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1 Additional Experiments

1.1 Varying Model Architectures on the LWFA+ Image Dataset
To demonstrate that, as predicted by�eorem 2, Section 3, the strict trade-o� between features’ utility for a downstream

prediction task and the LPP applies regardless of a model’s architecture or the structure of the feature encoder

Z = fE(X), we conduct an additional experiment on the LFWA+ image dataset using a di�erent model architecture.

We use the ResNet-18 architecture from He et al. (2015) implemented by PyTorch. Training batch size is 32, SGD

learning rate is 0.01.

Fig. 1 compares the trade-o� between utility and a�ribute leakage of a CNN256 (top) and a ResNet18 (bo�om)

models trained with standard SGD. �e blue horizontal bars in Fig. 1 (right) show the model’s utility for learning task

Y measured as Ĩ∞(Y,Z). �e heatmaps in Fig. 1 (le�) show the di�erence between the adversary’s inference gain and

the model’s utility Ĩ∞(S,Z)− Ĩ∞(Y,Z). Each row corresponds to a di�erent learning task Y , each column represents

a di�erent sensitive a�ribute targeted by the adversary. We observe that regardless of the model architecture, for any

learning task there always exists a sensitive a�ribute for which Ĩ∞(S,Z) > Ĩ∞(Y,Z) and thus violates the LPP.

1.2 Experiments on an Additional Tabular Dataset
We ran an additional experiment to demonstrate that the strict trade-o� between model utility and the LPP also

holds on a very di�erent type of dataset and model. As for tabular data, together with image data, sharing feature

encodings instead of raw data is o�en suggested as a solution to limit harmful inferences, we choose the Texas Hospital

dataset (Texas Department of State Health Services, Austin, Texas, 2013) and the TabNet model architecture (Arik &

P�ster, 2021) for these experiments.

Data. �e Texas Hospital Discharge dataset (Texas Department of State Health Services, Austin, Texas, 2013) is a

large public use data �le provided by the Texas Department of State Health Services. �e dataset we use consists of

5,202,376 records uniformly sampled from a pre-processed data �le that contains patient records from the year 2013.

We retain 18 data a�ributes of which 11 are categorical and 7 continuous.

Experiment Setup. In each experiment, we select one a�ribute as the model’s learning task Y and a second a�ribute

as the sensitive a�ribute S targeted by the adversary. We repeat each experiment 5 times to capture randomness of

our measurements for both the model and adversary, and show average results across all 5 repetitions. At the start
of the experiment, we split the data into the three sets DT , DE , and DA. We train a TabNet model on the train set

DT for the chosen learning task and then estimate the model’s utility on the evaluation set DE . We measure the

model’s utility by estimating the multiplicative gain Ĩ∞(Y ;Z) = log P̃r(Y=Ŷ (Z))/P̃r(Y=Ŷ ), where Ŷ (Z) denotes the
trained model’s prediction for a record’s task label Y and Ŷ without the argument the majority class baseline guess.

A�er model training and evaluation, we train both the label-only and features adversary on the auxiliary data DA.

�e features adversary is given access to a record’s representation at the last encoding layer of the TabNet encoder

(see Arik & P�ster (2021) for details of the model architecture). For a given sensitive a�ribute S, we estimate the

adversary’s gain as Ĩ∞(S,Z | Y ) = log P̃r[S=Ŝ(Z,Y )]/P̃r[S=Ŝ(Y )].

As above, the bar chart in Fig. 2 (right) shows the model’s utility for learning task Y indicated in each row measured

as Ĩ∞(Y,Z). �e heatmaps in Fig. 2 (le�) show the di�erence between the adversary’s inference gain and the model’s
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Figure 1: A�ribute leakage (le�) and model utility (right) for a CNN256 (top) and a ResNet18 model architecture

(bo�om) trained on the LFWA+ image dataset.
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Figure 2: A�ribute leakage (le�) and model utility (right) for a TabNet model trained on the Texas Hospital dataset

utility Ĩ∞(S,Z)− Ĩ∞(Y, Z). As on the LFWA+ dataset, for any learning task there always exists a sensitive a�ribute

for which an adversary gains an advantage from observing a target record’s feature representation.
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