SUPPLEMENTARY А

A.1 DEPTH ESTIMATION VISUALIZATION OF DIFFERENT METHODS

We visualize the depth estimation results in Fig. 1 and Fig. 2.

006		Scene1	Scene2	Scene3	Scene4	Scene5	Scene6
007							
800	DCD					Distantion of the second	
009	KGB				AL AND	Carl Street	Ka-N
010			MARSH STR	2 2 FUTUR	Contraction of the second seco		Berthe La
011							
012	Metric 3 Dv						-
013	Metric3DV2		s 📻 🔼		and the second second		
014				8000000 ····			
015	Donth						
016	Anything						
017	Anything				and the second s		
018				· · · · · · · · · · · · · · · · · · ·			
019							and the wo
020	DepthFM		9		consecutive aller	The second	
021	1	8 1 2	The Reality -				
022				******			
023							
024	GenPercept				And the second s	11 2 - 1 +	
025	1						
020						KY VI-TRUME VIN	9.44 (St.).52
028	GeoWizard						
029					And an address of the set	AN STATE	
030		A. U. P			A Company of the State of the S		- Series - Crossing
031							
032	NG 11						
033	Marıgold				12	A Real	
034					A Designation of the local division of the l		
035							

Figure 1: Visualization of different depth estimation methods.

A.2 SURFACE NORMAL ESTIMATION VISUALIZATION OF DIFFERENT METHODS

We visualize the surface normal estimation results in Fig. 3 and Fig. 4.

A.3 CORRESPONDENCE ESTIMATION RESULTS

We give more detailed correspondence estimation results in Table 1 for reference. Note that we find that multi-step inference, e.g., 10 steps, can improve the performance of Stable Diffusion in correspondence estimation tasks. Metric3Dv2 Hu et al. (2024) employs DINOv2 with registers Darcet et al. (2023) as the backbone, which has higher performance than DINOv2 without registers Oquab et al. (2024).

A.4 SURFACE NORMAL ESTIMATION DATASETS

NYUv2 Silberman et al. (2012) is an real indoor dataset comprised RGB-D video sequences from a variety of indoor scenes captured from the Microsoft Kinect. We evaluate on the official test (654 images) set with the ground-truth surface normal generated by Ladicky et al. (2014).

Table 1: Correspondence Estimation Results. The results are presented for features extracted at
different layers with performance binned based on the viewpoint variation for the image pair. 'DA'
indicates Depth-Anything. 'DA (77K)' indicates Depth-Anything trained with only 77K synthetic
data. 'SD10' indicates Stable Diffusion model inference 10 steps. 'MIX' indicates using a mixture of
datasets during the training. The higher the recall in the table, the better the performance.

				Spair-71k			Paired ScanNet			NAVI						
Model	Architecture	Dataset	Layers	d=0	$d{=}1$	$d{=}2$	all	$\theta_0^{\overline{15}}$	θ_{15}^{30}	θ^{60}_{30}	θ_{60}^{180}	θ_0^{30}	$ heta_{30}^{60}$	θ_{60}^{90}	θ_{90}^{120}	
Pre-train Mode	ls															i
DINOv2	ViT-L14	LVD	Block0	8.5	6.2	5.3	7.5	17.2	14.1	10.1	4.7	66.2	37.2	19.6	11.5	
DINOv2	ViT-L14	LVD	Block1	25.0	14.0	10.8	19.3	29.0	20.8	13.5	5.2	92.1	57.9	25.6	12.8	
DINOv2	ViT-L14	LVD	Block2	53.9	34.6	31.6	44.5	35.2	24.1	16.3	6.6	95.3	70.0	35.4	18.5	
DINOv2	V11-L14		Block3	62.8	53.3	54.2	57.2	36.5	27.0	20.8	12.2	92.2	12.3	48.9	35.0	
DINOv2	VIT-L14+reg		Block1	12.2	0.0	0.1	32.0	14.0 52.0	14.2 30.4	23.7	0.1	79.9 05.4	40.8	24.5	15.0	
DINOv2	ViT-L14+reg		Block2	64.2	45.9	42.4	55.0	50.6	39.4	26.2	12.0	95.4	75.0	49 1	28.6	
DINOv2	ViT-L14+reg	LVD	Block3	59.3	53.2	54.9	55.0	45.0	35.4	26.1	15.4	88.6	71.2	54.3	36.1	
SAM	ViT-L16	SA-1B	Block0	9.9	6.1	5.4	8.0	14.5	9.9	7.5	3.5	78.0	43.3	20.4	11.4	
SAM	ViT-L16	SA-1B	Block1	22.6	15.8	12.5	18.3	37.2	29.7	19.7	6.2	86.4	52.0	23.8	12.5	
SAM	ViT-L16	SA-1B	Block2	34.8	23.1	17.0	28.2	47.6	40.4	27.3	8.7	91.2	60.1	28.2	14.2	
SAM	ViT-L16	SA-1B	Block3	30.2	18.1	13.0	24.1	52.6	43.9	28.7	9.6	88.5	57.6	26.9	13.5	
SD10	UNet	LAION	Block0	13.2	5.3	3.5	9.2	10.8	5.4	3.2	1.3	75.1	32.5	16.6	7.4	
SD10	UNet	LAION	Block1	58.6	36.4	28.6	47.8	67.0	56.1	32.0	8.7	93.4	59.7 42.5	26.2	11.4	
SD10	UNet	LAION	Block2 Block2	24.0	10.8	15.4	20.2	01.4	49.5	28.4	9.4 5.0	19.0	42.5	22.5	12.2	
5D10	Unet	LAION	BIOCKS	4.0	4.3	4.4	4.5	17.2	12.8	0.9	5.0	55.5	22.9	13.2	11.0	
Deterministic G	eometry Found	ation Mod	els Plock0	15.6	10.2	07	12.0	50.2	20.0	24.4	11.2	70.0	40.1	25.0	14.5	
MiDaS	VIT-L10	MIX 6	Block1	27.3	22.8	0.1	24.5	50.5 56.4	39.0 47.4	24.4 31.6	13.0	83 2	49.1 56.0	23.0 32.1	21.6	
MiDaS	VIT-L16	MIX 6	Block2	27.5	23.4	25.1	25.5	55.5	46.0	30.8	14.3	82.2	56.3	33.1	22.9	
MiDaS	ViT-L16	MIX 6	Block3	25.8	21.3	23.6	23.4	52.4	42.1	27.6	13.1	79.6	53.0	31.4	21.6	
DA	ViT-L16	MIX	Block0	8.0	6.1	5.3	6.8	21.4	17.5	12.2	5.4	66.1	35.6	20.6	12.5	
DA	ViT-L16	MIX	Block1	24.4	13.8	11.1	19.4	34.2	26.4	17.0	6.1	92.4	55.9	27.7	14.0	
DA	ViT-L16	MIX	Block2	51.4	31.6	28.4	42.2	30.2	23.5	16.2	6.8	95.2	68.1	35.1	17.5	
DA	ViT-L16	MIX	Block3	58.9	48.6	49.7	53.5	29.8	21.4	16.8	9.3	90.9	67.8	47.9	30.5	
DA(77K)	ViT-L16	MIX	Block0	8.0	5.8	5.2	6.7	18.3	15.1	10.7	5.0	63.6	34.9	20.4	12.4	
DA(77K)	ViT-L16	MIX	Block1	24.2	13.6	11.0	19.1	34.4	25.7	16.6	6.4	92.4	54.6	26.9	13.7	
DA(7/K) DA(77K)	V11-L10 Vit L16	MIX	Block2 Plock2	52.6	31.0 42.2	28.0	41.0	45.4	32.9 20.9	23.2	8.9	94.9	07.0	50.7	17.8	
DA(7/K) Metric3Dv2	VIT-L10	MIX	Block0	12.0	42.2	43.4	47.7	10.2	10.5	21.7	43	92.8 79.1	30.7	23.5	12.7	
Metric3Dv2	VIT-L16	MIX	Block1	39.0	22.0	16.0	30.7	55.7	42.8	25.2	8.8	94.2	61.4	29.6	14.2	
Metric3Dv2	ViT-L16	MIX	Block2	60.2	41.5	39.8	51.6	63.1	54.7	36.8	14.8	94.1	68.1	36.9	20.9	
Metric3Dv2	ViT-L16	MIX	Block3	53.6	42.3	42.8	48.0	59.5	50.3	35.1	16.3	86.6	56.5	29.6	17.2	
Generative Geo	metry Foundati	on Models														i
Marigold	UNet	MIX	Block0	14.0	4.6	3.5	9.6	8.4	5.8	3.4	1.3	81.7	37.0	17.0	8.0	
Marigold	UNet	MIX	Block1	53.8	29.5	23.7	42.5	42.2	32.4	18.7	4.4	92.8	59.1	25.6	11.7	
Marigold	UNet	MIX	Block2	27.2	15.8	12.5	21.3	45.5	34.1	18.1	5.4	83.5	45.4	21.5	11.2	
Marigoid DepthEM	UNet	MIX	Block3	8.0 20.0	0.4 8 1	0.3	/.1 14 3	18.0	12.8	1.5 7 1	3.5	45.5	25.Z	15.9	9.8 8.0	
DepthFM	UNet	MIX	Block1	20.0 50.8	0.4 31.4	25.2	42.1	46.4	39.1	24.0	2.2	0 <i>5.9</i> 94 1	+0.0 62.4	29.2	13.0	
DepthFM	UNet	MIX	Block2	22.6	13.8	10.7	18.8	46.0	36.7	20.0	6.2	80.5	41.7	20.7	11.0	
DepthFM	UNet	MIX	Block3	3.9	3.5	3.0	3.6	11.2	8.4	6.3	3.8	39.0	25.6	16.3	10.4	
GeowizardD	UNet	MIX	Block0	13.7	4.7	2.9	9.7	8.0	5.1	3.2	1.34	81.9	35.1	16.6	8.5	
GeowizardD	UNet UNet	MIX	Block1 Block2	41.3	19.1 11 4	13.4	31.2 16.3	43.0 38 3	32.5	16.9 12.8	3.8 3.7	89.3	52.3 35.4	22.5	10.7	
GeowizardD	UNet	MIX	Block3	20.2 8 5	57	0.4 5 8	7 2	13.8	27.1 99	12.0 5.4	27	32.5	20.1	12.7	81	
GeowizardN	UNet	MIX	Block0	11.1	3.6	2.9	7.6	8.5	5.1	3.0	1.3	80.6	33.9	15.1	7.6	
GeowizardN	UNet	MIX	Block1	43.3	20.2	15.5	32.8	48.6	37.8	20.8	5.0	88.8	53.7	22.4	10.4	
GeowizardN	UNet	MIX	Block2	22.5	12.3	9.4	18.0	43.4	32.8	16.3	4.5	68.9	36.6	17.5	9.2	
GeowizardN	UNet	MIX	Block3	6.8	5.4	4.8	6.2	13.0	10.2	6.3	2.7	27.5	17.6	12.0	7.3	
GenPercept	UNet	MIX	Block0	21.5	9.6	7.0	16.0	22.7	16.1	7.1	1.8	84.4	40.8	17.3	8.0	
Genrercept	Unet	IVIIA	DIOCKI	02.0	41.9	54.4	32.2	55.7	40.4	21.8	0.4	94.3	04.9	29.1	15.5	
GenPercent	UNet	MIX	Block?	28.2	16.4	133	229	549	43.0	23 X	61	84 5	4 1	215	10 ×	

MuSHRoom Ren et al. (2024) is an indoor real-world multi-sensor hybrid room dataset, which contains 10 rooms captured by Kinect, iPhone, and Faro scanner. We use the ground-truth normal annotations supported by gaustudio Ye et al. (2024).

Tank and Temples (T&T) Knapitsch et al. (2017) is a dataset including both outdoor scenes and indoor environments, whose ground-truth data is captured using an industrial laser scanner. We use the ground-truth normal annotations supported by gaustudio Ye et al. (2024).

Figure 5: Visualization of the ground-truth surface normal.

A.5 POINT CLOUD VISUALIZATION

In this section, we visualize affine-invariant depth estimation results of Marigold, DepthAnything, and our fine-tuned DINOv2 with DPT head model on NuScenes and Waymo datasets. Concretely, we calculate the scale and shift values with the ground truth in the dataset, then we reproject the depth map into the 3D point cloud format. The visualization again demonstrates that the models fine-tuned with small-scale synthetic data, *i.e.*, Marigold and DINOv2 with DPT head, are comparable with Depth Anything in the wild scenes.

Figure 6: Point cloud visualization on NuScenes Dataset.

Figure 7: Point cloud visualization on Waymo Dataset.

A.6 LIMITATIONS AND FUTURE WORKS

The discussion of monocular depth estimation in this work is limited to single-image monocular affineinvariant depth estimation and monocular metric depth estimation. Video-based depth estimation is also an important topic, we leave it for future exploration.

A.7 **BROADER IMPACTS**

345 346 347

348

349

350

351 352

353

364

367

354 In this section, we aim to discuss the potential societal impacts. The positive societal impacts encom-355 pass two aspects. First, it helps the research community gain in-depth knowledge about monocular 356 geometry estimation, including performance comparisons between different models, technical details 357 of current models, and future approaches. The release of this work also helps researchers perform 358 experiments to evaluate their methods more comprehensively, fairly, and conveniently. Furthermore, it will significantly boost the progress of downstream tasks. As we mentioned in the paper, monocular 359 geometry estimation can be applied to many downstream tasks, thereby accelerating their progress. 360 In summary, we believe this work will have substantial positive effects on the research community, 361 enriching the capacity of current and future applications and products, and ultimately improving 362 people's lives. We also evaluated the negative societal impacts and found none. 363

REFERENCES 365

- 366 Gwangbin Bae and Andrew J. Davison. Rethinking inductive biases for surface normal estimation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. 368
- 369 Michael J. Black, Priyanka Patel, Joachim Tesch, and Jinlong Yang. BEDLAM: A synthetic dataset of bodies exhibiting detailed lifelike animated motion. In Proceedings IEEE/CVF Conf. on Computer 370 Vision and Pattern Recognition (CVPR), pp. 8726–8737, June 2023. 371
- 372 Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source 373 movie for optical flow evaluation. In Proceedings of the European Conference on Computer Vision 374 (ECCV), Part VI, pp. 611-625, 2012. 375
- Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias 376 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In CVPR, pp. 5828–5839, 377 2017.

- Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers, 2023.
- Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu,
 Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation
 model for zero-shot metric depth and surface normal estimation. *arXiv preprint arXiv:2404.15506*, 2024.
- Jingwei Huang, Yichao Zhou, Matthias Niessner, Jonathan Richard Shewchuk, and Leonidas J Guibas.
 Quadriflow: A scalable and robust method for quadrangulation. In *Computer Graphics Forum*, volume 37, pp. 147–160. Wiley Online Library, 2018.
- Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and Leonidas J Guibas.
 Texturenet: Consistent local parametrizations for learning from high-resolution signals on meshes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4440–4449, 2019a.
- Jingwei Huang, Yichao Zhou, Thomas Funkhouser, and Leonidas J Guibas. Framenet: Learning
 local canonical frames of 3d surfaces from a single rgb image. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8638–8647, 2019b.
- Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking large-scale scene reconstruction. *ACM TOG*, 36(4):1–13, 2017.
- L'ubor Ladickỳ, Bernhard Zeisl, and Marc Pollefeys. Discriminatively trained dense surface normal
 estimation. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pp. 468–484. Springer, 2014.
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, and Marc Szafraniec *et al.* DINOv2:
 Learning robust visual features without supervision. *Trans. Mach. Learn. Research*, 2024.
- Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen, Beining Han, Yihan Wang, et al. Infinite photorealistic worlds using procedural generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12630–12641, 2023.
- Xuqian Ren, Wenjia Wang, Dingding Cai, Tuuli Tuominen, Juho Kannala, and Esa Rahtu. Mushroom: Multi-sensor hybrid room dataset for joint 3d reconstruction and novel view synthesis. In *Proceed- ings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 4508–4517, 2024.
- Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *Proceedings of the European Conference on Computer Vision* (ECCV), Part V, pp. 746–760, 2012.
- Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo, Haochen Wang, Falcon Z. Dai, Andrea F. Daniele, Mohammadreza Mostajabi, Steven Basart, Matthew R. Walter, and Gregory Shakhnarovich. DIODE: A Dense Indoor and Outdoor DEpth Dataset. *CoRR*, 2019.
- Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen, Yihao Zhi, and Xiaoguang Han. Gaustudio: A
 modular framework for 3d gaussian splatting and beyond. *arXiv preprint arXiv:2403.19632*, 2024.
- 423

404

- 424
- 425 426
- 427
- 428
- 428 429
- 430
- 431