
Under review as a conference paper at ICLR 2024

Appendix for

“On Causal Discovery in the Presence of Deterministic Relations”

Appendix organization:

A1 Related Works 13

A2 Proofs 14

A2.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A2.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A2.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A2.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A3 More Details about the Experiments 18

A3.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A3.2 Evaluation on two DCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A1 RELATED WORKS

In this part, we will introduce more related works in causal discovery (Spirtes & Zhang, 2016). As
we mentioned in the main paper, constraint-based and score-based methods are two primary cate-
gories in causal discovery. Constraint-based methods utilize the conditional independence test (CIT)
to learn a skeleton of the directed acyclic graph (DAG), and then orient the edges upon the skele-
ton. Such methods contain Peter-Clark (PC) algorithm (Spirtes & Zhang, 2016) and Fast Causal
Inference (FCI) algorithm (Spirtes, 2001). Some typical CIT methods include kernel-based inde-
pendent conditional test (Zhang et al., 2012) and approximate kernel-based conditional independent
test (Strobl et al., 2019).

Score-based methods normally use a score function and rely on a particular search strategy to look
for the intended graph. The search strategy usually involve greedy search, exact search, or con-
tinuous optimization. The first continuous-optimization based method is NOTEARS (Zheng et al.,
2018), which casts the Bayesian network structure learning task into a continuous constrained op-
timization problem with the least squares objective, using an algebraic characterization of directed
acyclic graph (DAG). Subsequent work GOLEM (Ng et al., 2020) adopts a continuous unconstrained
optimization formulation with a likelihood-based objective. NOTEARS is designed under the as-
sumption of the linear relations between variables, therefore, another subsequent works have ex-
tended NOTEARS to handle nonlinear cases via deep neural networks, such as DAG-GNN (Yu
et al., 2019) and DAG-NoCurl (Yu et al., 2021). Moreover, ENCO (Lippe et al., 2022) presents an
efficient DAG discovery method for directed acyclic causal graphs utilizing both observational and
interventional data. AVCI (Lorch et al., 2022) infers causal structure by performing amortized vari-
ational inference over an arbitrary data-generating distribution. These methods might suffer from
various optimization issues, including convergence (Wei et al., 2020), sensitivity to data standard-
ization (Reisach et al., 2021), and nonconvexity (Ng et al., 2023). Since they are only guaranteed
to find a local optimum, therefore the quality of the solution can not be guaranteed, even in the
asymptotic cases.

Besides the constrain-based and score-based methods, another major category of causal discovery
methods is function causal model based methods. Those methods rely on the causal asymmetry
property, such as the linear non-Gaussian model (LiNGAM) (Shimizu et al., 2006), the additive noise
model (Hoyer et al., 2008), and the post-nonlinear causal model (Zhang & Hyvarinen, 2012). Apart
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from those methods, there are also some hybrid methods, such as neural conditional dependence
(NCD) method, which reframes the GES algorithm to be more flexible than the standard score-based
version and readily lends itself to the nonparametric setting with a general measure of conditional
dependence.

A2 PROOFS

In this section, we provide the proofs of theorems and lemmas in the main paper, including Lemma
1, Theorem 3, Theorem 4, and Theorem 5.

A2.1 PROOF OF LEMMA 1

Proof: Assume a deterministic cluster S = {X} [ Y , where X is any one variable in the DC, and
Y is the set of the other deterministic variables in S.

By the definition of determinisic relation, we can have

f(X,Z) = 0, (6)

In other words, we may also obtain X = g(Z) or Z = h(X) without a random noise term.

When we are doing conditional independent test to evaluate the null hypothesis Y ?? X|Z, where
Y is any one non-deterministic variable in the system, then a standard procedure is to conduct
regression in RKHS (Zhang et al., 2012; Huang et al., 2018) in the following form

�X = F1(Z) + u1,

�Y = F2(Z) + u2,
(7)

where �, F1 and F2 are the nonlinear feature mapping in the RHKS.

Then the null hypothesis Y ?? X|Z holds true, if and only if the k⌃uk
2
HS

= 0 where ⌃u is the
variance matrix of two residues u1 and u2.

Given that X and Z are deterministically related, and also X = g(Z). Therefore, the residue term
after the kernel ridge regression will always be 0 (Perfectly representation! Note that X corresponds
to �X and g(Z) corresponds to F1(Z) in the Eq. 7).

In other words, k⌃uk
2
HS

= 0 will always holds true. Then, the null hypothesis will also hold true:
Y ?? X|Z.

To summarize, we can conclude: Y ?? X|Z will always hold true, if X and Z deterministically
related. To extend this result from one variable Y to arbitrary non-deterministic variable, and extend
the result from one variable X to arbitrary deterministic variable. We can conclude that: Any deter-
ministic variable, given the rest deterministic variables in DC, is always conditionally independent
from any non-deterministic variable in NDC.

Proof ends.

A2.2 PROOF OF THEOREM 3

Proof: As suggested by the generalized score (Huang et al., 2018), with proper score functions and
seach procedures, asymptotically the resulting Markov equivalence class has the same independence
constraints as the data generative distribution.

(i) First of all, we would like to discuss the local consistency of generalized score.

For the regression problem one can define the effective dimension of the kernel space and the com-
plexity of the regression function according to ?. Then under mild conditions, the CV-likelihood
score is locally consistent .
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Lemma 6 Suppose that the sample size of each test set n0 satisfies

n0 ! 1,
n0

n
! 0 as n ! 1,

and suppose that the regularization parameter � satisfies

� = O(n� b
bc+1 ),

where n is the total sample size, b is a parameter of the effective dimension of the kernel space with

b > 1, and c indicates the complexity of the regression function with 1 < c  2.

Lemma 7 Assume that all conditions given in Lemma 6 hold. With the CV likelihood under the

regression framework in RKHS as a score function and with the GES search procedure, it guar-

antees to find the Markov equivalence class which is consistent to the data generative distribution

asymptotically.

Lemma 7 ensures that, with proper score functions and seach procedures, asymptotically the result-
ing Markov equivalence class has the same independence constraints as the data generative distribu-
tion. For the complete proofs, please refer to the Appendix A5 of paper (Huang et al., 2018).

(ii) Then, We will provide the proof by contra-positive in both directions based on the consistency
of the generalized score as shown above.

1) “If” direction:

Suppose that exact score-based search asymptotically outputs a DAG H (having the highest general-
ized score) that does not belong to the MEC of the true DAG G. Since the generalized score is known
to be consistent, (H,P) must satisfy the Markov assumption, because otherwise its generalized score
is lower than that of the true DAG G and exact search would not have output H. By assumption, the
generalized score of H is higher than that of G, which, by the consistency of generalized, implies
that |H|  |G|, and therefore, (G,P) does not satisfy the SMR assumption.

2) “Only if” direction:
Suppose that (G,P) does not satisfy the SMR assumption. Then there exists a DAG H not in
the MEC of G such that |H|  |G|, and (H,P) satisfies the Markov assumption. Without loss
of generality, we choose H with the least number of edges. We first consider the case in which
|H| < |G|. Since both H and G satisfy the Markov assumption, by the consistency of generalized,
the generalized score of H is higher than that of G, which implies that exact score-based search will
not output any DAG from the MEC of G. For the case with |H| = |G|, since they are both Markov
with distribution P, they have the same generalized score. Therefore, exact search will output a DAG
that belongs to the MEC of either H or G, and is not guaranteed to output a DAG from the MEC of
the true DAG G.

Proof ends.

A2.3 PROOF OF THEOREM 4
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Figure A1: An example graph
with deterministic relations: V3 =
f(V1, V2), V4 = g(V1, V2).

Proof: We will divide the whole proofs into two parts. For
the first part, we aim to prove the “representation” theorem,
and for the second part, we aim to further prove the “perfect
representation” theorem.

(i) Representation:

Assume there is a MEC M, which contains both directed
edges and undirected edges. Let X be a random variable in
M and Z be the set of all non-descendant neighbors including
direct causes and undirected neighbors of X . Suppose the ran-
dom variables X and Z are over measureable spaces X and Z ,
respectively.

Without assuming a particular functional causal form, we usu-
ally exploit a regression framework in the RKHS, to encode
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general dependence relations between two random variables.
Define a RKHS HX on X with continuous feature mapping �X : X ! HX . Here, we consider

�X (X) = F (Z) + u, (8)

where F : Z ! HX and u represents the regression residue or noise. When applying the kernel
ridge regression, we can obtain the estimated residue

û = "(KZ + "I)�1
�(X), (9)

where " is a small positive regularization parameter for kernel ridge regression, and KZ is the
centralized kernel matrix of Z. To evaluate whether such a residue exists, one may consider Hilbert-
Schmidt norm of the variance matrix

⌃û = û
T
û = 0, (10)

If the above equation holds true, then we may conclude that there is no noise term in the relationship
between X and Z, in other words, X can be represented by Z (without extra noise term).

Vice versa.

(ii) Perfect representation:

Intuitively speaking, the perfect representation can be motivated by the example, as shown in Figure
A1, where V3 = f(V1, V2), V4 = g(V1, V2).

When we are representing the variable V3, there should be multiple ways

V3 = f(V1, V2)

= h(V1, V2) + g(V1, V2)

= h(V1, V2) + V4.

(11)

Accordingly, we can say that V3 can be represented by {V1, V2} or {V1, V2, V4}. Clearly, the min-
imum deterministic cluster should be {V1, V2, V3} and {V1, V2, V4}. In other words, {V1, V2, V4}

can be redundant in the relationships to represent V3. Therefore, we can conclude that: V3 can be
represented by {V1, V2, V4}, but perfectly represented by {V1, V2}.

Here, if we cannot find a smaller subset of current set for representation, then we can say that this
current set is a perfect representation of that variable. Mathematically, we have:

X can be perfectly represented by Z, if and only if

1) X can be represented by Z and,
2) X cannot be represented by any subset Zs of Z, where 0 < |Zs| < |Z|.

Vice versa. With the concept of the perfect representation, we can easily detect all the MinDC in
our graph.

Proof ends.

A2.4 PROOF OF THEOREM 5

Proof:

First of all, we will explain why we need the listed three assumptions. Then, we will explain why
we need to have constraint on |PAi | < |MinDC |� 1.

(i) As mentioned in our main paper, there are three phases of our proposed DGES. During the first
phase, we need to run GES. To ensure the accuracy of output (particularly on the NDC part), we
need the assumptions of Markov and non-deterministic faithfulness (See Assumption 1 and 3). Then
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Figure A2: An example graph with determinisic relation where V3 = f(V1, V2). (a) A non-
deterministic variable V4 connects to {V1, V2, V3}. (b) A non-deterministic variable V4 connects
to {V2, V3}. (c) A non-deterministic variable V4 connects to {V3}. Here among the three graphs,
only the graph (c) can be partially identified.

in the third phase, we need to perform the exact search exclusively on the EDC, where the Sparest
Markov Representation (SMR) assumption will be needed.

(ii) As for why we need to condition on |PAi | < |MinDC |� 1, we can start with explaining why
|PAi | = |MinDC | and |PAi | = |MinDC |� 1 will fail the provided identifiability.

Let’s take an example with four variables, where three of them are deterministically related, as
shown in Figure A2. Here among the three graphs, only the graph (c) can be partially identified, and
the graph (a) and (b) cannot achieve partial identifiability.

We further assume a linear functional causal model, then we can formulate the deterministic rela-
tionship as

aV1 + bV2 + cV3 = 0, (12)

where a, b, c are any linear coefficients. Based on the above formulation, the causal equation of
variable V4 in Figure A2(a) can be represented as

V4 = dV1 + eV2 + fV3 + ✏

= dV1 + eV2 + f
1

c
(aV1 + bV2) + ✏

= dV1 + e
1

b
(aV1 + cV3) + fV3 + ✏

= d
1

a
(bV2 + cV3) + eV2 + fV3 + ✏,

(13)

where ✏ is the random noise injected into V4. Clearly, the above four equations are all valid, in other
words, V4 can be possibly represented by different sets of variables, meaning that this case is not
guaranteed to be identified.

Regarding the variable V4 in Figure A2(b), the causal equation can be represented as

V4 = eV2 + fV3 + ✏

= eV2 + f
1

c
(aV1 + bV2) + ✏

= e
1

b
(aV1 + cV3) + fV3 + ✏.

(14)

Again, the above three equations are all valid, in other words, V4 can be possibly represented by
different sets of variables, meaning that this case is also not guaranteed to be identified.

17



Under review as a conference paper at ICLR 2024

However, in Figure A2(c), things are different. The causal equation of variable V4 can be represented
as

V4 = fV3 + ✏

= f
1

c
(aV1 + bV2) + ✏.

(15)

When the SMR assumption is satisfied, we can identify the only one case, which is V3 ! V4.

Now, we extend the three-variable case to the general linear case where there is a MinDC with the
cardinality |MinDC |. And we can easily conclude the true conditions to be: |PAi | < |MinDC |�

1.

Furthermore, we extend the linear to nonlinear case, we can get conclude the true condition as shown
above.

Proof ends.

A3 MORE DETAILS ABOUT THE EXPERIMENTS

A3.1 IMPLEMENTATION DETAILS

We provide the implementation details of our method and other baseline methods for synthetic
datasets.

• DPC (Glymour, 2007): The method is an extension for traditional PC algorithm (Spirtes
et al., 2000), the key idea is that: every time when we do the conditional independence test,
we aim to remove the potential deterministic variables from the conditioning set so that
the faithfulness will not be violated. Here we follow the paper, and use the covariance to
measure the closeness of two variables. If the covariance between two variables are greater
than 0.9, we then remove the variable from the conditioning set in conditional independence
test. Meanwhile, for linear Gaussian model, we choose FisherZ test, while for nonlinear
model we choose kernel-based test (Zhang et al., 2012), and the significance level is set
to ↵ = 0.05 by default. We implement this method based on the Causal-learn package
https://github.com/py-why/causal-learn (Zheng et al., 2023).

• GES (Chickering, 2002): This method is a classical score-based method with greedy
search. Our implementation is based on the code from https://github.com/
juangamella/ges. For linear Gaussian model, we use BIC score. And for general
nonlinear model, we use generalized score with cross-validation likelihood (Huang et al.,
2018). The penalty parameter for controlling the sparsity is set to 1.

• A* (Yuan & Malone, 2013): A* is one of the classical exact score-based methods. Actually,
there are some heuristic algorithms proposed to accelerate the search procedure. Consider-
ing in our scenarios, we do not utilize any heuristic tricks for the experiments in order to
ensure the accuracy of solutions. Our experiments are based on the implementations on the
Causal-learn package https://github.com/py-why/causal-learn (Zheng
et al., 2023).

• DGES (ours): The first phase of our method is to run GES, as introduced above. The exact
search in the third phase we incorporate is the A* as mentioned above. During the second
stage, when we aim to detect the deterministic clusters and checking whether a variable can
be perfectly represented by some others, we set that if the term k⌃uk

2
HS

< 1e�3, although
theoretically the value should exactly be zero. Meanwhile, the regularization parameter for
the kernel ridge regression is set to 1e�10.

A3.2 EVALUATION ON TWO DCS

Figure 4 in the main paper presents the simulated results focused on graphs containing just a sin-
gle deterministic constraint (DC). In contrast, Figure A3 in the Appendix offers insights into sce-
narios involving two DCs, even allowing for the possibility of overlapping variables. An evident
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(a) Linear Gaussian model with varying number of variables d.

(b) Linear Gaussian model with varying number of samples n.  

(c) Nonlinear model with varying number of variables d.  

(d) Nonlinear model with varying number of samples n.  

2DC

Figure A3: Simulated results on graph with two deterministic clusters. We evaluate different func-
tional causal models on varying number of variables and samples, respectively. For each setting, we
consider SHD (#), F1 score ("), precision ("), recall (") and runtime (#) as evaluation criteria.

trend emerges: as the system incorporates more deterministic variables, the runtime of our Directed
Graphical Exploration System (DGES) inevitably escalates. This phenomenon can be attributed
to the increased number of deterministic variables demanding detection and inclusion in Phase 3,
where an exact search is performed.

It is worth noting that as the number of variables in the system increases, the runtime of A* experi-
ences a rapid surge. In stark contrast, DGES exhibits a more stable increase in runtime, demonstrat-
ing its efficiency and suitability for both linear and nonlinear models.

The outcomes gleaned from these experiments collectively indicate that DGES exhibits competitive
performance compared to established baselines. Notably, the exact method A* and our proposed
DGES consistently outperform other baseline methods like Greedy Equivalence Search (GES) and
PC, across a spectrum of evaluation criteria and diverse settings. It is intriguing to note that in
deterministic systems, the score-based method GES consistently outperforms the constraint-based
method DPC. This observation suggests that score-based approaches maintain a comprehensive per-
spective on causal discovery, which appears to be less susceptible to the challenges posed by deter-
ministic relationships, unlike constraint-based methods.
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