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Abstract

Training recurrent neural networks (RNNs) remains a challenge due to the insta-
bility of gradients across long time horizons, which can lead to exploding and
vanishing gradients. Recent research has linked these problems to the values
of Lyapunov exponents for the forward-dynamics, which describe the growth or
shrinkage of infinitesimal perturbations. Here, we propose gradient flossing, a
novel approach to tackling gradient instability by pushing Lyapunov exponents
of the forward dynamics toward zero during learning. We achieve this by regu-
larizing Lyapunov exponents through backpropagation using differentiable linear
algebra. This enables us to "floss" the gradients, stabilizing them and thus improv-
ing network training. We demonstrate that gradient flossing controls not only the
gradient norm but also the condition number of the long-term Jacobian, facilitating
multidimensional error feedback propagation. We find that applying gradient
flossing prior to training enhances both the success rate and convergence speed for
tasks involving long time horizons. For challenging tasks, we show that gradient
flossing during training can further increase the time horizon that can be bridged
by backpropagation through time. Moreover, we demonstrate the effectiveness of
our approach on various RNN architectures and tasks of variable temporal com-
plexity. Additionally, we provide a simple implementation of our gradient flossing
algorithm that can be used in practice. Our results indicate that gradient flossing
via regularizing Lyapunov exponents can significantly enhance the effectiveness of
RNN training and mitigate the exploding and vanishing gradients problem.

1 Introduction

Recurrent neural networks are commonly used both in machine learning and computational neu-
roscience for tasks that involve input-to-output mappings over sequences and dynamic trajectories.
Training is often achieved through gradient descent by the backpropagation of error information
across time steps [1, 2, 3, 4]. This amounts to unrolling the network dynamics in time and recursively
applying the chain rule to calculate the gradient of the loss with respect to the network parameters.
Mathematically, evaluating the product of Jacobians of the recurrent state update describes how error
signals travel across time steps. When trained on tasks that have long-range temporal dependencies,
recurrent neural networks are prone to exploding and vanishing gradients [5, 6, 7, 8]. These arise from
the exponential amplification or attenuation of recursive derivatives of recurrent network states over
many time steps. Intuitively, to evaluate how an output error depends on a small parameter change at
a much earlier point in time, the error information has to be propagated through the recurrent network
states iteratively. Mathematically, this corresponds to a product of Jacobians that describe how
changes in one recurrent network state depend on changes in the previous network state. Together,
this product forms the long-term Jacobian. The singular value spectrum of the long-term Jacobian reg-
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ulates how well error signals can propagate backwards along multiple time steps, allowing temporal
credit assignment. A close mathematical correspondence of these singular values and the Lyapunov
exponents of the forward dynamics was established recently [9, 10, 11, 12]. Lyapunov exponents
characterize the asymptotic average rate of exponential divergence or convergence of nearby initial
conditions and are a cornerstone of dynamical systems theory [13, 14]. We will use this link to
improve the trainability of RNNs.

Previous approaches that tackled the problem of exploding or vanishing gradients have suggested
solutions at different levels. First, specialized units such as LSTM and GRU were introduced,
which have additional latent variables that can be decoupled from the recurrent network states via
multiplicative (gating) interactions. The gating interactions shield the latent memory state, which can
therefore transport information across multiple time steps [5, 6, 15]. Second, exploding gradients can
be avoided by gradient clipping, which re-scales the gradient norm [16] or their individual elements
[17] if they become too large [18]. Third, normalization schemes like batch normalization, layer norm
and group norm prevent saturated nonlinearities that contribute to vanishing gradients [19, 20, 21].
Fourth, it was suggested that the problem of exploding/vanishing gradients can be ameliorated by
specialized network architectures, for example, antisymmetric networks [22], orthogonal/unitary
initializations [23, 24, 25], coupled oscillatory RNNs [26], Lipschitz RNNs [27], structured state space
models [28, 29, 30, 31], echo state networks [32, 33], (recurrent) highway networks [34, 35], and
stable limit cycle neural networks [11, 36, 37]. Fifth, for large networks, a suitable choice of weights
can guarantee a well-conditioned Jacobian at initialization [23, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].
These initializations are based on mean-field methods, which become exact only in the large-network
limit. Such initialization schemes have also been suggested for gated networks [45]. However, even
when initializing the network with well-behaved gradients, gradients will typically not retain their
stability during training once the network parameters have changed.

Here, we propose a novel approach to tackling this challenge by introducing gradient flossing, a
technique that keeps gradients well-behaved throughout training. Gradient flossing is based on
a recently described link between the gradients of backpropagation through time and Lyapunov
exponents, which are the time-averaged logarithms of the singular values of the long-term Jacobian
[9, 11, 12, 37]. Gradient flossing regularizes one or several Lyapunov exponents to keep them close
to zero during training. This improves not only the error gradient norm but also the condition number
of the long-term Jacobian. As a result, error signals can be propagated back over longer time horizons.
We first demonstrate that the Lyapunov exponents can be controlled during training by including an
additional loss term. We then demonstrate that gradient flossing improves the gradient norm and
effective dimension of the gradient signal. We find empirically that gradient flossing improves test
accuracy and convergence speed on synthetic tasks over a range of temporal complexities. Finally,
we find that gradient flossing during training further helps to bridge long-time horizons and show
that it combines well with other approaches to ameliorate exploding and vanishing gradients, such as
dynamic mean-field theory for initialization, orthogonal initialization and gated units.
Our contributions include:

• Gradient flossing, a novel approach to the problem of exploding and vanishing gradients in
recurrent neural networks based on regularization of Lyapunov exponents. 1

• Analytical estimates of the condition number of the long-term Jacobian based on Lyapunov
exponents.

• Empirical evidence that gradient flossing improves training on tasks that involve bridging
long time horizons.

2 RNN Gradients and Lyapunov Exponents

We begin by revisiting the established mathematical relationship between the gradients of the loss
function, computed via backpropagation through time, and Lyapunov exponents [9, 12], and how
it relates to the problem of vanishing and exploding gradients. In backpropagation through time,
network parameters θ are iteratively updated by stochastic gradient descent such that a loss Lt is
locally reduced [1, 2, 3, 4]. For RNN dynamics hs+1 = fθ(hs,xs+1), with recurrent network state
h, external input x, and parameters θ, the gradient of the loss Lt with respect to θ is evaluated by

1Code in Julia using Flux [77, 78] is available at https://github.com/RainerEngelken/GradientFlossing
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unrolling the network dynamics in time. The resulting expression for the gradient is given by:

∂Lt
∂θ

=
∂Lt
∂ht

τ=t−1∑
τ=t−l

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ
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=
∂Lt
∂ht

∑
τ

Tt(hτ )
∂hτ
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(1)

where Tt(hτ ) is composed of a product of one-step Jacobians Ds =
∂hs+1

∂hs
:

Tt(hτ ) =

t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′
=

t−1∏
τ ′=τ

Dτ ′ (2)

Due to the chain of matrix multiplications in Tt, the gradients tend to vanish or explode exponentially
with time. This complicates training particularly when the task loss at time t dependents on inputs x
or states h from many time steps prior which creates long temporal dependencies [5, 6, 7, 8]. How
well error signals can propagate back in time is constrained by the tangent space dynamics along
trajectory ht, which dictate how local perturbations around each point on the trajectory stretch, rotate,
shear, or compress as the system evolves.

The singular values of the Jacobian’s product Tt, which determine how quickly gradients vanish or
explode during backpropagation through time, are directly related to the Lyapunov exponents of the
forward dynamics [9, 12]: Lyapunov exponents λ1 ≥ λ2 · · · ≥ λN are defined as the asymptotic
time-averaged logarithms of the singular values of the long-term Jacobian [13, 48, 49]

λi = lim
t→∞

1

t− τ
log(σi,t) (3)

where σi,t denotes the ith singular value of Tt(hτ ) with σ1,t ≥ σ2,t . . . σN,t (See Appendix I
for details). This means that positive Lyapunov exponents in the forward dynamics correspond to
exponentially exploding gradient modes, while negative Lyapunov exponents in the forward dynamics
correspond to exponentially vanishing gradient modes.

In summary, the Lyapunov exponents give the average asymptotic exponential growth rates of
infinitesimal perturbations in the tangent space of the forward dynamics, which also constrain the
signal propagation in backpropagation for long time horizons. Lyapunov exponents close to zero in
the forward dynamics correspond to tangent space directions along which error signals are neither
drastically attenuated nor amplified in backpropagation through time. Such close-to-neutral modes in
the tangent dynamics can propagate information reliably across many time steps.

3 Gradient Flossing: Idea and Algorithm

We now leverage the mathematical connection established between Lyapunov exponents and the
prevalent issue of exploding and vanishing gradients for regularizing the singular values of the
long-term Jacobian. We term this procedure gradient flossing. To prevent exploding and vanishing
gradients, we constrain Lyapunov exponents to be close to zero. This ensures that the corresponding
directions in tangent space grow and shrink on average only slowly. This leads to a better-conditioned
long-term Jacobian Tt(hτ ). We achieve this by using the sum of the squares of the first k largest
Lyapunov exponent λ1, λ2 . . . λk as a loss function:

Lflossing =

k∑
i=1

λ2i (4)

and evaluate the gradient obtained from backpropagation through time:

∂Lflossing

∂θ
=

k∑
i=1

∂λ2i
∂θ

(5)

This might seem like an ill-fated enterprise, as the gradient expression in Eq 5 suffers from its
own problem of exploding and vanishing gradients. However, instead of calculating the Lyapunov
exponents by directly evaluating the long-term Jacobian Tt (Eq 2), we use an established iterative
reorthonormalization method involving QR decomposition that avoids directly evaluating the ill-
conditioned long-term Jacobian [12, 50].
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First, we evolve an initially orthonormal system Qs = [q1
s, q

2
s, . . .q

k
s ] in the tangent space along the

trajectory using the Jacobian Ds =
∂hs+1

∂hs
. This means to calculate

Q̃s+1 = DsQs (6)
at every time-step. Second, we extract the exponential growth rates using the QR decomposition,

Q̃s+1 = Qs+1R
s+1,

which decomposes Q̃s+1 uniquely into the product of an orthonormal matrix Qs+1 of size N × k
so Q>s+1Qs+1 = 1k×k and an upper triangular matrix Rs+1 of size k × k with positive diagonal
elements. Note that the QR decomposition does not have to be applied at every step, just sufficiently
often, i.e., once every tONS such that Q̃ does not become ill-conditioned.

The Lyapunov exponents are given by time-averaged logarithms of the diagonal entries of Rs [49, 50]:

λi = lim
t→∞

1

t
log

t∏
s=1

Rs
ii = lim

t→∞

1

t

t∑
s=1

logRs
ii. (7)

This way, the Lyapunov exponent can be expressed in terms of a temporal average over the diagonal
elements of the Rs-matrix of a QR decomposition of the iterated Jacobian. To propagate the gradient
of the square of the Lyapunov exponents backward through time in gradient flossing, we used an
analytical expression for the pullback of the QR decomposition [51]: The backward pass of the QR
decomposition is given by [51, 52, 53, 54]

Q =
[
Q+Q copyltu(M)

]
R−T , (8)

where M = RR
T − Q

T
Q and the copyltu function generates a symmetric matrix by copying

the lower triangle of the input matrix to its upper triangle, with the element [copyltu(M)]ij =

Mmax(i,j),min(i,j) [51, 52, 53, 54]. We denote here adjoint variable as T = ∂L/∂T . A simple
implementation of this algorithm in pseudocode is:
Algorithm 1 Algorithm for gradient flossing of k tangent space directions

initialize h, Q
for e = 1→ E do

for t = 1→ T do
h← fθ(h,x)
D← dht

dht−1

Q← D ·Q
if t ≡ 0 (mod tONS) then

Q,R← qr(Q)
γi += log(Rii)

end if
end for
λi = γi/T

θe+1 ← θe − η ∂Lflossing

∂θ
end for

For clarity, we described gradient flossing in terms of stochastic gradient descent, but we actually
implemented it with the ADAM optimizer using standard hyperparameters η, β1 and β2. An example
implementation in Julia [77] using Flux [78] is available here . Note that this algorithm also works
for different recurrent network architectures. In this case, the Jacobians D has size n× n, where n is
the number of dynamic variables of the recurrent network model. For example, in case of a single
recurrent network of N LSTM units, the Jacobian has size 2N × 2N [9, 12, 46]. The Jacobian matrix
D can either be calculated analytically or it can be obtained via automatic differentiation.

4 Gradient Flossing: Control of Lyapunov Exponents

In Fig 1, we demonstrate that gradient flossing can set one or several Lyapunov exponents to a
target value via gradient descent with the ADAM optimizer in random Vanilla RNNs initialized with
different weight variances. The N units of the recurrent neural network follow the dynamics

hs+1 = f(hs,xs+1) = Wφ(hs) +Vxs+1. (9)
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Figure 1: Gradient flossing controls Lyapunov exponents and gradient signal propagation
A) Exploding and vanishing gradients in backpropagation through time arise from amplifica-
tion/attenuation of product of Jacobians that form the long-term Jacobian Tt(hτ ) =

∏t−1
τ ′=τ

∂hτ′+1

∂hτ′
.

B) First Lyapunov exponent of Vanilla RNN as a function of training epochs. Minimizing the
mean squared error between estimated first Lyapunov exponent and target Lyapunov exponent
λ1 = −1,−0.5, 0 by gradient descent. 10 Vanilla RNNs were initialized with Gaussian recurrent
weights Wij ∼ N (0, g2/N) where values of g were drawn g ∼ Unif(0, 1). C) Gradient flossing
minimizes the square of Lyapunov exponents over epochs. D) Full Lyapunov spectrum of Vanilla
RNN after a different number of Lyapunov exponents are pushed to zero via gradient flossing. Note,
the variability of the Lyapunov exponents that were not flossed. Parameters: network size N = 32
with 10 network realizations. Error bars in C indicate the 25% and 75% percentiles and solid line
shows median.

The initial entries of W are drawn independently from a Gaussian distribution with zero mean and
variance g2/N , where g is a gain parameter that controls the heterogeneity of weights. We here use
the transfer function φ(x) = tanh(x). (See appendix B for gradient flossing with ReLU and LSTM
units). xs is a sequence of inputs and V is the input weight. xs is a stream of i.i.d. Gaussian input
xs ∼ N (0, 1) and the input weights V are N (0, 1). Both W and V are trained during gradient
flossing.

In Fig 1B, we show that for randomly initialized RNNs, the Lyapunov exponent can be modified by
gradient flossing to match a desired target value. The networks were initialized with 10 different values
of initial weight strength g chosen uniformly between 0 and 1. During gradient flossing, they quickly
approached three different target values of the first Lyapunov exponents λtarget

1 = {−1,−0.5, 0}
within less than 100 training epochs with batch size B = 1. We note that gradient flossing with
positive target λtarget

1 seems not to arrive at a positive Lyapunov exponent λ1.

Fig 1C shows gradient flossing for different numbers of Lyapunov exponents k. Here, during gradient-
descent, the sum of the squares of 1, 16, or 32 Lyapunov exponents is used as loss in gradient flossing
(see Fig 1A). Fig 1D shows the Lyapunov spectrum after flossing, which now has 1, 16, or 32
Lyapunov exponents close to zero. We conclude that gradient flossing can selectively manipulate one,
several, or all Lyapunov exponents before or during network training. Gradient flossing also works for
RNNs of ReLU and LSTM units (See appendix B. Further, we find that the computational bottleneck
of gradient flossing is the QR decomposition, which has a computational complexity of O

(
N k2

)
,

both in the forward pass and in the backward pass. Thus, gradient flossing of the entire Lyapunov
spectrum is computationally expensive. However, as we will show, not all Lyapunov exponents need
to be flossed and only short episodes of gradient flossing are sufficient for significantly improving the
training performance.
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5 Gradient Flossing: Condition Number of the Long-Term Jacobian
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Figure 2: Gradient flossing reduces condition number of the long-term Jacobian A) Condition
number κ2 of long-term Jacobian Tt(hτ ) as a function of time horizon t− τ at initialization (blue)
and after gradient flossing (orange). Direct numerical simulations are done with arbitrary precision
floating point arithmetic (transparent lines) with 256 bits per float, asymptotic theory based on
Lyapunov exponents (dashed lines) (Eq 10). B) Condition number for different number of tangent
space dimensions m. Simulations (dots) and Lyapunov exponent based theory (dashed lines) at
initialization (blue) and after gradient flossing (orange). Gradient flossing increases the number of
tangent space dimensions available for backpropagation for a given condition number (Grey dotted
line as a guide for eye for κ2 = 105.) First 15 Lyapunov exponents were flossed. C) Comparison of
condition number obtained via direct numerical simulations vs. Lyapunov exponent-based. Colors
denote the number of flossed Lyapunov exponents k. Parameters: g = 1, batch size b = 1, N = 80,
epochs = 500, T = 500, gradient flossing for Ef = 500 epochs. Input xs identical to delayed XOR
task in Fig 3D.

A well-conditioned Jacobian is essential for efficient and fast learning [23, 55, 56]. Gradient
flossing improves the condition number of the long-term Jacobian which constrains the error signal
propagation across long time horizons in backpropagation (Fig 2). The condition number κ2 of a
linear map A measures how close the map is to being singular and is given by the ratio of the largest
singular value σmax and the smallest singular values σmin, so κ2(A) = σmax(A)

σmin(A) . According to the
rule of thumb given in [57], if κ2(A) = 10p, one can anticipate losing at least p digits of precision
when solving the equation Ax = b. Note that the long-term Jacobian Tt is composed of a product of
Jacobians, which generically makes it ill-conditioned. To nevertheless quantify the condition number
numerically, we use arbitrary-precision arithmetic with 256 bits per float. We find numerically that
the condition number of Tt exponentially diverges with the number of time steps (Fig 2A). We
compare the numerically measured condition number κ2 with an asymptotic approximation of the
condition number based on Lyapunov exponents that are calculated in the forward pass and find a
good match (Fig 2A).

Our theoretical estimate of the condition number κ2 of an orthonormal system Q of size N ×m that
is temporally evolved by the long-term Jacobian Tt is:

κ2(Q̃t+τ ) = κ2
(
Tt(hτ )Qt

)
=

σ1(Tt(hτ ))

σm(Tt(hτ ))
≈ exp ((λ1 − λm)(t− τ)) . (10)

where σ1(Tt(hτ )) and σm(Tt(hτ )) are the first and mth singular value of the long-term Jacobian.
We note that this theoretical estimate of the condition number follows from the asymptotic definition
of Lyapunov exponents and should be exact in the limit of long times. We find that gradient flossing
reduces the condition number by a factor whose magnitude increases exponentially with time (orange
in Fig 2A). Thus, we can expect that gradient flossing has a stronger effect on problems with a long
time horizon to bridge. We will later confirm this numerically.

Moreover, Lyapunov exponents enable the estimation of the number of gradient dimensions available
for the backpropagation of error signals. Generally, the long-term Jacobian is ill-conditioned, however,
the Lyapunov spectrum provides for a given number of tangent space dimensions an estimate of the
condition number. This indicates how close to singular the gradient signal for a given number of
tangent space dimensions is. Given a fixed acceptable condition number—determined, for example,
by noise level or floating-point precision—we observe that gradient flossing increases the number of
usable tangent space dimensions for backpropagation (Fig 2B).
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Finally, we show that the asymptotic estimate of the condition number based on Lyapunov exponents
can even predict differences in condition number that originate from finite network size N (Fig 2C).
We emphasize that this goes beyond mean-field methods, which become exact only in the large-
network limit N →∞ and usually do not capture finite-size effects [58] (see appendix G).

6 Initial Gradient Flossing Improves Trainability
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Figure 3: Gradient flossing improves trainability on tasks that involve long time horizons A) Test
error for Vanilla RNNs trained on delayed copy task yt = xt−d for d = 40 with and without gradient
flossing flossing. Solid lines are medians across 5 network realizations. B) Same as A for delayed
XOR task with yt = |xt−d/2 − xt−d|. C) Mean final test loss as a function of task difficulty (delay d)
for delayed copy task. D) Mean final test loss as a function of task difficulty (delay d) for delayed
XOR task. Parameters: g = 1, batch size b = 16, N = 80, epochs = 104, T = 300, gradient flossing
for Ef = 500 epochs on k = 75 before training. Shaded regions in C and D indicate the 20% and
80% percentiles and solid line shows mean. Dots are individual runs. Task loss: MSE(y, ŷ).

We next present numerical results on two tasks with variable spatial and temporal complexity,
demonstrating that gradient flossing before training improves the trainability of Vanilla RNNs. We
call gradient flossing before training in the following preflossing. For preflossing, we first initialize the
network randomly, then minimize Lflossing =

∑k
i=1 λ

2
i using the ADAM optimizer and subsequently

train on the tasks. We deliberately do not use sequential MNIST or similar toy tasks commonly used
to probe exploding/vanishing gradients, because we want a task where the structure of long-range
dependencies in the data is transparent and can be varied as desired.
First, we consider the delayed copy task, where a scalar stream of random input numbers x must be
reproduced by the output y delayed by d time steps, i.e. yt = xt−d. Although the task itself is trivial
and can be solved even by a linear network through a delay line (see appendix E), RNNs encounter
vanishing gradients for large delays d during training even with ’critical’ initialization with g = 1.
Our experiments show that gradient flossing can substantially improve the performance of RNNs
on this task (Fig 3A, C). While Vanilla RNNs without gradient flossing fail to train reliably beyond
d = 20, Vanilla RNNs with gradient flossing can be reliably trained for d = 40 (Fig 3C). Note that
we flossed here k = 40 Lyapunov exponents before training. We will later investigate the role of the
number of flossed Lyapunov exponents.
Second, we consider the temporal XOR task, which requires the RNN to perform a nonlinear input-
output computation on a sequential stream of scalar inputs, i.e., yt = |xt−d/2 − xt−d|, where d
denotes a time delay of d time steps (For details see appendix H). Fig 3D demonstrates that gradient
flossing helps to train networks on a substantially longer delay d. We found similar improvements
through gradient flossing for RNNs initialized with orthogonal weights (see appendix G).
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7 Gradient Flossing During Training
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Figure 4: Gradient flossing during training further improves trainability
A) Test accuracy for Vanilla RNNs trained on delayed temporal binary XOR task yt = xt−d/2⊕xt−d
with gradient flossing during training (green), preflossing (gradient flossing before training) (orange),
and with no gradient flossing (blue) for d = 70. Solid lines are mean across 20 network realizations,
individual network realizations shown in transparent fine lines. B) Same as A for delayed spatial
XOR task with yt = x1t−d ⊕ x2t−d ⊕ x3t−d . Parameters (g = 1, batch size b = 16). C) Test accuracy
as a function of task difficulty (delay d) for delayed temporal XOR task. D) Test accuracy as a
function of task difficulty (delay d) for delayed spatial XOR task. Parameters: g = 1, batch size
b = 16, N = 80, epochs = 104, T = 300, gradient flossing for Ef = 500 epochs on k = 75 before
training and during training for green lines, and only before training for orange lines. Same plotting
conventions as previous figure. Task loss: cross-entropy between y and ŷ.
We next investigate the effects of gradient flossing during the training and find that gradient flossing
during training can further improve trainability. We trained RNNs on two more challenging tasks
with variable temporal complexity and performed gradient flossing either both during and before
training, only before training, or not at all.

Fig 4A shows the test accuracy for Vanilla RNNs training on the delayed temporal XOR task
yt = xt−d/2 ⊕ xt−d with random Bernoulli process x ∈ {0, 1}. The accuracy of Vanilla RNNs
falls to chance level for d ≥ 40 (Fig 4C). With gradient flossing before training, the trainability
can be improved, but still goes to chance level for d = 70. In contrast, for networks with gradient
flossing during training, the accuracy is improved to > 80% at d = 70. In this case, we preflossed
for 500 epochs before task training and again after 500 epochs of training on the task. In Fig 4B,
D the networks have to perform the nonlinear XOR operation yt = x1t−d ⊕ x2t−d ⊕ x3t−d on a
three-dimensional binary input signal x1, x2, and x3 and generate the correct output with a delay of
d steps. While the solution of the task itself is not difficult and could even be implemented by hand
(see appendix), the task is challenging for backpropagation through time because nonlinear temporal
associations bridging long time horizons have to be formed. Again, we observe that gradient flossing
before training improves the performance compared to baseline, but starts failing for long delays
d > 60. In contrast, networks that are also flossed during training can solve even more difficult tasks
(Fig 4D). We find that after gradient flossing, the norm of the error gradient with respect to initial
conditions h0 is amplified (appendix C). Interestingly, gradient flossing can also be detrimental to
task performance if it is continued throughout all training epochs (appendix C)
We note that merely regularizing the spectral radius of the recurrent weight matrix W or the individual
one-step Jacobians Ds numerically or based on mean-field theory does not yield such a training
improvement. This suggests that taking the temporal correlations between Jacobians Ds into account
is important for improving trainability.

8



7.1 Gradient Flossing for Different Numbers of Flossed Lyapunov Exponents

We investigated how many Lyapunov exponents k have to be flossed to achieve an improvement in
training success (Fig 5). We studied this in the binary temporal delayed XOR task with gradient
flossing during training (same as Fig 3) and varied the task difficulty by changing the delay d.

We found that as the task becomes more difficult, networks where not enough Lyapunov exponents
k are flossed begin to fall below 100% test accuracy (Fig 5A). Correspondingly, when measuring
final test accuracy as a function of the number of flossed Lyapunov exponents, we observed that
more Lyapunov exponent k have to be flossed to achieve 100% accuracy as the tasks become more
difficult (Fig 5B). We also show the entire parameter plane of median test accuracy as a function of
both number of flossed Lyapunov exponents k and task difficulty (delay d), and found the same trend
(Fig 5B). Overall, we found that tasks with larger delay d require more Lyapunov exponents close to
zero. We note that this might also partially be caused by the ’streaming’ nature of the task: in our
tasks, longer delays automatically imply that more values have to be stored as at any moment all the
values in the ’delay line’ have to be remembered to successfully solve the tasks. This is different from
tasks where a single variable has to be stored and recalled after a long delay. It would be interesting
to study tasks where the number of delay steps and the number of items in memory can be varied
independently.

Finally, we did the same analysis on networks with only preflossing (gradient flossing before training)
and found the same trend (supplement Fig 7D), however, in that case even if all N Lyapunov
exponents were flossed, thus k = N , they were not able to solve the most difficult tasks. This seems
to indicate that gradient flossing during training cannot be replaced by just gradient flossing more
Lyapunov exponents before training.

Figure 5: Gradient flossing for different numbers of flossed Lyapunov exponents
A) Test accuracy for delayed temporal XOR task as a function of delay d with different numbers
flossed Lyapunov exponents k. B) Same data as A but here test accuracy as a function of number
of flossed Lyapunov exponents k. Parameters: g = 1, batch size b = 16, N = 80, epochs = 104

for delayed temporal XOR, epochs = 5000 for delayed spatial XOR, T = 300, gradient flossing
for Ef = 500 epochs before training and during training for A, B. Shaded areas are 25% and 75%
percentile, solid lines are means, transparent dots are individual simulations, task loss: cross-entropy
between y and ŷ.

8 Limitations
The mathematical connection between Lyapunov exponents and backpropagation through time
exploited in gradient flossing is rigorously established only in the infinite-time limit. It would be
interesting to extend our analysis to finite-time Lyapunov exponents.
Furthermore, the backpropagation through time gradient involves a sum over products of Jacobians
of different time periods t − τ , but the Lyapunov exponent only considers the asymptotic longest
product. Additionally, Lyapunov exponents characterize the asymptotic dynamics on the attractor of
the dynamics, whereas RNNs often exploit transient dynamics from some initial conditions outside
or towards the attractor.
Although our proposed method focuses on exploiting Lyapunov exponents, it neglects the geometry
of covariant Lyapunov vectors [59], which could be used to improve training performance, speed,
and reliability. Additionally, it is important to investigate how sensitive the method is to the choice
of orthonormal basis employed because it is only guaranteed to become unique asymptotically [60].
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Finally, the computational cost of our method scales with O(Nk2), where N is the network size
and k is the number of Lyapunov exponents calculated. To reduce the computational cost, we
suggest doing QR decomposition only sufficiently often to ensure that the orthonormal system is
not ill-conditioned and using gradient flossing only intermittently or as pretraining. One could also
calculate the Lyapunov spectrum for a shorter time interval or use a cheaper proxy for the Lyapunov
spectrum and investigate more efficient gradient flossing schedules.

9 Discussion

We tackle the problem of gradient signal propagation in recurrent neural networks through a dy-
namical systems lens. We introduce a novel method called gradient flossing that addresses the
problem of gradient instability during training. Our approach enhances gradient signal stability both
before and during training by regularizing Lyapunov exponents. By keeping the long-term Jacobian
well-conditioned, gradient flossing optimizes both training accuracy and speed. To achieve this,
we combine established dynamical systems methods for calculating Lyapunov exponents with an
analytical pullback of the QR factorization. This allows us to establish and maintain gradient stability
in a in a manner that is memory-efficient, numerically stable, and exact across long time horizons.
Our method is applicable to arbitrary RNN architectures, nonlinearities, and also neural ODEs [61].
Empirically, pre-training with gradient flossing enhances both training speed and accuracy. For
difficult temporal credit assignment problems, gradient flossing throughout training further enhances
signal propagation. We also demonstrate the versatility of our method on a set of synthetic tasks
with controllable time-complexity and show that it can be combined with other approaches to tackle
exploding and vanishing gradients, such as dynamic mean-field theory for initialization, orthogonal
initialization and specialized single units, such as LSTMs.
Prior research on exploding and vanishing gradients mainly focused on selecting network architectures
that are less prone to exploding/vanishing gradients or finding parameter initializations that provide
well-conditioned gradients at least at the beginning of training. Our introduced gradient flossing can
be seen as a complementary approach that can further enhance gradient stability throughout training.
Compared to the work on picking good parameter initializations based on random matrix theory [46]
and mean-field heuristics [45], gradient flossing provides several improvements: First, mean-field
theory only considers the gradient flow at initialization, while gradient flossing can maintain gradient
flow and well-conditioned Jacobians throughout the training process. Second, random matrix theory
and mean-field heuristics are usually confined to the limit of large networks [58], while gradient
flossing can be used for networks of any size. The link between Lyapunov exponents and the gradients
of backpropagation through time has been described previously [9, 12] and has been spelled out
analytically and studied numerically [10, 11, 62, 63, 64]. In contrast, we use Lyapunov exponents
here not only as a diagnostic tool for gradient stability but also to show that they can directly be part
of the cure for exploding and vanishing gradients.
Future investigations could delve further into the roles of the second to N th Lyapunov exponents in
trainability, and how it is related to the task at hand, the rank of the parameter update, the dimensional-
ity of the solution space, as well as the network dynamics (see also [37, 65, 66]). Our results suggest a
trade-off between trainability across long time horizons and the nonlinear task demands that is worth
exploring in more detail (appendix C). Applying gradient flossing to real-time recurrent learning and
its biologically plausible variants is another avenue [67]. Extending gradient flossing to feedforward
networks, state-space models and transformers is a promising avenue for future research (see also
[31, 47, 68, 69, 70, 71, 72]). While Lyapunov exponents are only strictly defined for dynamical
systems, such as maps or flows that are endomorphisms, the long-term Jacobian of deep feedforward
networks could be treated similarly. This could also provide a link between the stability of the
network against adversarial examples and its dynamic stability, as measured by Lyapunov exponents.
Given that time-varying input can suppress chaos in recurrent networks [9, 12, 73, 74, 75, 76], we
anticipate they may exacerbate vanishing gradients. Gradient flossing could also be applied in
neural architecture search, to identify and optimize trainable networks. Finally, gradient flossing is
applicable to other model parameters, as well. For instance, gradients of Lyapunov exponents with
respect to single-unit parameters could optimize the activation function and single-neuron biophysics
in biologically plausible neuron models.
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A Backpropagation Through QR Decomposition

The backward pass of the QR decomposition is given by [51, 52, 53, 54]

Q =
[
Q + Q copyltu(M)

]
R−T (11)

where M = RR
T − Q

T
Q and the copyltu function generates a symmetric matrix by copying the lower

triangle of the input matrix to its upper triangle, with the element [copyltu(M)]ij = Mmax(i,j),min(i,j)

[51, 52, 53, 54]. Adjoint variable are written here as T = ∂L/∂T .

Using an analytical pullback is more memory-efficient and less computationally costly than directly doing
automatic differentiation through the QR-decomposition. Moreover, from a practical perspective, for QR
decomposition, often BLAS/LAPACK routines are utilized which are not amenable to common differentiable
programming frameworks like TensorFlow, PyTorch, JAX and Zygote. In our implementation of gradient
flossing, we used the Julia package BackwardsLinalg.jl by Jinguo Liu available at here .

B Further Details and Analysis of Gradient Flossing

An example implementation of gradient flossing in Flux [78], a machine learning library in Julia [77] is available
at https://github.com/RainerEngelken/GradientFlossing. We are actively developing implementations for other
widely used differentiable programming frameworks.

B.1 Gradient Flossing for recurrent LSTM and ReLU networks
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Figure 6: Gradient flossing for recurrent LSTM networks and recurrent ReLU networks
A) First Lyapunov exponent of LSTM network as a function of training epochs. Minimizing the mean
squared error between estimated first Lyapunov exponent and target Lyapunov exponent λ1 = 0
by gradient descent. First Lyapunov exponent of LSTM network (solid lines) converges to target
value (thick dashed lines) within less than 100 epochs. 10 random LSTM RNNs were initialized with
Gaussian recurrent weights, where standard deviations of weight scaling were drawn g ∼ Unif(0, 1).
B) Gradient flossing minimizes the square of the first Lyapunov exponent of random recurrent
LSTM networks over epochs. C) Same as A for recurrent ReLU network. Here networks were
initialized with Gaussian recurrent weights Wij ∼ N (−0.1, g2/N) where values of g were drawn
g ∼ Unif(0, 1) D) B) for recurrent ReLU network. Parameters: network size N = 32 with 10
network realizations. Shaded regions in B, D are 25% and 75% percentiles, solid line shows median.
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We demonstrate that gradient flossing can also be applied to recurrent LSTM and ReLU networks in Fig 6. To
this end, we generated random LSTM networks where the weights of all the different gates and biases were
independently and identically distributed (i.i.d.) and sampled from Gaussian distributions of different variance.
Our results show that gradient flossing can also constrain the Lyapunov exponent to be close to zero. The
dynamics of each of the N LSTM units follows the map [6]:

ft = σg(Ufht−1 +Wfxt + bf ) (12)
ot = σg(Uoht−1 +Woxt + bo) (13)
it = σg(Uiht−1 +Wixt + bi) (14)
c̃t = σh(Ucht−1 +Wcxt + bc) (15)
ct = ft � ct−1 + it � c̃t (16)
ht = ot � φ(ct) (17)

where � denotes the Hadamard product, σg(x) = 1
1+exp(−x) is the sigmoid function, σh(x) = tanh(x) and

entries of the matrices Ux are drawn from Ux ∼ N (0, g2x/N). For simplicity, the bias terms bx are scalars.
Subscripts f , o and i denote respectively the forget gate, the output gate, the input gate, and c is the cell state.
In each LSTM unit, there are two dynamic variables c and h, and three gates f , o, and i that control the flow
if signals into and out of the cell c. We set the values gih, gix, gfx, bf , gch, gcx, gcx, gox to be uniformly
distributed between 0 and 1 and initialize bi, gfh,bc,b0 as zero.

During gradient flossing, the actual Lyapunov exponents of different random network realizations converge close
to the target Lyapunov exponent λtarget

1 = 0 in fewer than 100 epochs as shown in Fig 6A. Fig 6B shows that
the squared Lyapunov exponents converge towards zero. We note that for LSTM networks, a target Lyapunov
exponent of λtarget

1 = −1 is achieved after 100 gradient flossing steps only for a subset of random network
realizations (not shown). We speculate that behavior is influenced by the gating structure of LSTM units,
which seems to naturally place the first Lyapunov exponent close to zero for certain initializations (See also
[9, 12, 46, 64]).

For the recurrent ReLU networks, we considered the same Vanilla RNN dynamics as in the main manuscript in
Eq 9

hs+1 = f(hs,xs+1) = Wφ(hs) + Vxs+1,

The initial entries of W are drawn independently from a Gaussian distribution with a negative mean of −0.1
and variance g2/N , where g is a gain parameter that controls the heterogeneity of weights. We use the transfer
function φ(x) = max(x, 0). xs is a sequence of inputs and V is the input weight. xs is a stream of i.i.d.
Gaussian input xs ∼ N (0, 1) and the input weights V areN (0, 1). Both W and V are trained during gradient
flossing. We found that some ReLU network had initially unstable dynamics with positive Lyapunov exponents
Fig 6C. However, during gradient flossing, these unstable networks were quickly stabilized. Fig 6D shows that
the squared Lyapunov exponents of ReLU networks converge towards zero.

B.2 Additional Results for Different Numbers of Flossed Lyapunov Exponents

Additionally to the main Fig 5, we did the same analysis on networks with only preflossing (gradient flossing
before training) and found that more Lyapunov exponent k have to be flossed to achieve 100% accuracy as the
tasks become more difficult (Fig 7D), however, in that case even if all N Lyapunov exponents were flossed, thus
k = N , they were not able to solve the most difficult tasks. This seems to indicate that gradient flossing during
training cannot be replaced by just gradient flossing more Lyapunov exponents before training.

C Additional Results on Gradient Flossing Throughout Training

We now discuss some additional results on gradient flossing throughout training. First, we analyze how gradient
flossing affects the gradients and find that during gradient flossing, the norm of gradients that bridge many time
steps are boosted. Moreover, subordinate singular values of the error norm of the recurrent weights are also
boosted, indicating that gradient flossing can increase the effective rank of the parameter update. Additionally,
we show that if gradient flossing is continued throughout training it can be detrimental to the accuracy. Finally,
we show that Lyapunov exponents of successfully trained networks after training for the spatial delayed XOR
task have a simple relationship to the delay d.

D Gradient Flossing boosts the Gradient Norm for Long Time Horizons

In this section, we investigate the impact of gradient flossing on the norm and structure of the gradient. It is
important to note that the complete error gradient of backpropagation through time is composed of a summation
of products of one-step Jacobians, reflecting the number of "loops" the error signal traverses through the recurrent
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Figure 7: Gradient flossing for different numbers of flossed Lyapunov exponents
A) Test accuracy for delayed temporal XOR task as a function of delay d with different numbers
flossed Lyapunov exponents k. B) Same data as A but here test accuracy as a function of number of
flossed Lyapunov exponents k. C) Median test accuracy for delayed temporal XOR task as a function
of delay d and k for networks with gradient flossing during training (500 steps of gradient flossing
at epochs e ∈ {0, 100, 200, 300, 400}). D)Same as B for preflossing only. Parameters: g = 1, batch
size b = 16, N = 80, epochs = 104 for delayed temporal XOR, epochs = 5000 for delayed spatial
XOR, T = 300, gradient flossing for Ef = 500 epochs before training and during training for A, B,
C, and only before training for C. Shaded areas are 25% and 75% percentiles, solid lines are means,
transparent dots are individual simulations, task loss: cross-entropy btw. y, ŷ.

dynamics before reaching its target. Consequently, when the singular values of the long-term Jacobian are
smaller than 1, the influence of the shorter loops typically dominates the long-term Jacobian.

In our tasks, we have full control over the correlation structure of the task and thus know exactly which loop
length of backpropagation through time is necessary for finding the correct association. We were moreover
careful in our task design not to have any additional signals in our task that might help to bridge the long time
scale. In the case of vanishing gradients, the gradient norm is predominantly influenced by the shorter loops,
even though the actual signal in the gradient originates solely from the loop of length d in our task. To mitigate
the contamination of spurious signals from shorter loops and effectively extract the gradient that spans long time
horizons, we focus on the gradient with respect to the initial conditions h0.

∂Lt
∂h0

=
∂Lt
∂ht

τ=t−1∑
τ=t−l

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ
∂h0

=
∂Lt
∂ht

τ=t−1∑
τ=t−l

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
δτ 0 =

∂Lt
∂ht

Tt(h0) (18)

We note that the sum conveniently drops as only the longest ’loop’, in other words, the only summand that
contributes is the product of Jacobians going from 0 to t. By considering this gradient, we can therefore ensure
that no undesired signals stemming from shorter loops interfere with the analysis. Moreover, we note that we
use the binary cross entropy loss which makes the derivative ∂Lt

∂ht
trivial.

In Fig 8 we show that gradient flossing boosts the gradient with respect to the initial conditions. Specifically, we
compare two identical networks trained on the binary delayed temporal XOR task with a loop length of d = 70.
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One network is trained with gradient flossing at epochs e ∈ {0, 100, 200, 300, 400}), while the other is trained
without gradient flossing.

For the network without gradient flossing, the gradient norm of | dL
dh0
| diminishes to extremely small values

(< 10−6) and remains small throughout training. In contrast, for the network trained with gradient flossing, each
episode of gradient flossing causes the norm | dL

dh0
| to spike, surpassing values larger than 10−2. These findings

are direct evidence that gradient flossing boosts the gradient norm, facilitating to bridge long time horizons in
challenging temporal credit assignment tasks. We observe that after several episodes of gradient flossing, the
gradient | dL

dh0
| of the networks stays around 10−4 and eventually rise up to values around 10−2. Subsequent

in training, the test accuracy surpasses chance level (Fig 8B). We observed this temporal relationship between
gradient norm | dL

dh0
| and training success consistently across numerous network realizations (Fig 8C and D).

These findings suggest that the gradient norm | dL
dh0
| can be a good predictor of learning success, sometimes

hundreds of epochs before the accuracy exceeds the chance level of 50%. Indeed, when depicting the gradient
norm aligned to the last epoch where accuracy was ≤ 50%, we see for many network realizations a gradual
growth of gradient norm oven epochs before accuracy surpasses chance level (Fig 9A). Analogously, when
plotting the accuracy as a function of epoch aligned with the last epoch with | dL

dh0
| < 0.001, we observe for this

task that the increase of gradient norm | dL
dh0
| reliably precedes the epoch at which the accuracy surpasses the

chance level (See Fig 9B). We note that when measuring the overlap of the orientation of the gradient vector
dL
dh0

with the first covariant Lyapunov vector of the forward dynamics, we found a significant increase in overlap
around the training epoch where the accuracy surpasses the chance level both in networks with and without
gradient flossing. This does not come as a surprise as the covariant Lyapunov vector measure the most unstable
(or least stable) direction in the tangent space of a trajectory and perturbations of h0 that have to travel over
many epochs align

D.1 Gradient Flossing Boosts Effective Dimension of Error Gradient

To further investigate the effect of gradient flossing on training, we investigated the structure of the error gradient
and how it is changed by gradient flossing. To this end, we decompose the recurrent weight gradient σi

(
dL
dW

)
into in weighted sum of outer products using singular value decomposition (Fig 10).

As the Lyapunov exponents are the time-averaged logarithms of the singular values of the asymptotic long-term
Jacobian Tt(hτ ), this allows us to directly link the effect of pushing Lyapunov exponents toward zero during
gradient flossing to the structure of the error gradient of the recurrent weights, as they are intimately linked:

∂Lt
∂W

=
∂Lt
∂ht

τ=t−1∑
τ=t−l

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ
∂W

=
∂Lt
∂ht

∑
τ

Tt(hτ )
∂hτ
∂W

(19)

We again note that different ’loops’ contribute to the total gradient expression and the Lyapunov exponents only
characterize the longest loop. Further, we note that in our controlled tasks, depending on delay d, only few of the
summands are relevant for solving the task. We thus expect the relevant gradient summand that carries important
signals about the task to be contaminated by summands of both shorter and longer chains, which contribute
irrelevant fluctuations.

The singular values of the recurrent weight gradient σi
(
dL
dW

)
as a function of training epoch reveal that the

subordinate singular values subordinate singular value σ20 and σ40 exhibit peaks at the times of gradient flossing,
while the first singular value σ1 only shows a slight peak (Fig 10A). This indicates that gradient flossing
increases the effective rank of the recurrent weight gradient dL

dW
. In other words, gradient flossing facilitates

high-dimensional parameter updates. Our interpretation is, as gradient flossing pushes Lyapunov exponents
to zero, the different summands in the total gradient contribute more equitable as long loops have neither a
dominant contribution (which would happen for exploding gradients) nor a vanishing contribution (which would
happen for vanishing gradients). This way, the sum of gradient terms has a higher effective rank.

In contrast, without gradient flossing, the subordinate singular values (in Fig 10A σ20 and σ40) rapidly diminish
to extremely small values over training epochs and remain very small throughout training. Note however that the
leading singular values σ1 are of comparable size irrespective whether gradient flossing was performed or not.

We note that similar to the gradient norm of the loss with respect to the initial condition | dL
dh0
|, the subordinate

singular values seem to predict when the test accuracy of networks with gradient flossing grows beyond chance
level (Fig 10B). We confirmed this in multiple other network realizations and give here another example we the
accuracy grows beyond chance only later during training (Fig 11).

D.2 Gradient Flossing Throughout Training Can Be Detrimental

We find that gradient flossing continued throughout all training epochs can be detrimental for performance
(Fig 12). We demonstrate this again in the binary delayed temporal XOR task. We compare three different
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Figure 8: Gradient flossing boosts norm of long-term Jacobian A) Gradient norm of | dLdh0
| as

a function of training epochs for networks without flossing (blue) and networks with flossing
during training (orange). Error gradient norm is boosted after gradient flossing at epochs e ∈
{0, 100, 200, 300, 400, 500}). In networks without gradient flossing, the gradient norms | dLdh0

| are
much smaller overall. One out of ten random network realizations with solid line, the other 9 with
transparent line. B) Accuracy as a function of epoch, same depiction and network realizations as in
A. Note that accuracy of networks with gradient flossing grows beyond chance level approximately
when the gradient norm | dLdh0

| becomes macroscopically large. C) Same as A in linear scale. Mean
final test loss as a function of task difficulty (delay d) for delayed copy task. Different colors are
different network realizations with gradient flossing during training. Black lines are without any
gradient flossing. D) Accuracy as a function of epochs, same colors as in C. Note that for all network
realizations the moments where gradient norm | dLdh0

| becomes macroscopically large coincides with
the moment the accuracy is beyond chance level. Parameters: g = 1, batch size b = 16, N = 80,
epochs = 104, T = 300, flossing for Ef = 500 epochs on k = 75 Lyapunov exponents before
training. Task: binary delayed XOR, delay d = 70, loss: cross entropy(y, ŷ).

conditions: Either, we floss throughout the training every 100 training epochs for 500 flossing epochs (red), or
we floss only early during training at training epochs e ∈ {0, 100, 200, 300, 400})(green) or we do not floss at
all (blue).

We observe that after every episode of gradient flossing, the accuracy drops down close to chance level of 50%
(Fig 12A red line). Between flossing, the accuracy quickly recovers but never reaches 100%. Simultaneously,
when the accuracy drops the test error jumps up (Fig 12B). We also observed that the gradient norm | dL

dh0
| is

initially boosted by gradient flossing, but stays close to indistinguishable once the gradient norm | dL
dh0
| becomes

macroscopically large (Fig 12C). This suggests that once gradient flossing facilitates signal propagation across
long time horizons and the network picks up the relevant gradient signal, further gradient flossing can be harmful
to the actual task execution. We hypothesize that there might be (at least for the Vanilla networks considered
here), a trade-off between the ability to bridge long time scales which seems to require one or several Lyapunov
exponents of the forward dynamics close to zero and nonlinear tasks requirements, which require at least a
fraction of the units to be in the nonlinear regime of the nonlinearity φ, where φ′(x) < 1. It would be an
interesting future research avenue to further investigate this potential trade-off also in other network architectures.

D.3 Lyapunov Exponents after Training With and Without Gradient Flossing

In Fig 13, we show the first (Fig 13A, B) and the tenth (Fig 13C, D) Lyapunov exponent after training on
the spatial delayed XOR task both with and without gradient flossing. We find for successful networks with
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Figure 9: Increase of gradient norm precedes epoch when accuracy exceeds chance level
A) Gradient norm of | dLdh0

| as a function of training epochs for 20 network realizations with flossing
during training. Epochs are aligned to last epoch where accuracy is ≤ 50%. B) Same task and
simulations as in A, but here accuracy as a function of epoch, for 20 network realizations with
flossing during training. Epochs are aligned to the last epoch with | dLdh0

| < 0.001. Different colors
are different network realizations. Parameters: g = 1, batch size b = 16, N = 80, epochs = 104,
T = 300, flossing for Ef = 500 epochs on k = 75 Lyapunov exponents early during training at
training epochs e ∈ {0, 100, 200, 300, 400}. Task: binary delayed XOR, delay d = 70, loss: cross
entropy(y, ŷ).

gradient flossing a systematic relationship between the first Lyapunov exponent and the delay, that can be fitted
by approximately by λ1(d) = −0.2exp.(−0.03delay). Unsuccessful networks with accuracy at chance level
have a much smaller largest Lyapunov exponent. The same seems to hold true for the tenth Lyapunov exponent.
In a previous study [63], a similar trend was observed, albeit in the context of a task that did not possess an
analytically tractable temporal correlation structure, which might partially explain the less conclusive results.
It is important to note that the numerical evaluation of Lyapunov exponents in recurrent LSTM networks in
[63] was based solely on the N ×N Jacobian of the memory state. From a dynamical systems standpoint, a
2N × 2N Jacobian matrix encompassing interactions between both memory and cell states into account is
required [9, 12, 64].

E Gradient Flossing for Linear Network

We provide code for gradient flossing in linear networks here. We find that gradient flossing also helps to train
linear networks on tasks with many time steps that can be solved by linear networks, for example the copy task,
but not for tasks the require a nonlinear input-output operation like the temporally delayed XOR task. Full
analytical description of gradient flossing for linear networks would be a promising avenue for future research as
networks with linear dynamics can still have nonlinear learning dynamics [23]. However this is beyond the cope
of the presented work.

F Computational Complexity of Gradient Flossing

We present here a more in-depth scaling analysis of the computational cost of gradient flossing. There are three
main contributors to the computational cost (table 1): First the RNN step, which has a computational complexity
of O

(
N2 b

)
per time step, where N is the dimension of the recurrent network state (which in case of Vanilla

networks equals the number of units) and b is the batch-size both in the forward and backward pass. Second, the
Jacobian step which scales with O

(
N2k

)
per time step, where k is the number of flossed Lyapunov exponents.

Third, the QR decomposition, which scales with O
(
N k2

)
, where k is the number of Lyapunov exponents

considered.
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Figure 10: Gradient flossing decreases condition number of recurrent weight error gradient
A) Singular values of recurrent weight gradient σi

(
dL
dW

)
as a function of training epochs for singular

values i ∈ 1, 20, 40 for networks without gradient flossing (blue) and early training gradient flossing
(green). At epochs of gradient flossing, the subordinate singular value σ20 and σ40 are peaked, while
the first singular value σ1 has only a slight peak. This indicates that gradient flossing increases the
effective rank of the recurrent weight gradient dL

dW . B) Accuracy as a function of training epochs.
Note that accuracy of networks with gradient flossing grows beyond chance level approximately
when the subordinate singular values singular value σ20 and σ40 are peaked increase, which enables
high-dimensional parameters updates. Parameters: g = 1, batch size b = 16, N = 80, epochs = 103,
T = 300, gradient flossing for Ef = 500 epochs on k = 75 Lyapunov exponents before training.
Task: binary delayed XOR, delay d = 70, loss: cross entropy(y, ŷ).

Together, this results in a total amortized cost of O
(
N2 b T

)
per training epoch, where T is the number of

training time steps and a total amortized costs per flossing epoch of O
(
N2 Tf (1 + k/tONS + k)

)
where Tf is

the number of flossing time steps.

In case of preflossing, thus, the total computation cost scale with O
(
N2[EbT + Ep Tf (1 + k/tONS + k)]

)
,

where E is the number of training epochs and Ep is the number of preflossing epochs.

For gradient flossing during training (assuming that there is also preflossing done), the amortized cost scale with
O
(
N2[EbT + Ep Tp + Ef Tf (1 + k/tONS + k)]

)
, where Ef is the total number of flossing epochs during

training.

Empirically, we find that both the number of preflossing epochs Ep and flossing episodes Ef necessary for
training success is much smaller than the total number of training epochs E. For example, the preflossing for
500 epochs in the numerical experiment of Fig 3 took∼ 37 seconds, while the overall training on 10000 training
epochs with batch size b = 16 took ∼ 1680 seconds. Thus only approximately 2.2% of the total training time
was spent on gradient flossing. Moreover, Tp can be smaller than T , it just has to be long enough such that the
temporal correlations in the task can be bridged. In case of the tasks discussed in the manuscript, this would be
the delay d. It remains an important challenge to infer the suitable number of flossing time steps Tf for tasks
with unknown temporal correlation structure.

It would also be interesting to investigate how the CPU hours/wall-clock time/flops/Joule/CO2-emission spent
on gradient flossing vs on training networks with larger N are trading off against each other. For this, we would
suggest to first find the smallest network that on median successfully trains on a binary temporal XOR task for
a fixed given delay d and measure the computational resources involved in training it, e.g. in terms of CPU
hours. Then compare it to a network with gradient flossing. This would be a promising analysis but is beyond
our current computational budget. We will start such experiments an might be able to provide results during the
reviewer period.
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Figure 11: Gradient flossing decreases condition number of recurrent weight error gradient
Same as Fig 10 for different network realization.

G Additional controls

We also investigate the effects of gradient flossing during the training with orthogonal weight initializations
and confirm our finding that gradient flossing improves trainability on tasks that have long time horizons to
bridge. Moreover, we find that gradient flossing during training can further improve trainability. We replicated
the two more challenging tasks from the main paper (Fig 4) for orthogonal initialization with variable temporal
complexity and performed gradient flossing either both during and before training, only before training, or not at
all.

Fig 14A shows the test accuracy for Vanilla RNNs with orthogonal initialization trained on the delayed temporal
XOR task yt = xt−d/2 ⊕ xt−d with random Bernoulli process x ∈ {0, 1}. The accuracy of orthogonal Vanilla
RNNs falls to chance level for d ≥ 40 (Fig 14C). With gradient flossing before training, the trainability can
be improved, but still falls close to chance level for d = 70. In contrast, for initially orthogonal networks with
gradient flossing during training, the accuracy is improved to > 80% at d = 70. In this case, we preflossed for
500 epochs before task training and again after 500 epochs of training on the task. In Fig 14B, D the networks
have to perform the nonlinear XOR operation yt = x1t−d ⊕ x2t−d ⊕ x3t−d on a three-dimensional binary input
signal x1, x2, and x3 and generate the correct output with a delay of d steps identical to Fig 4 in the main text.
Again, we observe similar to networks with Gaussian initialization that flossing before training improves the
performance compared to baseline, but starts failing for long delays d > 60. In contrast, orthogonal networks
that are also flossed during training can solve even more difficult tasks (Fig 14D). We note that for Fig 14B and
D, we trained the network only on 5000 epochs, compared to 10000 epochs in networks with random Gaussian
initialization because for 10000 epochs, both networks with gradient flossing only before training and with
gradient flossing before and during training were able to bridge d = 70. These results suggest that orthogonal
initialization does seem to slightly improve performance for tasks with long time horizons to bridge and gradient
flossing and additionally boost the performance. Thus orthogonal initialization and gradient flossing seems to go
well together. It would be interesting to study if orthogonal initialization also reduces the number of gradient
flossing steps necessary to improve performance.

H Additional Details on Training Tasks

In this section, we provide a more rigorous definition of the tasks used for training, as discussed in Section 3:
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Figure 12: Gradient flossing throughout training can be detrimental to learning A) Accuracy as
a function of training epochs for binary temporal delayed XOR task for gradient flossing throughout
training every 100 training epochs (red). Accuracy drops down close to chance level every time after
gradient flossing but recovers quickly between. Same for only 5 episodes of gradient flossing at
epochs e ∈ {0, 100, 200, 300, 400}) (green) and no flossing at all (blue). B) Test error as a function
of training epochs. C) Gradient norm of | dLdh0

| as a function of training epochs for networks without
gradient flossing (blue) and networks with flossing throughout training (red) and early training
gradient flossing (green). Error gradient norm is boosted after each gradient flossing. In networks
without gradient flossing, the gradient norms | dLdh0

| are much smaller overall. Parameters: g = 1,
batch size b = 16, N = 80, epochs = 104, T = 300, gradient flossing for Ef = 500 epochs on
k = 75 Lyapunov exponents before training. Task: binary delayed XOR, delay d = 70, loss: cross
entropy(y, ŷ).

H.1 Copy task

For the copy task, the target network readout at time t is yt = xt−d, where d denotes the delay. We chose the
input to be sampled i.i.d. from a uniform distribution between 0 and 1.

H.2 Temporal XOR task

The temporal XOR task requires the target network readout yt at time t to be computed as follows:

yt = |xt−d/2 − xt−d| (20)

where again d denotes a time delay of d time steps. In the case of x ∈ {0, 1}2 and y ∈ {0, 1}, the output yt
follows the truth table of the XOR digital logic gate (Table 2). Thus, the function f(xa, xb) = |xa − xb| can be
seen as an analytical representation of the XOR gate. It is important to note that f(x, 0) = x only for x ≥ 0,
and that this task requires a nonlinearity. The implementation can easily be constructed analytically, for example,
using two rectified linear units φ(x) = max(x, 0) the outbut can be constructed by

f(xa, xb) = |xa − xb| = φ(xa − xb) + φ(xb − xa). (21)

Together with a delay line to transmit the signal xt−d over time, this can solve the task.
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Figure 13: Lyapunov exponents of trained networks with and without gradient flossing A) First
Lyapunov exponents λ1 for Vanilla networks trained on spatial delayed XOR task as a function of
the delay with no gradient flossing. Colored-coded is test accuracy at the end of training where red
corresponds to 100% accuracy and blue to chance level (50%). B) Same as A for networks with
gradient flossing during training. Black dashed line shows that Lyapunov exponents of successfully
trained networks can be approximated by the empirical fit λ1(d) = −0.2exp.(−0.03delay). (Proto-
col for gradient flossing during training same as main text Fig 4B). C) Same as A for tenth Lyapunov
exponents λ10. D) Same as B for tenth Lyapunov exponents λ10. Same fit as in B also describes
λ10. Parameters: g = 1, batch size b = 16, N = 80, epochs = 104, T = 300, gradient flossing for
Ef = 500 epochs on k = 75 Lyapunov exponents before training. Task: binary spatial delayed XOR,
loss: cross entropy(y, ŷ).

I Additional Background on Lyapunov Exponents of RNNs

An autonomous dynamical system is usually defined by a set of ordinary differential equations dh/dt =
F(h), h ∈ RN in the case of continuous-time dynamics, or as a map hs+1 = f(hs) in the case of discrete-time
dynamics. In the following, the theory is presented for discrete-time dynamical systems for ease of notation,
but everything directly extends to continuous-time systems [49]. Together with an initial condition h0, the
map forms a trajectory. As a natural extension of linear stability analysis, one can ask how an infinitesimal
perturbation h′0 = h0 + εu0 evolves in time. Chaotic systems are sensitive to initial conditions; almost all
infinitesimal perturbations εu0 of the initial condition grow exponentially with time |εut| ≈ exp(λ1t)|εu0|.
Finite-size perturbations, therefore, may lead to a drastically different subsequent behavior. The largest Lyapunov
exponent λ1 measures the average rate of exponential divergence or convergence of nearby initial conditions:

λ1(h0) = lim
t→∞

1

t
lim
ε→0

log
||εut||
||εu0||

(22)

In dynamical systems that are ergodic on the attractor, the Lyapunov exponents do not depend on the initial
conditions as long as the initial conditions are in the basins of attraction of the attractor. Note that it is crucial
to first take the limit ε→ 0 and then t→∞, as λ1(h0) would be trivially zero for a bounded attractor if the
limits are exchanged, as limt→∞ log ||εut||||εu0||

is bounded for finite perturbations even if the system is chaotic. To
measure k Lyapunov exponents, one has to study the evolution of k independent infinitesimal perturbations us
spanning the tangent space:

us+1 = Dsus (23)
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forward pass backward pass

RNN dynamics O
(
N2 b

)
"

Jacobian step O
(
N2 k

)
"

QR step O
(
N k2

)
"

total amortized costs
per training epoch

O
(
N2 b T

)
"

total amortized costs
per gradient flossing epoch

O
(
N2 Tf (1 + k/tONS + k)

)
"

total amortized costs
of preflossing

O
(
N2[EbT + Ep Tf (1 + k/tONS + k)]

)
"

total amortized costs
flossing during training

O
(
N2[EbT + Ep Tp + Ef Tf (1 + k/tONS + k)]

)
"

Table 1: Computational cost for gradient flossing and training of RNNs
N denotes number of neurons, b is the batch size, T is the number of time steps in forward pass of
training, Tf is the number of time steps in forward pass of flossing, tONS is the reorthonormalization
interval, k is the number of flossed Lyapunov exponents, E is the number of training epochs, Ep is
the number of preflossing epochs, Ef is the number of flossing epochs during training. Empirically,
we find that the necessary number of preflossing epochs Ep and flossing episodes Ef is much smaller
than both the total number of training epochs E. Moreover, Tp can be smaller than T .

Table 2: XOR

input xt−d input xt−2d target output yt
0 0 0
0 1 1
1 0 1
1 1 0

where the N ×N Jacobian Ds(hs) = df(hs)/dh characterizes the evolution of generic infinitesimal perturba-
tions during one step. Note that this Jacobian along the trajectory is equivalent to a stability matrix only at a
fixed point, i.e., when hs+1 = f(hs) = hs.

We are interested in the asymptotic behavior, and therefore we study the long-term Jacobian

Tt(h0) = Dt−1(ht−1) . . .D1(h1)D0(h0). (24)

Note that Tt(h0) is a product of generally noncommuting matrices. The Lyapunov exponents λ1 ≥ λ2 · · · ≥ λN
are defined as the logarithms of the eigenvalues of the Oseledets matrix

Λ(h0) = lim
t→∞

[Tt(h0)>Tt(h0)]
1
2t , (25)

where > denotes the transpose operation. The expression inside the brackets is the Gram matrix of the long-term
Jacobian Tt(h0). Geometrically, the determinant of the Gram matrix is the squared volume of the parallelotope
spanned by the columns of Tt(h0). Thus, the exponential volume growth rate is given by the sum of the
logarithms of its first k (sorted) eigenvalues. Oseledets’ multiplicative ergodic theorem guarantees the existence
of the Oseledets matrix Λ(h0) for almost all initial conditions h0 [48]. In ergodic systems, the Lyapunov
exponents λi do not depend on the initial condition h0. However, for a numerical calculation of the Lyapunov
spectrum, Eq 25 cannot be used directly because the long-term Jacobian Tt(h0) quickly becomes ill-conditioned,
i.e., the ratio between its largest and smallest singular value diverges exponentially with time.

J Algorithm for Calculating Lyapunov Spectrum of Rate Networks

For calculating the first k Lyapunov exponents, we exploit the fact that the growth rate of a k-dimensional
infinitesimal volume element is given by λ(m) =

∑m
i=1 λi. Therefore, λ1 = λ(1), λ2 = λ(2) − λ1, λ3 =

λ(3) − λ1 − λ2, . . . [50]. The volume growth rates can be obtained via QR-decomposition.
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Figure 14: Gradient flossing before and during training improves trainability for orthogonal
nets
A) Test accuracy for orthogonally initialized vanilla RNNs trained on delayed temporal binary XOR
task yt = xt−d/2 ⊕ xt−d with gradient flossing during training (green), preflossing (orange), and
with no gradient flossing (blue) for d = 70. Solid lines are mean, transparent thin lines are individual
network realizations B) Same as A for delayed spatial XOR task with yt = x1t−d ⊕ x2t−d ⊕ x3t−d .
C) Test accuracy as a function of task difficulty (delay d) for delayed temporal XOR task. D) Test
accuracy as a function of task difficulty (delay d) for delayed spatial XOR task. Parameters: g = 1,
batch size b = 16, N = 80, epochs = 104 for delayed temporal XOR, epochs = 5000 for delayed
spatial XOR, T = 300, flossing for Ef = 500 epochs on k = 75 Lyapunov exponents before training
and during training for green lines, and only before training for orange lines. Shaded areas are 25%
and 75% percentiles, solid lines are means, transparent dots are individual simulations, task loss is
cross-entropy between y, ŷ.

First, we evolve an initially orthonormal system Qs = [q1
s, q2

s, . . .q
m
s ] in the tangent space along the trajectory

using the Jacobian Ds:
Q̃s+1 = DsQs (26)

A continuous system can be transformed into a discrete system by considering a stroboscopic representation,
where the trajectory is only considered at certain discrete time points. We use here the notation of discrete
dynamical systems where this corresponds to performing the product of Jacobians along the trajectory Q̃s+1 =
DsQs. We study the discrete network dynamics in the limit of small time step ∆t→ 0 and for discrete time
∆t = 1. The notation can be readily extended to continuous systems [49].

Second, we extract the exponential growth rates using the QR-decomposition,

Q̃s+1 = Qs+1R
s+1,

which uniquely decomposes Q̃s+1 into an orthonormal matrix Qs+1 of size N × k so Q>s+1Qs+1 = 1m×m
and to an upper triangular matrix Rs+1 of size k × k with positive diagonal elements. Geometrically, Qs+1

describes the rotation of Qs caused by Ds and the diagonal entries of Rs+1 describe the stretching and shrinking
of the columns of Qs, while the off-diagonal elements represent the shearing. Fig 15 visualizes Ds and the
QR-decomposition for k = 2.

The Lyapunov exponents are given by time-averaged logarithms of the diagonal elements of Rs:

λi = lim
t→∞

1

t
log

t∏
s=1

Rs
ii = lim

t→∞

1

t

t∑
s=1

log Rs
ii. (27)
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Figure 15: Geometric illustration of Lyapunov spectrum calculation. An orthonormal matrix
Qs = [q1

s, q
2
s, . . .q

m
s ], whose columns are the axes of an k-dimensional cube, is rotated and

distorted by the Jacobian Ds into an k-dimensional parallelotope Q̃s+1 = DsQs embedded in
RN. The figure illustrates this for k = 2, in which case the columns of Q̃s+1 span a parallelogram,
which can be divided into a right triangle and a trapezoid and rearranged into a rectangle. Thus, the
area of the gray parallelogram is the same as that of the orange rectangle. The QR-decomposition
reorthonormalizes Q̃s+1 by decomposing it into the product of an orthonormal matrix Qs+1 =
[q1
s+1, q

2
s+1, . . .q

m
s+1] and the upper-triangular matrix Rs+1. Qs+1 describes the rotation of Qs

caused by Ds. The diagonal entries of Rs+1 gives the stretching/shrinking along the columns of
Qs+1, thus the volume of the parallelotope formed by the first k columns of Q̃s+1 is given by
Vm =

∏m
i=1 R

s+1
ii . The time-averaged logarithms of the diagonal elements of Rs give the Lyapunov

spectrum: λi = limtsim→∞
1
tsim

log
∏t
s=1 R

s
ii = limtsim→∞

1
t

∑t
s=1 logR

s
ii.

Note that the QR-decomposition does not need to be performed at every simulation step, just sufficiently often,
i.e., once every sONS steps such that Q̃s+sONS = Ds+sONS−1 ·Ds+sONS−2 . . .Ds ·Qs remains well-conditioned
[50]. An appropriate reorthonormalization interval sONS = tONS/∆t thus depends on the condition number, the
ratio of the smallest and largest singular value:

κ2(Q̃s+sONS ) = κ2(Rs+sONS ) =
σ1(Rs+sONS )

σm(Rs+sONS )
=

Rs+sONS
11

Rs+sONS
mm

. (28)

An initial transient should be disregarded in the calculation of the Lyapunov spectrum because h first has to
converge towards the attractor and Q has to converge to the unique eigenvectors of the Oseledets matrix (Eq 25)
[60]. A simple example of this algorithm in pseudocode is:

Algorithm 2 Jacobian-based algorithm for Lyapunov spectrum
initialize h, Q
evolve h until it is on attractor (avoid initial transient)
evolve Q until it converges to the eigenvectors of the backward Oseledets matrix
set γi = 0
for t = 1→ T do

h← f(h)
D← df

dh
Q← D ·Q
if s ≡ 0 (mod sONS) then

Q,R← qr(Q)
γi += log(Rii)

end if
end for
λi = γi/T

It is guaranteed that under general conditions initially random orthonormal systems will exponentially converge
towards a unique basis that is given by the eigenvectors of the Oseledets matrix Eq 25 [60]. A minimal example
of this algorithm in pseudocode is shown in appendix 3. A feasible strategy to determine the reorthonormalization
time interval tONS is to get first a rough estimate of the Lyapunov spectrum using a short simulation time tsim and
a small tONS and repeat with a longer simulation time and a tONS based on the Lyapunov spectrum of the rough
estimate of the Lyapunov spectrum. Another strategy is, to first iteratively adapt tONS on a short simulation
run to get an acceptable condition number. It should be noted that there exists a diversity of other methods to
estimate the Lyapunov spectrum [14, 49, 79, 80].

27



K Convergence of Lyapunov Exponents of RNNs

In Fig. 16, we demonstrate the convergence of the Lyapunov exponents. We show the estimate of the Lyapunov
exponents λi for i = 1, 20, 60, 80 for different initial conditions but identical network realization.
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Figure 16: Convergence of Lyapunov exponents Convergence of selected Lyapunov exponents
λi for ten identical network realizations with different initial conditions with simulation time (i =
1, 20, 60, 80) for σ = 1 and g = 1. (Other parameters: N = 80, tsim = 100 steps, tONS = 1).
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