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Figure 5: Class-Disentanglement results on restricted ImageNet by CD-VAE with different γ.

Changing γ also leads to visual changes ofR(x) andG(x) shown in Fig. 5, which provides interesting
perspectives for interpretation of neural nets. As γ increasing, R(x) starts by first capturing the
most discriminative (but sparse) features, e.g., the tongue/nose of dogs and the hair of monkeys, and
gradually adds more class-relevant features. On the contrary, G(x) becomes more blurry and lose
more details but still tends to preserve the colors and shapes that are more critical to reconstruction.

B White-box Detection Performance

`∞ `2

TNR AUC TNR AUC

MD 27.64 77.63 27.16 75.15
MD(R(x)) 59.25 90.66 87.97 97.72

Table 8: White-box Detection Perfor-
mance on CIFAR10.

In this section, we evaluate the robustness of our method
to detect adversarial images which may fool the detector
in a white-box setting, i.e., one can have access to both
the parameters of the classifier and the detector. We
follow the setting of MD [30], i.e., Sec. E of [30], and
use PGD attack to generate adversarial images, which
maximizes the classification loss and minimizes the Ma-
halanobis distance at the same time. The results are
given in Table 8: our method using R(x) as input signif-
icantly outperforms the baseline using x as input in the white-box setting.

C Detection Generalization Performance
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BIM C&W PGD-`∞ PGD-`2

KD 94.82 94.75 94.59 93.62
KD(R(x)) 97.86 96.89 97.95 98.20

LID 95.20 94.32 94.30 93.19
LID(R(x)) 97.29 95.10 97.57 97.38

MD 96.13 96.05 96.34 92.37
MD(R(x)) 99.21 99.13 99.26 99.13

Table 9: Detection Generalization Performance on
CIFAR10. The detectors are trained on FGSM attack
and evaluated on other four unseen attacks.

In this section, we evaluate the generalizability
of our detection method with other baselines.
The detection models of the baselines and our
method are trained using adversarial examples
generated by FGSM attack. We then evaluate
their generalizability by the detection AUC
score against the other four unseen attacks, i.e.,
BIM, C&W, PGD-l∞ and PGD-2. The hyper-
parameters for attackers and architectures for
detectors are the same as illustrated in Sec 4.2.
Table that our method outperforms all three
baselines by a large margin on detecting all
the four unseen attacks, which demonstrates
the generalizability of our detection strategy.

D Experimental Details of Adversarial Defense against White-Box Attacks

We train a pre-trained CD-VAE for 100 epoches using SGD optimizer with a initial learning rate of
1.0 and momentum of 0.9, where the learning rate is multiplied by 0.1 for every 30 epochs. We set
γ = 0.1 and β = 0.01 in Eq.(8)-(10). We test baselines and our model against five attacks: `∞ and
`2 AutoAttack3, JPEG [23], ReColor [28] and StADV [46]. AutoAttack is widely used for evaluation
of robustness in recent works. It combines four strong attacks including two PGD variants and a
black-box attack. JPEG attack generates perturbations in the frequency domain. ReColor uses a
predefined function to recolor images. StAdv performs spatial transforms to images.

E Numerical Analysis of perturbation δ with respect to Larger ε

In order to see the disentanglement effect of perturbation δ changes with respect to larger ε, we try
different values of ε (8/255, 48/255, 96/255, 144/255, 255/255) in PGD and report the ellp-norm
of δ, δG and δR in Table 10. It shows that by increasing ε, G(x) suffers more distortion from the
adversarial attacks. When ε is small (8/255 and 48/255), the `1 and `2 norm of is around 1/3 of that
of δ. When ε becomes large (144/255 and 255/255), the `1 and `2 norm of δG grows, exceeding
1/2 of that of δ . This demonstrates that with large ε, the attackers first distort the class-essential
information in R(x) and then seek to perturb class-redundant information in G(x). Note epsilon
larger than 48/255 is rarely used for producing adversarial examples since it drastically changes the
original images. So G(X) is sufficiently robust to attacks using reasonable ε values.

F Convergence Curve
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Figure 6: Convergence curve of CD-VAE.

The objective in Eq. (1) is simple to optimize and the op-
timization converges fast after a few epochs. Thanks to
the mutual information-bottleneck constraints between
the VAE and the classifier, the VAE objective enforces
the classifier to only pay attention to the most impor-
tant information for classification, while the classifier’s
objective enforces the VAE to only reconstruct the class-
redundant part. This helps to speed up the training of
both models. Empirically, we do observe a fast and sta-
ble convergence on the VAE reconstruction accuracy,
and the classifier’s training accuracy in Fig. 6, within
only 100 epochs (both models are trained from scratch
on CIFAR10).

3https://github.com/fra31/auto-attack
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ε `1 × 10−3 `2 `∞

8/255
δ 13.65± 0.88 39.09± 1.40 0.14± 0.00
δG 4.15± 0.65 16.56± 2.47 0.39± 0.17
δR 13.78± 0.92 40.97± 1.87 0.48± 0.16

48/255
δ 70.10± 4.04 207.24± 8.51 0.84± 0.00
δG 19.67± 3.20 63.87± 9.82 0.90± 0.43
δR 64.50± 4.30 192.35± 10.47 1.51± 0.42

96/255
δ 125.91± 7.41 381.01± 15.66 1.68± 0.00
δG 49.67± 9.73 155.67± 25.50 2.74± 0.32
δR 111.42± 9.05 337.48± 23.83 1.61± 0.30

144/255
δ 173.23± 10.86 533.11± 23.99 2.52± 0.00
δG 88.40± 15.69 270.85± 38.58 2.36± 0.20
δR 146.88± 13.17 446.07± 34.35 3.77± 0.30

255/255
δ 256.76± 28.93 790.63± 83.14 4.43± 0.07
δG 141.29± 33.16 430.33± 84.50 3.30± 0.25
δR 226.98± 39.10 653.33± 87.96 4.70± 0.47

Table 10: `p norm/distance of δ with respect to different ε (ImageNet).

G Additional Class-Disentanglement Results

In Fig. 2, we present the class-disentanglement results of several images from restricted ImageNet
and their difference to the class-disentanglement results on the corresponding adversarial images. We
do not show the adversarial images due to the space limit. In Fig. 7, we show the complete version
of Fig. 2 with the adversarial images attached. In addition, we also present the similar results on
CIFAR-10 in Fig. 8. It shows that the class-essential part only contains sparse and most discriminative
features of an image, e.g., mouth of frog, wing of plane, etc, whileG(x) covers all the other redundant
information for reconstruction. Moreover, the adversarial perturbation δ mainly exists in δR.

In Table 2, for restricted ImageNet, we compare the `p-norm of each class-disentangle component for
both clean images and their adversarial images, as well as their differences in terms of `p-distance,
where p ∈ {1, 2,∞}. In Table 11, we report similar results for CIFAR-10, which show consistent
patterns as Table 2.

`1 `2 `∞

x 2549.97± 773.62 53.06± 14.68 1.97± 0.18
G(x) 2390.43± 779.33 49.56± 14.71 1.85± 0.24
R(x) 537.87± 124.00 12.72± 2.98 1.13± 0.27

x′ 2545.17± 761.72 53.01± 14.44 2.00± 0.16
G(x′) 2382.31± 774.14 49.38± 14.59 1.84± 0.23
R(x′) 577.54± 109.58 13.45± 2.76 1.15± 0.26

δ 288.60± 16.41 5.60± 0.47 0.13± 0.00
δG 48.13± 8.49 1.11± 0.19 0.09± 0.02
δR 276.57± 15.70 5.42± 0.46 0.19± 0.02

Table 11: `p norm/distance of different parts in CD-VAE on CIFAR-10.

H Class-Disentanglement on Adversarially Trained Models

In Sec. 3.2 and G, we use CD-VAE to disentangle adversarial images generated by attacks against a
classifier trained on clean data and illustrate that normally trained classifier mainly relies on class-
essential part R(x) for classification and adversarial perturbation δ mainly lies in δR. In this section,
we further use CD-VAE to disentangle the adversarial images generated by attacks against a robust
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Figure 7: Class-Disentanglement results by CD-VAE on restricted ImageNet. The target model is a
ResNet-50 trained on clean data of restricted ImageNet. The attack method is PGD-`∞ bounded with
ε = 8/255.

model (i.e., an adversarially trained model). It provides novel perspectives to understand how a robust
model defend adversarial attacks.

We conduct the experiment on CIFAR-10. We use adversarial training [35] against PGD attack
(`∞-ball constraint) to train a WideResNet-28-10 [48]. Then we generate adversarial images on the
test set by PGD attack (`∞-ball constraint) towards this robust model. After that, we apply the trained
CD-VAE model (the same model as used in Sec. 3.2 and G) to disentangle both adversarial images
and clean images. We show the visualization of each disentangled part in Fig. 9. Comparing δ, δR
and δG, we can find that δ has component on both δR and δG. This indicates that the robust model
relies on both R(x) and G(x) for classification, thus the attack has to cause change to both of them.
This increases the difficulty of the attack, which can explain why the robust model can defend attacks.

In Table 12, we report the mean and standard deviation of `p-norm for each class-disentangled
component, where p ∈ {1, 2,∞}. We can clearly see that δR and δG have comparable norm, which
support the observation before.

I Disentanglement in Input-Space vs. Latent-Space

Latent-space disentanglement has been studied by many previous literatures [47, 18, 5, 10, 20, 24],
but we are the first to perform class-disentanglement in pixel-space, which has different applications,
formulation and conclusion compared with latent-space disentanglement.
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Figure 8: Class-Disentanglement results by CD-VAE on CIFAR-10. The Target model is a
WideResNet-28-10 trained on clean data of CIFAR-10. The attack method is PGD-`∞ bounded with
ε = 8/255.

Applications. Our pixel-space disentanglement method can be applied to both adversarial detection
and defense, while latent space disentanglement in latent space addresses either detection [47]
or defense [18]. Moreover, our pixel-space disentanglement (e.g., R(x) in Fig. 2 and Fig. 5))
provides a pixel-level interpretation tool for DNN classifiers and attacks against them, which leads
to the empirical analysis in Sec. 3.2, while other latent-space disentanglement methods [47, 18]
do not handle this problem. Our model produces a class-essential part R(x) (input space), a class-
redundant part G(x) (input space), and a class-redundant representation z (latent space) for any given
input. Hence, our model can provide both image-like interpretation and low-dimensional abstract
representations, while their model only provides the latter. With input-space class disentanglement,
the class-essential and class-redundant information can be visualized as two images, while their latent
counterparts are usually too abstract. Moreover, our method is complementary to and can be easily
incorporated with existing methods of these tasks, e.g., by replacing their input x with G(x) or R(x).

Formulation. Our method performs class-disentanglement by solving a simple unconstrained
optimization in Eq. (1), which is easier and faster. Our mutual information-bottleneck constraints
between the VAE and the classifier further speed up the training. On the contrary, [18] need to solve
a constrained optimization problem to select filters and detects adversarial examples based on these
selected filters, which is empirically difficult and expensive. [47] trains two feature extractors and
two classifiers adversarially through a minimax Markov game with an objective composed of six loss
functions, which is complicated and difficult to optimize.
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Figure 9: Class-Disentanglement of adversarial images generated by PGD-`∞ attack (ε = 8/255)
against an adversarially trained WideResNet-28-10 on CIFAR-10.

`1 `2 `∞

x 2521.73± 808.00 53.06± 14.68 1.97± 0.18
G(x) 2363.96± 808.70 49.56± 14.71 1.85± 0.24
R(x) 531.91± 132.02 12.72± 2.98 1.13± 0.27

x′ 2524.33± 800.29 53.14± 14.53 2.00± 0.17
G(x′) 2364.47± 805.04 49.57± 14.63 1.85± 0.24
R(x′) 553.87± 128.40 13.15± 2.87 1.15± 0.27

δ 354.70± 38.53 6.57± 0.51 0.13± 0.00
δG 190.65± 28.74 4.14± 0.50 0.23± 0.03
δR 214.76± 28.23 4.68± 0.46 0.26± 0.02

Table 12: `p norm/distance of different parts in CD-VAE for a robust model on CIFAR-10.

Conclusion. [47] detects adversarial perturbation in the class-irrelevant part, while our method
avoids doing so since our study suggests that the adversarial perturbation mainly affects the class-
dependent part, on which we instead conduct our adversarial detection. This also implies that
class-disentanglement in the input space and latent space can have very different properties.
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