Learning Objective w.r.t. i
	Equilibrium of DAM Gate Function upon Convergence
	Additional Remarks on the Effects of i and On DAM Convergence

	Theoretical Results And Technical Proofs For Section 4
	Hyperparameter Sensitivity
	Experimental Setups
	Representation Learning (Section 4)
	Structured Network Pruning (Section 5)

	Additional Experimental Results
	Effect of Gradient Noise and Activation Functions on MNIST Dataset
	Additional Results on CIFAR Datasets
	Analyzing Similarity in Pruned Features
	Visualization of Pruned Architectures

