
Neural Abstractions: Supplementary Material

Alessandro Abate∗
Department of Computer Science

University of Oxford, UK

Alec Edwards∗
Department of Computer Science

University of Oxford, UK

Mirco Giacobbe∗
School of Computer Science

University of Birmingham, UK

A Benchmark Nonlinear Dynamical Models

For each dynamical model, we report the vector field f : Rn → Rn and the spatial domain X
over which the abstraction is performed and which, unless otherwise stated, is taken to be the
hyper-rectangle [−1, 1]n.

Water Tank 
ẋ = 1.5−

√
x

X0 = [0, 0.01]

XB = {x|x ≥ 2}
(1)

Jet Engine [2]


ẋ = −y − 1.5x2 − 0.5x3 − 0.1,

ẏ = 3x− y,

X0 = [0.45, 0.50]× [−0.60,−0.55]
XB = [0.3, 0.35]× [0.5, 0.6]

(2)

Steam Governor [3] 

ẋ = y,

ẏ = z2 sin(x) cos(x)− sin(x)− 3y,

ż = −(cos(x)− 1),

X0 = [0.70, 0.75]× [−0.05, 0.05]× [0.70, 0.75]

XB = [0.5, 0.6]× [−0.4,−0.3]× [0.7, 0.8]

(3)

Exponential 
ẋ = − sin(exp(y3 + 1))− y2

ẏ = −x,
X0 = [0.45, 0.5]× [0.86, 0.91]

XB = [0.3, 0.4]× [0.5, 0.6]

(4)

∗The authors are listed alphabetically

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Non-Lipschitz Vector Field 1 (NL1)

ẋ = y

ẏ =
√
x

X = [0, 1]× [−1, 1],
X0 = [0, 0.05]× [0, 0.1]

XB = [0.35, 0.45]× [0.1, 0.2]

(5)

Non-Lipschitz Vector Field 2 (NL2)
ẋ = x2 + y

ẏ =
3
√
x2 − x,

X0 = [−0.025, 0.025]× [−0.9,−0.85]
XB = [−0.05, 0.05]× [−0.8,−0.7]

(6)

B Additional Experimental Results and Figures

B.1 Experimental Comparison Against Affine Simplical Meshes

In this section, we present some supplementary empirical results on neural abstractions. Firstly, we
note that hybridisation-based abstraction of nonlinear models have been studied previously, such as
in [1], which describes a type of hybridisation-based abstractions that is similar to those constructed
in this work. The approach relies first on partitioning the state space using a simplicial mesh grid, and
then allowing the dynamics in each mesh to be calculated from an affine interpolation between the
vertices of the simplex. This affine simplicial mesh (ASM) based approach constructs abstractions
of the same expressivity as neural abstractions (first order approximations) with partitions defined
by affine inequalities. An approximation-error bound for ASM can be calculated for systems which
have bounded second order derivatives using the model dynamics and the size of each simplex (all
simplices are assumed to be the same size), as described in [1]. In Table 2 we compare between
abstractions constructed using an affine simplicial mesh and neural abstractions. We run our procedure
to synthesise certified abstractions using selected network structures and an initial target error of
0.5. If a successful abstraction is synthesised, we reduce the error by some multiplicative factor and
repeat. This iterative procedure continues until no success is reached within a time of 300s. We report
the results from 10 repeated experiments over different initial random seeds for neural abstractions,
reporting the average (mean), minimum and maximum results obtained. In contrast, we report the
approximation-error bound for ASM for different numbers of partitions.

The results reported in Table 2 illustrate that neural abstractions outperform ASM based abstractions
in terms of error for similar numbers of partitions. Furthermore, neural abstractions generally require
significantly fewer partitions for significantly lower approximation-error bounds. In practice this
means neural abstractions will outperform ASM-based abstractions for safety verification both in
terms of speed and accuracy. We also note the success ratio of our experiments, i.e., the ratio of all
experiments which achieve an approximation-error bound of 0.5 or less. These results suggest that in
general or procedure is robust and terminates successfully with high probability for reasonable target
errors.

We note that since ASM based abstractions are constructive and are able to deterministically increase
the number partitions and consequently reduce the error, for very large numbers of partitions they
would achieve lower errors than neural abstractions. However, in practice these abstractions would
be too large in complexity to use with SpaceEx for safety verification.

B.2 Computation Run-time Profiling

In Table 3 we show a breakdown of the runtimes of our procedure shown in the main text. In
particular, we present the total time spent during learning, certification of the abstraction and finally
in safety verification.

2

Table 2: A comparison between abstractions constructed using an affine simplicial mesh and neural
abstractions. Here, W represents the neural structure used for neural abstraction, NP : total number of
partitions, ϵ: the calculated upper bound on the approximation error, N̄P : average (mean) number of
partitions, ϵ̄: average (mean) approximation error bound, ϵ+ : the maximum approximation error, ϵ−:
the minimum approximation error, Success Ratio: the ratio of repeated experiments that terminated
successfully (i.e., an error of 0.5 was reached within the first timeout of 300s). Note, we only
include successful experiments when calculating the average, min and max (since no error exists for
unsuccessful experiments). All reported errors use the 2-norm.
Benchmark Affine Simplicial Mesh Neural Abstractions

Np ϵ W N̄P ϵ̄ ϵ+ ϵ− Success Ratio

Jet Engine 8 1.33 [10] 9 0.11 0.22 0.040 1.0
32 0.33 [10, 10] 27 0.077 0.17 0.040 1.0
128 0.083 [15, 15] 61 0.058 0.071 0.053 1.0

Steam 24 3.58 [10] 27 0.27 0.37 0.21 1.0
192 0.89 [20] 236 0.18 0.27 0.15 1.0

Exponential 8 13.7 [10] 9 0.29 0.40 0.22 0.5
32 3.44 [20] 30 0.19 0.22 0.13 0.9
128 0.86 [20, 20] 75 0.15 0.22 0.071 1.0

Table 3: Breakdown of the timings shown in Table 1. Shown are the timings in the constituent
component shown in Figure 2: time spent during learning, time spent during certification of the
neural abstraction, and time spent during safety verification. Remaining time is spent in overheads,
such as converting from neural network to hybrid automaton.

Model Learner Certifier Safety Verification

Jet Engine 19 194 1.8
Steam Governor 42 177 0.5

Exponential 27 278 3.3
Water-tank 48 0.001 0.05

Non-Lipschitz 1 13 0.50 5.5
Non-Lipschitz 2 31 15 5.1

C Improved Translation from Neural Abstractions to Hybrid Automata

C.1 Computing Invariant Conditions

Invariant conditions are computed from the configuration of a neural network denoted as the sequence
C = (c1, . . . , ck) of Boolean vectors c1 ∈ {0, 1}h1 , . . . , ck ∈ {0, 1}hk , where k denotes the number
of hidden layers and h1, . . . , hk denote the number neurons in each of them (cf. Section 2). Every
vector ci represents the configuration of the neurons at the ith hidden later, and its jth element ci,j
represents the activation status of the jth neuron at the ith layer. Every mode of the hybrid automaton
corresponds to exactly one configuration of neurons. In turn, every configuration of neurons C
restricts the neural network N into a linear function. More precisely, we inductively define the linear
restriction at the ith hidden layer as follows:

N (i)
C (x) = diag(ci)(WiN (i−1)

C (x) + bi), for i = 1, . . . , k, N (0)
C (x) = x. (7)

We define the invariant of each mode as a restriction of the domain of interest to a region XC ⊆ X ,
which denotes the maximal set of states that enables configuration C. To construct XC , we begin
with the observation that the activation configuration ci at every ith hidden layer induces a halfspace
on the vector space of the previous layer of the neural network. Then, the pre-image of this
halfspace backward along the previous layers of the linear restriction of the network characterises
a corresponding halfspace on its input neurons. Since the input neurons are equivalent to the state

3

variables of the dynamical model, the halfspace induced by layer i projected onto state variables x is

H(i)
C = pre-image of {yi−1 | diag(2ci − 1)(Wiyi−1 + bi) ≥ 0}︸ ︷︷ ︸

halfspace induced by ith layer onto (i − 1)th layer

under N (i−1)
C (8)

The pre-image of a set Y under a function g is defined as {x | g(x) ∈ Y} and can be generally
computed by quantifier elimination or, in the linear case, double description methods. However, these
methods have worst-case exponential time complexity. To obtain XC efficiently, we can leverage the
fact that the pre-image of any halfspace {y | cTy ≤ d} under any affine function g(x) = Ax+b equals
to the set {x | cTy ≤ d ∧ y = Ax+ b}, which in turn defines the halfspace {x | cTAx ≤ d− cTb}.
Therefore, since N (i−1)

C is an affine function, every halfspace can be projected backward through the
affine functions N (i−1)

C , . . . ,N (1)
C using O(k) linear algebra operations. Finally, the entire invariant

condition for configuration C is defined as the following polyhedron:

XC = ∩{H(i)
C | i = 1, . . . , k} ∩ X . (9)

An invariant condition thus results in a polyhedron defined as the intersection of k halfspaces together
with the constrains that define the domain of interest. Notably, under the definition in this appendix,
the dynamics of mode C given in Equation 10 correspond to the affine dynamical model

ẋ = N (k+1)
C (x) + d, ∥d∥ ≤ ϵ, x ∈ XC , (10)

whose dynamics are governed by the affine function

N (k+1)
C (x) = Wk+1N (k)

C (x) + bk+1. (11)

C.2 Enumerating Feasible Modes

Determining whether a mode C exists in the hybrid automaton amounts to determining the linear
program (LP) associated to polyhedron XC is feasible. Finding all modes therefore consists of
solving 2H linear programs, where H = h1 + · · ·+ hk is the total number of neurons. This scales
exponentially in the number of neurons. Here, we elaborate on the tree search algorithm described in
Section 4.2 using a diagram; the purpose of this algorithm is to efficiently determine all active neuron
configurations within a bounded domain of interest X .

We consider an example tree in Figure C.1, which depicts an example search for a neural network with
a single hidden layer consisting of three neurons. The tree illustrates the construction of XC through
repeated intersections of half-spaces as paths are taken through the tree structure. Nodes represent
each neuron, labelled Ni, i = 1, 2, 3 and each edge represents one of two possible half-spaces for the
neuron it leaves from (ReLU enabled, solid line, and disabled, dashed line). This approach allows
us to prune neurons and overall solve significantly fewer linear programs than simply enumerating
through all possible configurations.

References

[1] Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
Acta Informatica 43(7), 451–476 (2007)

[2] Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis of nonlinear
systems via contraction metrics and SOS programming. Autom. 44, 2163–2170 (2008)

[3] Sotomayor, J., Mello, L., Braga, D.: Bifurcation analysis of the watt governor system. Computa-
tional and Applied Mathematics 26 (Jul 2006)

4

N1

N2X = ∅

N3N3

EndEnd End X = ∅

C = (1, 0, 1) C = (1, 1, 1)C = (1, 0, 0)

X ← X ∩ h+
1 ,

X ̸= ∅X ← X ∩ h−
1

X ← X ∩ h+
2 ,

X ̸= ∅

X ← X ∩ h+
3 ,

X ̸= ∅X ← X ∩ h−
3

X ← X ∩ h−
2 ,

X ̸= ∅

X ← X ∩ h+
3

X ← X ∩ h−
3

Figure C.1: Example Tree search to determine the active configurations for a neural network consisting
of a single hidden layer with 3 neurons. Here, h+

i denotes the positive half-space ({x : wix+bi ≥ 0})
and h−

i denotes the negative half-space ({x : wix+ bi ≤ 0}) of the ith neuron; wi represents the ith

row of the weight matrix corresponding to the hidden layer, and bi represents the ith element of the
bias vector of the hidden layer. Notably, when the set X becomes empty, it is no longer necessary to
continue along that path. Once we reach the end of the tree, we have an active configuration C, and
backtrack to the last node that was not fully explored.

5

	Benchmark Nonlinear Dynamical Models
	Additional Experimental Results and Figures
	Experimental Comparison Against Affine Simplical Meshes
	Computation Run-time Profiling

	Improved Translation from Neural Abstractions to Hybrid Automata
	Computing Invariant Conditions
	Enumerating Feasible Modes

