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Appendix: Calibration for Long-tailed
Scene Graph Generation

For a better understanding of the main paper, we provide additional
details in this appendix, including:

• Sec.1 provides further implementation details.
• Sec.2 provides additional analysis of COC components.
• Sec.3 provides additional experiments on calibration.
• Sec.4 provides additional analysis on balanced learning.
• Sec.5 provides hyperparameter selection.
• Sec.6 provides qualitative results.

1 FURTHER IMPLEMENTATION DETAILS
We employ a pretrained Faster-RCNN [10] with ResNeXt-101-FPN
[5] as the backbone, whose parameters are fixed during training
as in previous works [4, 11, 14]. Our models are trained using SGD
optimization with a maximum of 24𝐾 (in VG) and 30𝐾 (in GQA-200)
iterations. The batch size for sampled images is set to 16, while the
batch size for sampled triplets per image is 512. The initial learning
rate is set to 0.001 and decays by a factor of 10 at the 10𝐾𝑡ℎ and
16𝐾𝑡ℎ iterations. All experiments are conducted using V100 GPUs.
𝛽 is set to 0.99999 for both PredCls and SGCls tasks, and 0.999999
for the SGDet task.M is set to 15.0 and 𝛼 is set to 0.75 (in VG) or
0.60 (in GQA-200) in the piecewise curriculum function. Further
details on hyperparameter selection can be found in Sec. 5.

We obtain results from two prominent SGG datasets, which are
Visual Genome (VG) [3] and GQA-200 [2]. VG consists of 57723
images for training, 5000 images for validation, and 26646 images
for testing. It contains 150 object categories and 50 relation classes.
GQA-200 consists of 57623 training images, 5000 validation images,
and 8208 test images. It contains 200 object categories and 100
relation classes.We separate the categories into two separate groups
based on the number of instances in the training split: head classes
(more than 10𝐾 samples) and tail classes (less than 10𝐾 samples).

2 ADDITIONAL ANALYSIS OF COMPONENTS
In the main paper, we present comprehensive qualitative and quan-
titative results to validate the effectiveness of the proposed methods.
In this section, we will provide additional analysis to further sub-
stantiate the efficacy of each component within COC.

2.1 Additional analysis of PC
Tab. 1 displays the performance of each component in PC, including
training on the hypersphere and employing discriminative regu-
larization. Both components contribute to improving SGECE and
enhancing mR@K and MR@K, underscoring their effectiveness
in enhancing model calibration and addressing the issue of un-
balanced learning for long-tailed SGG. Furthermore, compared to
the baseline method, the inclusion of the PC module promotes the
learning of more discriminative features and establishes a repre-
sentation space characterized by tighter boundaries and reduced
overlap between classes, as depicted in Fig. 1 (i).

(ii)

(i)

Baseline Baseline+PC

Baseline+BCBaseline

Baseline+BCBaseline

Figure 1: i. The visualization displays clustered features cor-
responding to different classes in VG. Compared to the Mo-
tifs [13] baseline model, the proposed PC method more ef-
fectively disperses features between different classes and
clusters features within the same class. ii. The visualization
displays recalled samples (the number is 𝑁 ) of the ‘looking
at’ and ‘for’ classes within the tail group. Compared to the
baseline (Motifs+PC), the proposed BC method effectively
boosts the recall of tail-class samples, resulting in improve-
ments in R@100 (i.e., Recall@100) for these tail classes.

Models PredCls
R@50/100 mR@50/100 MR@50/100 SGECE

Baseline 65.2 / 67.2 14.9 / 16.3 40.1 / 41.8 75.6
+Hyperphere 65.5 / 67.3 19.2 / 20.6 42.4 / 44.0 50.8
+Discriminative Regular 65.4 / 67.3 20.4 / 22.0 42.9 / 44.7 49.5

Table 1: The ablation study of components in PC module.
The baseline model is Motifs [13].

2.2 Additional analysis of BC
As shown in Fig. 1 (ii), the proposed BC module can increase the
number of recalled tail class samples. This indicates that the BC
module, designed to create separation among negative samples and
indirectly decrease the feature deviation of tail classes, effectively
reverts a greater number of misclassified tail samples back within
their decision boundaries. Moreover, as shown in Fig. 2, the addition
of the BC module enhances the predicted confidence levels for tail
classes and improves both SGECE and tR@K performance.
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Models PredCls SGCls SGDet
R@50/100 mR@50/100 MR@50/100 R@50/100 mR@50/100 MR@50/100 R@50/100 mR@50/100 MR@50/100

Motifs [13] 66.1 / 68.0 14.6 / 15.8 40.4 / 41.9 39.3 / 40.1 8.0 / 8.5 23.7 / 24.3 32.3 / 37.3 5.8 / 7.1 19.1 / 22.2
+Rwt [1, 15] 53.2 / 55.5 33.7 / 36.1 43.5 / 45.8 32.1 / 33.4 17.7 / 19.1 24.9 / 26.3 25.1 / 28.2 13.3 / 15.4 19.2 / 21.8
+COC(w/o 𝜖) 58.0 / 60.0 36.2 / 38.3 47.1 / 49.2 35.2 / 36.0 17.8 / 20.5 26.5 / 28.3 27.2 / 31.3 14.7 / 17.1 21.0 / 24.2
+COC(w/ 𝜖) 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 36.8 / 37.8 19.6 / 20.5 28.2 / 29.2 27.6 / 32.0 15.1 / 17.4 21.4 / 24.7

Table 2: Performance comparison of different methods on the VG dataset. Rwt denotes the reweighting method [1].
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Figure 2: Predicted confidence distribution of head (in light
green span) and tail (in light red span) classes. Confidences
are represented by median confidences in each class. The
baseline model is Motifs+PC.
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Figure 3: PD (Probability Discrepancy) of different tail classes
during model training.
2.3 Additional analysis of TDC
For the TDC module, we will provide additional analysis in this
section, including three aspects:
1) Effectiveness of transferring factor 𝜖 . From Fig. 5 (i), it is
evident that in the baseline model, the tail classes are predomi-
nantly predicted as head classes (as indicated by the majority of
predictions in tail classes being marked in orange). This observation
validates the motivation behind the TDC module: current models
overlook the distorted target distribution issue and rely solely on
relation distribution for training, which leads trained models to be
overconfident for head classes and biased towards predicting them.
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Figure 4: PD (Probability Discrepancy) of different tail classes
during model training. The ‘sitting on’ and ‘wears’ are tail
classes with a larger number of samples, while the ‘made of’
and ‘says’ are tail classes with a smaller number of samples.

Then, we compare the tail class performance between the LTDC
(w/o 𝜖) and LTDC (w/ 𝜖) in Fig. 5 (ii)-(iii). It can be seen that LTDC
(w/ 𝜖) reduces the samples where tail classes are incorrectly pre-
dicted as head classes, further improving recall of tail classes. To
gain a more intuitive understanding of how factor 𝜖 functions dur-
ing the optimization process, we define a metric called PD (Proba-
bility Discrepancy) in Eq. 1, which can quantitatively assess how
well the current model fits the transferred targets during training.

PD(𝒑, 𝒒) = 𝒑 − 𝒒, (1)

where 𝒑 is the predicted probability and 𝒒 is the true probability
derived from the within-triplet prior. A PD less than 0 indicates
poor fitting, while a larger PD indicates better fitting. We visualize
the PD for some tail classes in Fig. 3. It can be observed that without
using the factor 𝜖 , the PD is subpar (i.e., PD < 0). However, after
using the factor 𝜖 , the PD is enhanced (i.e., PD > 0). Therefore, the
designed 𝜖 factor can help the model better fit the transferred target
distribution. Moreover, the SGECE is also enhanced, indicating that
transferring the distorted targets helps improve calibration.
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Figure 5: The distribution of predicted classes for each class. Blue marks indicate the proportion of predicted labels that match
the Ground Truth (GT) labels. Orange marks indicate the proportion of predicted labels that belong to head classes and do not
match the GT. Yellow marks indicate the proportion of predicted labels that belong to tail classes and do not match the GT.
(i) Predictions derived from Baseline (Motifs+PC+BC). (ii) Predictions derived from Baseline+LTDC (w/o 𝜖). (iii) Predictions
derived from Baseline+LTDC (w/ 𝜖). The PD performances of green-marked classes are illustrated in Fig. 3.

Models PredCls
R@100 mR@100 MR@100 hR@100 tR@100 SGECE

Baseline 66.1 26.0 46.1 66.7 19.4 41.7
+CTDC 65.6 28.2 46.9 63.1 22.5 45.9
+LTDC 60.2 34.5 47.4 54.4 31.2 31.8

Table 3: Performance comparison of CTDC and LTDC. The
baseline model is Motifs+PC+BC.

Models PredCls
R@100 mR@100 MR@100 hR@100 tR@100 SGECE

Baseline 66.1 26.0 46.1 66.7 19.4 41.7
+LTDC (w/o CTR) 60.2 34.5 47.4 54.4 31.2 31.8
+LTDC (w/ CTR) 62.0 38.3 50.2 58.9 35.0 26.6

Table 4: Influence of CTR in the TDC module. The baseline
model is Motifs+PC+BC.
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Figure 6: The R@100 performance of each tail class. The
baseline model is Motifs+PC+BC. The green-marked classes
denote sparse tail classes (with fewer than 200 samples).

In addition, we comprehensively compare the performance of the
COC method on balanced learning with or without using the trans-
ferring factor 𝜖 in Tab. 2. It can be observed that using the factor 𝜖
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Figure 7: The change in predicted confidence and recall
(R@100) relative to the baseline model (Motifs+PC+BC). Con-
fidences are represented bymedian confidences in each class.
yields superior performance across nearly all metrics. This demon-
strates the effectiveness of 𝜖 in TDC on balanced learning. Finally,
we also compare COC with the Rwt [1] method (c.f. Tab. 2) and
observe that Rwt performs less effectively than COC. The specific
reason is that Rwt sets loss weights only based on relation distribu-
tion, which does not solve the issue of distorted target distribution.
Instead, COC can adaptively modify the training targets during
training to align with the targeted within-triplet distribution.
2) Comparison of CTDC and LTDC. From Tab. 3, we observe
a gap in tR@K and MR@K between the CTDC and LTDC mod-
ules. This difference arises because the CTDC module overlooks
distribution variations among tail classes, resulting in insufficient
learning for the transferred target of harder-to-learn tail classes.
Therefore, CTDC may not effectively solve underconfidence in tail
classes and model miscalibration. We plot the PD of different tail
classes in Fig. 4 and have two observations: 1) For abundant tail
classes, both CTDC and LTDC fit the transferred targets nicely. 2)
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Figure 8: Reliability diagrams with 15 bins of different methods with VCTree [12] as the baseline model on the VG dataset. We
reproduce other works on our platform based on their open-source projects to obtain new SGECE results.
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Figure 9: Reliability diagrams with 15 bins of different meth-
ods with Motifs [13] as baseline on the GQA-200 dataset.

Motifs VCTree

Figure 10: The MR@100 performance comparison with Mo-
tifs and VCTree as baselines on the VG dataset.
For sparse tail classes, CTDC fits poorly while LTDC fits nicely. We
also present the tail class performance in Fig. 6. It is evident that
LTDC more effectively improves the tR@100 of sparse tail classes.
Moreover, as shown in Tab. 3, the better SGECE performance of
LDTC demonstrates its superiority in improving calibration.

3) Effectiveness of CTR. In Tab. 4, we observe that the LTDC (w/o
CTR) exhibits decreased hR@K compared to the LTDC (w/ CTR).
We argue that while LTDC enhances the performance of tail classes,
there appear to be difficulties in effectively balancing performance
across various classes, which is suboptimal for long-tailed SGG. To
intuitively explore the effect of CTR on addressing this issue, we
depict changes in confidence and recall in Fig. 7. It can be seen that
adding CTR mitigates the extent of confidence degradation in head
classes and further alleviates the decline in recall of head classes.

3 ADDITIONAL EXPERIMENTS ON
CALIBRATION

To validate the generalization of COC for improving calibration, we
present additional experimental results on calibration, including the
calibration performance on VCTree baseline and the GQA dataset:
1) Experiments on VCTree baseline. As shown in Fig. 8, we
report the calibration performance on the VCTree baseline. We
have two observations: i) Compared to the baseline, COC effec-
tively reduces SGECE and improves the mR@K and MR@K, which
demonstrates COC as a plug-and-play approach that can be applica-
ble across different baselines, specializing in improving calibration
and fostering more balanced learning. ii) Compared to specific cal-
ibration methods, e.g., FL (Focal Loss) [9] and LAS (Label Aware
Smooth) [16], along with balanced learning methods, e.g., FGPL [7],
IETrans [14] and NICE [4] methods, COC performs best on calibra-
tion (i.e., best SGECE) and balanced learning (i.e., best MR@K).
2) Experiments on GQA-200 dataset. As shown in Fig. 9, we
report the calibration performance on the GQA-200 dataset. Com-
pared to the baseline, COC achieves improvements in SGECE across
three tasks. Moreover, COC also outperforms the LAS method [16].
These results demonstrate the effectiveness of COC in enhancing
model calibration on the GQA-200 dataset, underscoring its gener-
alizability when applied to different datasets.

4 ADDITIONAL ANALYSIS ON BALANCED
LEARNING

1) Trade-off performance for long-tailed SGG. From Fig. 11, it
can be observed that COC achieves the best trade-off performance
between R@100 and mR@100 metrics across all three tasks. Addi-
tionally, when employing the RelNms trick, COC attains the best
R@100 and mR@100 scores on both PredCls and SGCls tasks. We
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Figure 11: Illustration of the performance distribution of model-agnostic SGGmodels under the metrics of R@100 andmR@100.
Models achieving the best MR@100 performance are highlighted with a red rectangle. The baseline model is Motifs [13]. COC∗
denotes the COCmodel using the RelNms trick [6, 15]. Due to the large number of predicted object pairs in SGDet task, applying
pair-specific RelNms during evaluation can be time-consuming, so this trick is not utilized in SGDet task.

Models PredCls SGCls SGDet
R@50/100 mR@50/100 MR@50/100 R@50/100 mR@50/100 MR@50/100 R@50/100 mR@50/100 MR@50/100

Baseline [11, 13] CVPR ’18 65.3 / 67.2 14.9 / 16.3 40.1 / 41.8 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.1 / 36.8 6.6 / 7.9 19.4 / 22.4
+ FGPL [7] CVPR ’22 51.5 / 55.4 33.0 / 37.5 42.3 / 46.5 23.4 / 24.0 21.3 / 22.5 22.4 / 23.3 20.8 / 23.6 15.4 / 18.2 18.1 / 20.9
+ IETrans [14] ECCV ’22 48.6 / 50.5 35.8 / 39.0 42.2 / 44.8 29.4 / 30.2 21.5 / 22.8 25.5 / 26.5 23.5 / 27.2 15.5 / 18.0 19.5 / 22.6
+ NICE [4] CVPR ’22 55.1 / 57.2 29.9 / 32.3 42.5 / 44.8 33.1 / 34.0 16.6 / 17.9 24.9 / 26.0 27.8 / 31.8 12.2 / 14.4 20.0 / 23.1
+ COC 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 36.8 / 37.8 19.6 / 20.5 28.2 / 29.2 27.6 / 32.0 15.1 / 17.4 21.4 / 24.7
+ COC + LA 53.3 / 56.0 39.4 / 42.6 46.4 / 49.3 33.1 / 34.0 22.2 / 24.4 27.7 / 29.2 25.2 / 29.5 16.3 / 19.0 20.8 / 24.3

Table 5: Performance comparison of various methods on VG. The baseline model is Motifs[13]. LA is the logit adjustment [8].
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Figure 12: Performance comparison on different metrics
among various methods. hR@K and tR@K denote the mean
recall of head and tail groups, respectively.

also plot the MR@100 performance of various balanced-learning
methods in Fig. 10. It is evident that COC performs the best on both
Motifs and VCTree baselines, showcasing its most robust capability
in promoting balanced learning for long-tailed SGG.
2) Additional analysis on the mR@K performance. We notice
that the mR@K performance of COC is not as competitive as certain
methods (e.g., IETrans [14]). This is because these methods tend to
excessively sacrifice head-class performance to improve tail-class
performance, which does not qualify as superb balancing learning.
We display the performance of head and tail groups in Fig. 12 and
notice that COCminimizes the decline in hR@100 and also performs
best in MR@100. This showcases the excellent ability of COC to

strike a balance between improving tail-class performance without
significantly compromising the performance of head classes.

In addition, we find that the mR@K performance can be im-
proved through employing the simple logit adjustment method (i.e.,
LA [8]). As shown in Tab. 5, integrating the LA method into COC
surpasses other methods on mR@K across three tasks, achieving
higher R@K and MR@K as well. However, the MR@K does not
improve and even declines compared to the COC in the PredCls
and SGDet tasks. These results demonstrate two points: 1) solely
focusing on improving mR@K may not necessarily lead to the opti-
mal balanced learning method, as there may be excessive damage
to the performance of majority classes; 2) while other methods may
achieve better mR@K performance compared to COC, they actually
inflict significant damage on the performance of majority classes,
thereby leading to poor performance in R@K and MR@K, under-
scoring these methods not optimal balanced learning methods.
3) Predicate recall. Fig. 13 illustrates the R@100 performance of
each relation using different methods. It is evident that PC, BC,
and TDC contribute incrementally to enhancing the Recall@100
performance of tail classes. Furthermore, Motifs+PC+BC+TDC (i.e.,
the final proposed COCmethod) demonstrates the best performance
across almost all tail classes compared to others, while maintaining
a generally comparable level of recall performance on head classes
with others. These results provide compelling evidence that COC
can effectively alleviate biased predictions and excel at predicting
fine-grained tail classes.

5 HYPERPARAMETER SELECTION
In this section, we study various hyperparameter strategies and
report their respective performances. Within the COC method,
the parameters that require adjustment primarily appear when
employing the LTDC and the piecewise curriculum function in CTR.
Specifically, the hyperparameters that require adjustment include 𝛽
in LTDC, along with 𝛼 andM in the piecewise curriculum function.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

on ha
s

we
ar

in
g of in

ne
ar

be
hi

nd wi
th

ho
ld

in
g

ab
ov

e
sit

tin
g 

on
we

ar
s

un
de

r
rid

in
g

in
 fr

on
t o

f
st

an
di

ng
 o

n at
ca

rry
in

g
at

ta
ch

ed
 to

wa
lki

ng
 o

n
ov

er fo
r

loo
kin

g 
at

wa
tc

hi
ng

ha
ng

in
g 

fro
m

lay
in

g 
on

ea
tin

g
an

d
be

lon
gi

ng
 to

pa
rk

ed
 o

n
us

in
g

co
ve

rin
g

be
tw

ee
n

alo
ng

co
ve

re
d 

in
pa

rt 
of

lyi
ng

 o
n

on
 b

ac
k o

f to
wa

lki
ng

 in
m

ou
nt

ed
 o

n
ac

ro
ss

ag
ain

st
fro

m
gr

ow
in

g 
on

pa
in

te
d 

on
pl

ay
in

g
m

ad
e 

of
sa

ys
fly

in
g 

in

0

20

40

60

80

100

R@
10

0

Motifs
Motifs+PC
Motifs+PC+BC
Motifs+PC+BC+TDC

Figure 13: The R@100 performance for each class in the PredCls task on the VG dataset. We incrementally add each module to
the Motifs [13] baseline. Relationship classes are sorted in descending order based on the number of samples.
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Figure 14: Influence of 𝛽 on MR@100 and SGECE metrics.

𝑠𝑡𝑎𝑔𝑒 M 𝛼
PredCls

R@50/100 mR@50/100 MR@50/100 SGECE
- - - 57.8 / 60.2 31.1 / 34.5 44.5 / 47.4 31.8
1 5 3/4 60.9 / 63.1 33.2 / 35.2 47.1 / 49.2 31.3
1 15 3/4 60.3 / 62.6 33.3 / 36.7 46.8 / 49.7 30.4
1 25 3/4 60.3 / 62.4 32.8 / 35.1 46.6 / 48.8 31.1
2 - 3/4 59.7 / 62.0 35.3 / 38.3 47.5 / 50.2 26.6
2 - 2/4 60.2 / 62.5 32.6 / 35.5 46.4 / 49.0 31.6
2 - 1/4 57.2 / 59.7 31.6 / 34.5 44.4 / 47.1 30.4

Table 6: The ablation study of different M and 𝛼 values in
the piecewise curriculum function.

1) Hyperparameter 𝛽 in LTDC. The hyperparameter 𝛽 ranges
between 0 and 1. Since 𝜖 in LTDC is exponentially dependent on 𝛽 ,
small variations in the value of 𝛽 can have a significant impact. We
conduct ablation studies on different values of 𝛽 in proximity to 1
and report their performances in Fig. 14. It can be observed that
for the PredCls and SGCls tasks, the MR@100 and SGECE are best
with 𝛽 = 0.99999; for the SGDet task, the MR@100 and SGECE are
best with 𝛽 = 0.999999. Therefore, we select 𝛽 = 0.99999 for the
PredCls and SGCls tasks and 𝛽 = 0.999999 for the SGDet task.
2) HyperparameterM and 𝛼 in piecewise curriculum func-
tion in CTR. The hyperparameterM acts as an upper bound for
𝜖 during the first training stage. A smaller M indicates a narrower

range of acceptable 𝜖 and lower tolerance for the increased 𝜖 as-
signed to hard-to-learn tail classes in the first training stage. We
experiment with different values of M in multiples of 5 and re-
port their performances in Tab. 6. We observe that both MR@K
and mR@K initially increase and then decrease. Finally, we choose
M = 15 for its best performance on MR@K and SGECE.

The hyperparameter 𝛼 determines the range of iterations of
constrained learning for tail classes. A larger 𝛼 shortens the second
stage for assigning complete 𝜖 to tail classes, thereby indirectly
extending the interval for focusing on learning head classes. We
report the performances of three 𝛼 values in Tab. 6, including 1/4,
1/2, and 3/4. It can be observed that with increasing 𝛼 , both MR@K
and mR@K improve. We choose 𝛼 = 3/4 as it exhibits the best
performance on MR@K and SGECE.

Ultimately, compared to the baseline model without using CTR
(reported in the first row), the addition of CTR achieves better
R@K. This changing trend aligns with the designed principles of
piecewise curriculum function in CTR, which emphasize reducing
attention to hard-to-learn tail classes in the early training stage
and concentrating on learning easy-to-learn head classes first. Fur-
thermore, we observe an improvement in mR@K performance. We
think that head classes often provide foundational interaction in-
formation. For example, head class ‘on’ actually shares the similar
interaction pattern with tail classes ‘sitting on’, ‘standing on’ and
so on. Therefore, early focused learning for head classes establishes
a better understanding of foundational interaction patterns, which
contributes to improved recognition of tail classes as well.

6 QUALITATIVE RESULTS
Miscalibrated models are unstable and pose safety risks in practical
applications. To qualitatively assess the effectiveness of COC in mit-
igating misclibration for long-tailed SGG, we collect images of road
scenes commonly encountered in autonomous driving and analyze
the qualitative results of these images. Specifically, we find COC can
solve two issues contributing to miscalibration in long-tailed SGG:
1) Overconfidence in head classes, where even if the predicted head
classes are incorrect, they may still obtain high confidence scores.
For example, as shown in Fig.15 (a), the baseline model incorrectly
predicts ‘man on motorcycle’ with high confidence, while the COC
correctly predicts ‘man riding motorcycle’ with high confidence.
2) Underconfidence in tail classes, where certain tail classes may
be correctly predicted but have relatively low confidence scores.
For instance, as depicted in Fig.15 (c) , the baseline model correctly
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predicts ‘man riding bike’ but with a low confidence score. COC
can correctly predict tail class ‘riding’ with a high confidence score.

Apart from qualitatively analyzing the effectiveness of COC in
addressing miscalibration, we also qualitatively examine its ability
to mitigate biased prediction. In Fig. 16, we showcase several exam-
ples derived from the Motifs [13], Motifs+COC models. In addition
to the coarse-grained relationships (typically the majority classes
[14]), COC can enable the baseline model to generate more fine-
grained relationships (typically the minority classes). Specificially,
the method COC can predict the right fine-grained relations (e.g.,
‘looking at’ and ‘lying in’) rather than the wrong coarse-grained
relations (e.g., ‘near’ and ‘on’). As shown in ‘man-looking at-bus’
in the top-left scenario and ‘boy-lying in-bed’ in the bottom-right
scenario depicted in Fig. 16, these examples substantiate the effec-
tiveness of COC in accurately predicting fine-grained relationships.

In conclusion, COC proves effective in helping produce well-
calibrated and unbiased SGG models, thereby generating more
trustworthy and fine-grained scene graphs, which can significantly
bolster the utility of SGG models in facilitating downstream tasks.
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