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ABSTRACT

We propose a Competitive Low-Rank Adaptation (ComLoRA) framework to ad-
dress the limitations of the LoRA method, which either lacks capacity with a sin-
gle rank-r LoRA or risks inefficiency and overfitting with a larger rank-Kr LoRA,
where K is an integer larger than 1. The proposed ComLoRA method initializes
K distinct LoRA components, each with rank r, and allows them to compete dur-
ing training. This competition drives each LoRA component to outperform the
others, improving overall model performance. The best-performing LoRA is se-
lected based on validation metrics, ensuring that the final model outperforms a
single rank-r LoRA and matches the effectiveness of a larger rank-Kr LoRA,
all while avoiding extra computational overhead during inference. To the best of
our knowledge, this is the first work to introduce and explore competitive learn-
ing in the context of LoRA optimization. The ComLoRA’s code is available at
https://github.com/hqsiswiliam/comlora.

1 INTRODUCTION

Large Language Models (LLMs) have transformed various natural language processing tasks by
leveraging their vast number of parameters and advanced architectures (Radford et al., 2019; Achiam
et al., 2023; Touvron et al., 2023; Dubey et al., 2024). Despite their success, efficiently adapt-
ing LLMs to specific tasks remains a challenge due to the prohibitive costs of full fine-tuning (FFT).
Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA) (Hu et al.,
2021), have emerged as promising solutions by updating only a small portion of parameters, signif-
icantly reducing computational burdens.

While LoRA provides an efficient alternative for adapting LLMs, it faces challenges in balanc-
ing model expressiveness with parameter efficiency. A single low-rank LoRA module may lack
sufficient representational capacity to handle complex tasks, whereas simply increasing the rank in-
troduces additional parameters and the risk of overfitting. Empirical studies on PEFT methods have
shown that higher-rank configurations do not consistently outperform lower-rank setups in prac-
tice (Hu et al., 2021; Sidahmed et al., 2024; Kalajdzievski, 2023), indicating that merely adding
more parameters is not a straightforward solution for performance enhancement. Therefore, there is
a need for training strategies that can better exploit existing LoRA components to enhance expres-
siveness without increasing computational overhead during inference.

Existing LoRA training methods typically employ fixed hyperparameters and adaptation strategies
across different tasks and throughout the training process. This lack of adaptability may hinder
the model’s ability to adjust to tasks with varying levels of complexity, such as those requiring
deeper reasoning, context understanding, or handling of specialized terminology. Consequently, the
model may fail to strike an optimal balance between efficiency and expressiveness, especially in
more demanding tasks (Lialin et al., 2023). This limitation leads to the underperformance of LoRA
modules when applied to a diverse range of tasks that challenge the model’s capacity to represent
complex patterns and relationships in the data.
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To address these challenges, we draw inspiration from competitive learning, which has been ap-
plied successfully in feature discovery and clustering (Nowlan, 1989; Rumelhart & Zipser, 1985;
Grossberg, 1987). Competitive learning allows multiple components of a model to compete dur-
ing training, dynamically optimizing their performance based on feedback. Despite its successes in
other domains, this mechanism has not yet been explored within the context of LoRA or other PEFT
methods.

We propose the Competitive Low-Rank Adaptation (ComLoRA) framework, which incorporates
competitive learning to dynamically train multiple LoRA components. In ComLoRA, multiple
LoRA components compete during adaptation, guided by a dynamic selector that evaluates their
performance at each training step. This competitive process allows each component to improve
iteratively, achieving an optimal balance between expressiveness and parameter efficiency without
significantly increasing computational overhead during inference. By leveraging the strengths of the
most effective LoRA components, ComLoRA enhances model adaptation across diverse tasks while
maintaining inference efficiency.

Our key contributions are as follows:

• We propose the first competitive learning framework for LoRA.

• We develop a selector mechanism that optimizes LoRA component selection during train-
ing.

• Extensive experiments demonstrate the superiority of ComLoRA over LoRA, without in-
creasing inference overhead.

2 RELATED WORKS

LoRA. Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a widely used technique for efficient fine-
tuning of large pre-trained models by introducing low-rank updates to parameter matrices, thereby
reducing computational overhead. While LoRA maintains strong performance with fewer param-
eters, its fixed rank can limit expressiveness. Attempts to increase the rank, such as using K × r,
enhance capacity but at the cost of higher computational demands and increased risk of overfitting.
ComLoRA addresses these challenges by incorporating a competitive mechanism where multiple
LoRA components compete during training, enhancing adaptability and robustness without sacrific-
ing the efficiency that defines LoRA.

Mixture of Experts (MoE). MoE models have gained significant attention in the context of large
language models (LLMs) due to their ability to scale efficiently by selectively activating only a sub-
set of the model’s parameters during inference. A prominent example is the Switch Transformer (Fe-
dus et al., 2022), which uses an MoE layer to route inputs to different expert networks, significantly
reducing computational costs while maintaining performance. Similarly, GLaM (Du et al., 2022)
dynamically selects a subset of experts based on the input, allowing the model to adapt efficiently
to diverse tasks. MoELoRA (Luo et al., 2024) extends the MoE framework to LoRA by using a
gating network to route inputs to multiple LoRA experts during inference, emphasizing diversity
among components. In contrast, ComLoRA focuses on learning a single LoRA component after
competitive training, minimizing inference overhead. Hence, MoELoRA needs to utilize multiple
LoRA experts and the gating network during inference, while the proposed ComLoRA method acts
exactly the same as LoRA during the inference.

3 METHODOLOGY

In this section, we introduce the Competitive Low-Rank Adaptation (ComLoRA) framework.

3.1 OVERVIEW

ComLoRA initializes K distinct LoRA components, each with a rank r. A LoRA selector is intro-
duced to dynamically choose the most suitable LoRA component based on the input context. This
competitive framework drives the LoRA components to refine their individual strengths, effectively
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Figure 1: An illustration of the ComLoRA pipeline.

combining them to enhance the model’s overall performance without adding inference overhead. An
illustration of the proposed ComLoRA method is shown in Figure 1.

3.2 MULTIPLE LORA COMPONENTS

We begin by initializing K separate LoRA components {LoRA1,LoRA2, . . . ,LoRAK}, each with
rank r. For LoRAk, we have projection matrices Ak ∈ Rd×r and Bk ∈ Rr×l, where d and l denotes
the dimension of the input and output in this layer, respectively. The matrices Ak are initialized
using the Kaiming initialization method (He et al., 2015), while the matrices Bk are initialized to
zero, following standard LoRA practices.

3.3 LORA SELECTOR

The LoRA selector is designed to evaluate the input sequence and select the most suitable LoRA
component. It operates by computing similarity scores between a representation of the input se-
quence and embeddings associated with each LoRA component.

Input Representation. Given an input sequence X ∈ RL×d of length L, where each token is
embedded in a d-dimensional space, we obtain a contextualized representation using a lightweight
one-layer transformer encoder. This neural network produces hidden states H ∈ RL×dsel , where dsel
is the dimensionality of the selector’s hidden states. To obtain a fixed-length representation of the
input sequence, we average the hidden states across the sequence length as

havg =
1

L

L∑
i=1

Hi, (1)

where Hi is the hidden state corresponding to the i-th token.

LoRA Embeddings. Each LoRA component k is associated with a learnable embedding vector
ek ∈ Rdsel . These embeddings serve as representatives for their respective LoRA, allowing the
selector to compute and update the similarity scores efficiently.

Computation of Similarity Score. The similarity score between the input representation and each
LoRA component embedding is calculated using a dot product:

simk = h⊤
avgek for k = 1, 2, . . . ,K. (2)

This results in a similarity score vector s ∈ RK as
s = [sim1, sim2, . . . , simK ]. (3)

3.4 OBJECTIVE FUNCTION

The objective function to train ComLoRA consists of three losses, including the language modeling
loss, selector loss, and alignment loss. In the following section, we introduce them one by one.

Language Modeling Loss. The language modeling loss, denoted as LLM, is calculated to guide the
updates of the LoRA components. For each LoRA component k, the loss is defined as:

LLM,k = −
L∑

t=1

logP (yt|y<t, θ,Ak,Bk), LLM =
1

K

K∑
k=1

LLM,k, (4)
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where yt is the target token at position t, θ represents the base model parameters, and Ak and Bk are
the projection matrices of the k-th LoRA component. This loss function drives the training process,
ensuring that the LoRA components are optimized to minimize the prediction error of the next token
in the sequence.

Alignment Loss. To ensure that the LoRA selector effectively influences the language model (LM)
during training, we introduce an alignment loss that reflects the selector’s preferences in the LM
updates. This alignment loss is designed to align the similarity scores, as predicted by the selector,
with the next-token prediction losses for the top-N ranked LoRA components. The loss is defined
as:

Lalign = η(t) ·
(

StopGrad (psim, top-N )
⊤ LLM, top-N

)
, (5)

where psim, top-N denotes the normalized similarity scores of the top-N selected LoRA components
with largest similarity scores, LLM, top-N is a vector containing LM losses for the top-N selected
LoRA components, StopGrad(·) indicates that the input is detached to prevent it from contributing
to the gradient, and η(t) is an annealing scalar that evolves over training steps. By focusing on
the top-N components, the alignment loss directs LM updates based on the top preferences of the
LoRA selector. With the annealing strategy, we expect that during the initial stage of the training
process, LoRA components can learn more independently to encourage exploration and as train-
ing progresses, the influence of the guidance from the LoRA selector on the LoRA components
gradually increases.

Pairwise Loss. The LoRA selector is trained to align the similarity scores with the actual perfor-
mance of the LoRA components using a pairwise loss approach. This ensures that the similarity
scores correlate with the relative performance (as measured by the language modeling loss) of the
LoRA components. To avoid overly deterministic selection, a Gaussian noise term is added to the
language modeling loss for each LoRA component. The modified LM loss for component k is
defined as:

L̃LM,k = LLM,k + αϵk, (6)

where ϵk ∼ N (0, 1) is a Gaussian noise term, and α is a small constant that controls the noise
intensity (e.g., α = 0.1). The differences between similarity scores and the corresponding noisy LM
losses for each pair of LoRA components (i, j) are defined as:

∆sim,i,j = simi − simj , ∆LM,i,j = L̃LM,i − L̃LM,j . (7)

Those differences are normalized using the softmax operation to produce log-softmax values as

logsoftmax(∆sim) = log(softmax(∆sim)), logsoftmax(∆LM) = log(softmax(∆LM)). (8)

The pairwise loss is then computed as the ℓ1 loss between the log-softmax similarity score differ-
ences and the log-softmax LM loss differences:

Lpairwise = ∥logsoftmax(∆sim)− StopGrad(logsoftmax(∆LM))∥1, (9)

where ∥ · ∥1 denotes the ℓ1 norm of a vector. This pairwise loss encourages the selector to assign
higher similarity scores to LoRA components that demonstrate better performance (i.e., lower noisy
LM losses), ensuring that the predictions of the selector align with the actual capabilities of each
component.

Objective Function. The total loss combines the LM loss, the alignment loss, and the selector loss
as

Ltotal = LLM + Lalign + Lpairwise. (10)

During training, we optimize Ltotal with respect to the parameters in LoRA components and the
LoRA selector.

3.5 DETERMINATION OF LORA WINNER

After training, we use the LoRA selector to determine the LoRA winner based on the validation
dataset. Specifically, we pass the validation data through the LoRA Selector to compute the similar-
ity scores for each LoRA component as

sval = [simval,1, simval,2, . . . , simval,K ], (11)
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where simval,k is the accumulated similarity score for LoRA component k over the validation dataset.

We then select the LoRA winner as the one with the highest total similarity score as

kwin = argmax
k

simval,k. (12)

During inference on the test set, we only use the LoRA winner LoRAkwin , without using the LoRA
selector or other LoRA components. This ensures that the inference is efficient, as it avoids any
additional computational overhead associated with the selector or dynamic selection.

Table 1: Comparison of Full Fine-Tuning (FFT), LoRA, MoE of LoRA, and ComLoRA.
FFT LoRA MoE of LoRA ComLoRA

Overfitting Risk High Low Medium Low
High Inference Overhead Low Low High Low
Competitive Learning Low Low Low High
Model Complexity High Low High Medium

3.6 COMPARISONS WITH FFT, LORA, AND MOE OF LORA

During the training process, we can see that the proposed ComLoRA method needs to train K
LoRAs, leading to training complexity comparable to MoE with K LoRAs but higher than LoRA.
During the inference process, the proposed ComLoRA method only uses the LoRA winner, which
can be merged into the base model. Hence, ComLoRA preserves low inference overhead as LoRA
did, while MoE of LoRA, which needs to use a gating network to choose from K LoRAs, cannot be
merged into the base model, yielding additionally computational costs. In summary, the comparisons
with FFT, LoRA, and MoE of LoRA are shown in Table 1.

4 EXPERIMENTS

In this section, we evaluate the proposed ComLoRA method by comparing with LoRA to compare
between the competitive training in ComLoRA and the conventional training process in LoRA.

4.1 EXPERIMENTAL SETTINGS

All experiments were conducted using the LLaMA-3-8B model (Dubey et al., 2024). To compare
ComLoRA with LoRA across different rank configurations, we use LoRA ranks of 4, 8, 16, 32, and
128, and ComLoRA configurations with (K = 4, r = 4), (K = 2, r = 8), (K = 4, r = 8), and
(K = 4, r = 32).

The AdamW optimizer (Loshchilov & Hutter, 2019) is used to train LoRA and ComLoRA. The
learning rates for both LoRA and ComLoRA methods are selected from [1e − 3, 1e − 4], and fine-
tuning is conducted for 3 epochs for all the tasks. Each experiment runs with 5 different seeds, and
the average results are reported.

4.2 EVALUATION TASKS

Commonsense Reasoning. We evaluate our models using a comprehensive commonsense reason-
ing dataset, which includes eight sub-tasks: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-c (Clark et al., 2018), ARC-e (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). These
tasks cover various aspects of commonsense knowledge, such as physical reasoning, social implica-
tions, and natural language inference. We aggregate the training sets from all sub-tasks into a single
corpus of 170,420 entries, from which we randomly select 120 entries for validation to identify the
optimal model.

MMLU. The MMLU (Massive Multitask Language Understanding) benchmark (Hendrycks et al.,
2021b;a) includes 57 diverse subjects spanning the humanities, STEM, social sciences, and more.
Each subject comprises questions of varying difficulty, with multiple-choice answers provided.
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Table 3: Performance of LoRA and ComLoRA on commonsense reasoning tasks. The Params (%)
(L/S) column indicates the percentage of trainable parameters in LoRA component(s) (denoted by
L) and the LoRA selector (denoted by S). The best performance is in bold, and the second best
performance is underlined.

Method Params (%) (L/S) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
LoRAr=4 0.09/0.00 65.72 73.67 73.49 63.31 78.70 72.80 80.06 75.93 72.96
LoRAr=8 0.18/0.00 52.02 70.40 64.94 59.04 76.39 64.20 74.72 72.38 66.76
LoRAr=16 0.35/0.00 65.66 77.64 71.65 71.93 87.42 73.60 82.06 73.40 75.42
LoRAr=32 0.70/0.00 70.80 85.20 79.90 71.20 84.20 79.00 91.70 84.30 80.79
LoRAr=128 2.74/0.00 71.99 88.19 79.63 80.03 91.37 86.40 93.42 88.00 84.88
ComLoRAK=4,r=4 0.35/1.45 69.02 86.56 79.68 78.84 92.21 83.40 92.39 86.35 83.56
ComLoRAK=2,r=8 0.35/1.45 75.14 90.04 82.09 82.42 93.14 89.00 96.03 88.87 87.09
ComLoRAK=4,r=8 0.70/1.45 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
ComLoRAK=4,r=32 2.74/1.39 71.53 87.65 79.99 80.12 92.42 87.40 94.56 86.50 85.02

Personalized Conversation Task. We assess model performance on personalized conversational
understanding using the CONVAI2 dataset (Dinan et al., 2019; Zhang et al., 2018). This dataset
is designed to evaluate a model’s ability to engage in meaningful and coherent conversations while
maintaining a personalized dialogue. Following (Liu et al., 2020; Song et al., 2021; Huang et al.,
2023b;a; 2024), we use a self-persona configuration that reveals only the speaker’s persona. The task
involves training the model to respond in a way that reflects an understanding of personal preferences
and contextual nuances.

4.3 EVALUATION METRICS

To evaluate performance on the commonsense reasoning datasets, we use accuracy as the primary
metric, following the approach of (Hu et al., 2023). For each test instance, the language models
generate answers based on the provided queries, and specific keywords (e.g., ”true” or ”false” for
BoolQ) are searched within the responses. The first occurrence of a relevant keyword is recorded as
the model’s answer, while responses lacking relevant keywords are considered incorrect. A similar
evaluation method is employed for MMLU.

Table 2: Performance comparison of LoRA and
ComLoRA on MMLU. The best performance
is in bold, and the second best performance is
underlined.

Method Params (L/S) (%) Accuracy
LoRAr=4 0.09/0.00 56.44
LoRAr=8 0.18/0.00 56.79
LoRAr=16 0.35/0.00 55.25
LoRAr=32 0.70/0.00 55.97
LoRAr=128 2.74/0.00 59.36
ComLoRAK=2,r=8 0.35/1.45 59.81
ComLoRAK=4,r=4 0.35/1.45 59.41
ComLoRAK=4,r=8 0.70/1.45 59.14
ComLoRAK=4,r=32 2.74/1.39 61.09

For the CONVAI2 dataset, we assess linguis-
tic similarity using BLEU (Papineni et al.,
2002), METEOR (Banerjee & Lavie, 2005),
and ROUGE-L (R-L) (Lin, 2004), which cal-
culate the overlap of n-grams between model
predictions and ground truth. To measure se-
mantic similarity, we use BERT Score (Zhang
et al., 2019), which evaluates the cosine similar-
ity of normalized BERT embeddings between
predictions and ground truth. We report BERT
Score’s F1 (BERTF1), Recall (BERTR), and
Precision (BERTP ).

4.4 RESULTS

Commonsense Reasoning. The results on commonsense reasoning are shown in Table 3. Among
the LoRA configurations, LoRAr=128 achieves the highest average score of 84.88%, indicating
that a higher rank enhances the model capacity to learn complex patterns in the data. In con-
trast, the ComLoRA framework shows strong performance across all tested configurations. No-
tably, ComLoRAK=2,r=8, which selects the winner LoRA with rank 8 for inference, achieves the
highest average score of 87.09%, outperforming all LoRA baselines, including LoRAr=128. This re-
sult underscores the effectiveness of ComLoRA’s competitive learning mechanism, where multiple
low-rank adapters compete during training, leading to improved overall performance.

Moreover, ComLoRA configurations with lower ranks still outperform higher-rank LoRA. For ex-
ample, ComLoRAK=4,r=4 achieves an average score of 83.56%, surpassing LoRAr=32 which has
an average score of 80.79%. This demonstrates that ComLoRA can achieve superior performance
with fewer parameters compared to conventional LoRA methods.

6



Published as a conference paper at ICLR 2025

Table 4: Performance comparison of LoRA and ComLoRA on CONVAI2 Dataset. The best perfor-
mance is in bold, and the second best performance is underlined.

Method Params (L/S) (%) BLEU METEOR R-L BERTF1 BERTR BERTP Average
LoRAr=4 0.09/0.00 2.54 12.97 12.27 84.76 85.04 84.54 47.02
LoRAr=8 0.18/0.00 2.37 12.69 11.89 84.66 84.97 84.40 46.83
LoRAr=16 0.35/0.00 3.15 14.00 13.32 84.70 84.25 85.19 47.43
LoRAr=32 0.70/0.00 3.27 15.06 14.05 84.78 84.41 85.19 47.79
LoRAr=128 2.74/0.00 3.24 15.24 14.06 84.79 84.42 85.20 47.82
ComLoRAK=2,r=8 0.35/1.45 3.69 17.05 16.09 85.23 84.74 85.75 48.76
ComLoRAK=4,r=4 0.35/1.45 3.67 16.99 15.98 85.22 84.73 85.74 48.72
ComLoRAK=4,r=8 0.70/1.45 3.65 16.90 15.95 85.19 84.70 85.72 48.69
ComLoRA K=4,r=32 2.74/1.39 3.62 16.06 14.75 84.83 84.53 85.17 48.16

For individual tasks, ComLoRAK=2,r=8 consistently outperforms different LoRA methods. In
tasks such as PIQA and HellaSwag, ComLoRAK=2,r=8 achieves remarkable scores of 90.04% and
96.03%, respectively, significantly higher than the corresponding performance of LoRAr=128. This
indicates that the competition among LoRA components in ComLoRA enable the model to learn
from complex reasoning tasks.

MMLU. As shown in Table 2, ComLoRA demonstrates superior performance across various con-
figurations. Notably, ComLoRAK=4,r=32 achieves the highest accuracy of 61.09%, surpassing all
LoRA baselines, including LoRAr=128, which achieves 59.36%. ComLoRAK=2,r=8 secures the
second-best accuracy at 59.81%, followed closely by ComLoRAK=4,r=4 with 59.41%. These
results highlight the effectiveness of ComLoRA’s competitive learning approach, as it consis-
tently outperforms traditional LoRA methods even with lower ranks per component. Additionally,
ComLoRAK=4,r=8 maintains strong performance, further demonstrating ComLoRA’s robustness
across various configurations.

CONVAI2. According to the results shown in Table 4, ComLoRAK=2,r=8 outperforms all other
configurations across multiple metrics, including BLEU, METEOR, ROUGE-L (denoted by R-L),
and BERT scores (i.e., BERTF1, BERTR, and BERTP ). Specifically, ComLoRAK=2,r=8 achieves
a BLEU score of 3.69, a METEOR score of 17.05, and a ROUGE-L score of 16.09, significantly
higher than the corresponding scores from LoRAr=4 to LoRAr=128. This demonstrates the effec-
tiveness of competitive learning approach in ComLoRA to capturing diverse conversational patterns.

Additionally, ComLoRAK=4,r=4 secures the second-best performance across all metrics, main-
taining high scores and further validating the effectiveness of the ComLoRA framework. The
average scores reflect ComLoRA’s ability to consistently outperform traditional LoRA, even with
lower ranks, thereby offering a more parameter-efficient alternative without sacrificing model per-
formance.

5 ABLATION STUDIES

To thoroughly evaluate the effectiveness of the proposed ComLoRA framework, we conduct a series
of ablation studies on commonsense reasoning tasks. Unless otherwise specified, all experiments are
performed using the LLaMA-3-8B model with K = 4 and r = 8 in ComLoRA.

5.1 ANALYSIS ON LOSS AND LORA COMPONENTS

To assess the effectiveness of ComLoRA, we analyze its training losses when K = 4 and r = 4 and
compare with LoRAr=4 and LoRAr=16. As shown in Figure 2, the training losses of all LoRA com-
ponents in ComLoRA are consistently lower than those of LoRAs, despite each LoRA component
having only a rank of 4. Different LoRA components in ComLoRA intertwine, collectively forming
lower losses through their competitive interaction during training. This results in that ComLoRA
achieves a faster convergence compared to a single LoRA model under the standard fine-tuning
process.

Figure 3 plots the number of times being the winner among the four LoRA components for each
LoRA component over every 50 steps, where the winner at a training step has the lowest training
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Table 5: Impact of removing one of the losses or selector from total loss.
Method BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
ComLoRAK=4,r=4 69.02 86.56 79.68 78.84 92.21 83.40 92.39 86.35 83.56
w/o LLM 67.31 84.82 76.97 77.99 91.08 79.80 91.23 80.82 81.25
w/o Lalign 67.46 79.16 75.28 69.80 81.65 78.20 83.07 80.90 76.94
w/o Lpairwise 69.20 85.69 74.21 77.56 90.87 78.60 89.86 77.51 80.44
w/o Selector 65.38 83.84 70.98 74.74 90.07 75.20 72.24 71.03 75.44

loss. Figure 3 reveals how the LoRA component 0 gradually gains dominance through competitive
training, ultimately being the LoRA winner in ComLoRA.

5.2 EFFECT OF DIFFERENT LOSSES AND SELECTOR

To better understand the impact of each loss component and the selector in the ComLoRA frame-
work, we conduct ablation studies by removing one component at a time and observing its effect on
performance across commonsense reasoning tasks.

According to the results presented in Table 5, we can see that removing the language modeling loss
LLM leads to a noticeable performance drop, with the average accuracy decreasing from 83.56%
to 81.25%. This indicates that the LM loss is essential for optimizing the model’s predictions and
driving ComLoRA’s performance.

The alignment loss Lalign, which ensures that the LoRA selector’s preferences influence the LM
updates, has an even larger impact. Without this loss, the model’s average performance decreases
significantly to 76.94%, showing the critical role of aligning the selector’s guidance with the LM
performance.

Similarly, removing the pairwise loss Lpairwise, which fosters competition among LoRA components,
also reduces performance, with the average accuracy falling to 80.44%. This suggests that competi-
tion between components is important for enhancing the model’s performance.

Lastly, we also evaluate the impact of removing the selector entirely from the framework. Without
the selector, the average accuracy drops drastically to 75.44%, indicating that the selector plays a
central role in ComLoRA’s performance.

5.3 EFFECT OF THE NUMBER OF LORA COMPONENTS K

In this section, we investigate the impact of the number of LoRA components K to the performance
of ComLoRA, while fixing the rank r to be 8. According to the results shown in Table 6, we
observe that when K = 1, which corresponds to the standard LoRA with rank r = 8, the average
performance across tasks is 66.76%. As we increase K, the performance improves significantly,
reaching the highest average performance (i.e., 87.09%) when K equals 2. This demonstrates that
introducing competition among multiple LoRA components can substantially enhance the model
capability even with a small number of components.
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Table 6: Performance of ComLoRA with varying numbers of LoRA components K (with fixed rank
r = 8) across commonsense reasoning tasks.

r K BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8

1 52.02 70.40 64.94 59.04 76.39 64.20 74.72 72.38 66.76
2 75.14 90.04 82.09 82.42 93.14 89.00 96.03 88.87 87.09
3 73.06 86.29 80.40 81.57 93.10 87.60 94.75 87.61 85.55
4 71.65 84.33 79.79 79.01 88.80 86.20 92.55 85.71 83.51
5 70.64 85.80 80.30 81.91 92.34 85.80 94.12 85.79 84.59
6 68.56 84.87 79.27 77.39 91.46 80.00 93.19 83.82 82.32
7 67.13 84.87 78.10 79.35 90.07 82.60 92.17 84.21 82.31
8 70.86 87.11 81.06 80.38 92.09 83.60 93.46 87.45 84.50

Table 7: Impact of top-N selection to task performance when varying N .
r K Top-N BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8 4

1 74.19 88.47 80.86 82.76 92.13 86.80 94.81 88.87 86.11
2 72.14 88.19 82.65 82.42 92.93 88.20 95.27 87.37 86.15
3 73.49 89.39 80.81 83.28 92.85 87.80 95.38 87.06 86.26
4 74.53 89.01 82.55 83.53 93.06 88.80 95.86 89.34 87.08

Interestingly, the performance does not continue to improve with larger values of K beyond 2.
While K = 3 and K = 5 still achieve good average performance (i.e., 85.55% and 84.59%), they
are slightly lower than the peak performance at K = 2. This suggests that having many competing
LoRA components may introduce redundancy or interference to affect the training of each LoRA
component.

5.4 EFFECT OF N IN TOP-N SELECTION

We evaluate the impact of N in selecting the top-N LoRA components when defining the alignment
loss in Eq. (5). According to the results shown in Table 7, we can see that increasing N gener-
ally improves the performance, with N = 4 achieving the highest average accuracy of 87.08%.
This indicates that allowing more LoRA components to update during training enhances the model
performance. Moreover, training with top-2 or top-3 components also yields competitive results,
providing a balance between the computational efficiency and performance.

5.5 EFFECT OF ANNEALING STRATEGY

In this section, we evaluate the impact of the annealing strategy used in the alignment loss (i.e., Eq.
(5)) to the performance of ComLoRA. We compare four annealing strategies, including the constant,
cosine, exponential, and linear annealing strategy. The four strategies are defined as

Constant: η(t) = 1, Cosine: η(t) = 0.5 ·
(
1− cos

(
π · t
T

))
(13)

Exponential: η(t) = 1− exp

(
−α · t

T

)
, Linear: η(t) =

t

T
, (14)

where t denotes the index of the current training step and T denotes the number of total steps in
the whole training process. According to the results presented in Table 8, we can see that the ex-
ponential annealing strategy yields the highest average performance, achieving an average accuracy
of 86.57%, which indicates its effectiveness in dynamically adjusting the guidance of the LoRA

Table 8: Performance of different annealing strategies.
Annealing Strategy BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
Constant 70.21 87.43 79.84 80.12 91.58 84.00 92.83 85.79 83.98
Cosine 70.52 88.79 80.14 79.95 91.33 83.20 93.60 84.29 83.98
Exponential 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
Linear 74.31 87.60 80.60 81.06 91.71 86.60 94.50 86.58 85.37
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Table 9: Impact of varying noise intensity parameter α in the pairwise loss on task performance
r K Noise Intensity (α) BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average

8 4

0.0 72.81 87.65 79.99 81.31 92.47 84.60 91.97 87.29 84.76
0.1 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
1.0 73.09 88.14 80.19 80.80 92.21 85.20 94.55 87.21 85.18
10.0 71.59 87.87 80.76 80.55 93.06 84.00 94.46 85.87 84.77

Table 10: Performance comparison of LoRA components (indexed from 0 to 3) in ComLoRA. The
LoRA winner determined by ComLoRA for inference is highlighted as 0.

LoRA Index BoolQ PIQA SIQA ARC-c ARC-e OBQA HellaS WinoG Average
0 (Winner) 73.79 88.79 81.47 83.11 92.68 89.00 95.45 88.24 86.57
1 74.92 88.52 82.14 81.40 92.42 89.00 95.44 87.21 86.38
2 73.61 88.47 81.63 82.08 92.97 87.40 95.45 87.85 86.18
3 74.40 88.41 81.22 81.14 91.67 86.00 95.32 86.98 85.64

selector. The other three annealing strategies exhibit inferior average performance, making the the
exponential annealing strategy a good and default choice in our experiments.

5.6 EFFECT OF NOISE INTENSITY

To evaluate the impact of noise intensity in the pairwise loss, we conduct an ablation study on the
effect of the value of the noise intensity parameter α to the performance. According to the results
shown in Table 9, we can see that introducing a moderate level of noise (i.e., α = 0.1) yields the best
overall performance across tasks, achieving an average accuracy of 86.57%. In contrast, removing
the noise entirely (i.e., α = 0.0) results in a lower average accuracy of 84.76%, highlighting the
importance of controlled noise in improving the generalization. As α increases, the performance
generally decreases, indicating that excessive noise (e.g., α = 10.0) hinders the model capacity.

5.7 EFFECTIVENESS OF THE LORA WINNER

In this section, we examine whether the LoRA winner selected by the ComLoRA framework dur-
ing training is indeed the best-performing one. Table 10 presents the performance of each LoRA
component (indexed from 0 to 3) on commonsense reasoning tasks.

As shown in Table 10, the LoRA winner, indexed as 0, achieves the highest average accuracy of
86.57% across tasks. This confirms that the ComLoRA framework effectively selects the best-
performing LoRA component during training. Those results underscore that ComLoRA’s selection
mechanism reliably identifies the most effective LoRA component, ensuring that the final model
benefits from the best available adaptation to the task at hand.

6 CONCLUSIONS

In this work, we introduced the ComLoRA framework, a novel approach to enhance LoRA by in-
tegrating competitive learning. ComLoRA enhances the efficiency and adaptability of LoRA by
initializing multiple LoRA components that compete during training, with each component striving
to achieve better performance through competition. The proposed ComLoRA method significantly
outperforms the conventional LoRA method across various tasks, while maintaining parameter ef-
ficiency and avoiding computational overhead during inference. Our future work will explore the
competitive learning paradigm to other fine-tuning methods.
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