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Figure 1. Our approach takes multiple views of a scene as input, along with a few point clicks on one of the views, which can be converted
into segmentation masks (left). It then: (a) segments all the other images, and (b) reconstructs each segmented object, completing the
occluded regions if any.

Abstract

Implicit neural fields have made remarkable progress in
reconstructing 3D surfaces from multiple images; however,
they encounter challenges when it comes to separating in-
dividual objects within a scene. Previous approaches to
this problem require ground-truth segmentation masks and
introduce floating artifacts in occluded parts of the scene.
We address these challenges with ObjectCarver. Object-
Carver requires no ground-truth segmentation; all it needs
is just a few user clicks in a single view. ObjectCarver also
introduces a new loss function that prevents floaters and
avoids inappropriate carving-out due to occlusion. Finally,
ObjectCarver uses a simple initialization technique that sig-
nificantly speeds up the process while preserving geometric
details. We demonstrate qualitatively and quantitatively on
multiple datasets (including a new dataset and benchmark

with complete ground-truth) that ObjectCarver produces
more accurate reconstructions of each object while minimiz-
ing artifacts.

1. Introduction

With recent advances in neural implicit scene representa-
tions, we can now reconstruct 3D scenes with complete,
high-quality surfaces (represented as signed distance func-
tions or SDFs) from a set of images taken by cameras with
known poses [30, 36]. Although these techniques compute
high-quality surfaces, they are limited to representing the en-
tire scene as a single surface. This representation is fine for
applications such as walkthroughs where the scene remains
fixed, but for many applications it is desirable to extract
and manipulate individual objects, including applications in
robotics and virtual reality where simulating such scene ma-



nipulations is crucial. In this paper, we tackle this problem
of 3D scene decomposition: given multiple views of a 3D
scene, can we produce a reconstruction where the individual
objects are separated out?

Some previous works [13, 31, 32, 34] have addressed the
problem of reconstructing many separate objects. However,
two key challenges remain. First, these techniques require
segmentation masks of each object in each view as part of the
input. Unfortunately, the cost of the manual work involved
in producing such segmentations scales with the number of
input views and the number of objects, making the process
cumbersome.

Automated solutions like the Segment Anything Model
(SAM) [10] often over-segment and result in inconsistent
segmentation across multiview images (Fig. 2, left). Recent
works, such as SA3D [7], that attempt this problem use
volume density, but volume density cannot locate the surface
exactly.

Figure 2. Failure cases of SOTA. Using SAM independently on
each image precludes corresponding objects between views (Left).
Even if one were to solve this correspondence problem, slight
errors in SAM output mean that the same object may be segmented
differently in different views (e.g., the top of the vase is included
in the vase segment in the left image but not the right). Even
with GT segmentations, prior work such as ObjectSDF++ [32]
introduces floating artifacts, especially those hidden behind other
objects (Right).

Second, prior work fails in the presence of occlusion
(Fig. 2, right). Parts of the scene that are occluded from all
views provide no supervision for existing techniques, giving
the model free rein to introduce floating components in the
occluded regions. These floating artifacts can be large and
numerous and as such result in extremely inaccurate object
reconstructions.

We introduce ObjectCarver to address these limitations.
ObjectCarver takes as input a collection of posed images
and point clicks of each object for segmentation in just one
of the views. ObjectCarver then outputs object segmenta-
tions for all input views and a high-fidelity 3D surface for
each object (Figure 1). This 3D surface includes not just the
parts of the object that are visible but also makes reasonable
completions in completely occluded regions where no im-
age evidence is available. Crucially, ObjectCarver removes
almost all floating artifacts that plague prior work. Finally,
ObjectCarver achieves this reconstruction with a fairly small
computational overhead beyond the computational cost of
full scene reconstruction.

ObjectCarver works in three phases. First, we reconstruct
the entire 3D scene as a single SDF using existing methods
[30]. Then, from one segmentation mask (computed from
the user’s input clicks using SAM [10]), we use the recon-
structed 3D surface together with SAM [10] to propagate
segmentation labels to the other input images, resulting in
accurate and multi-view consistent masks for each object.
Finally, we jointly train per-object SDF surfaces, starting
from the full-scene SDF. We introduce a novel loss function
to produce a set of consistent and compact 3D surfaces.

Finally, we find that existing benchmarks for this task
are limited, with incomplete ground-truth object meshes and
metrics that do not correctly penalize floaters. Therefore,
we introduce a new dataset of both synthetic and real-world
scenes consisting of multiple objects and equipped with a
ground-truth mesh for each object. We also introduce up-
dated metrics that correctly penalize all error modes. We
compare our method with prior methods both qualitatively
and quantitatively in this benchmark and demonstrate that
our method outperforms the previous methods for this prob-
lem. In sum, our contributions are:
1. A new automatic segmentation approach that leverages

the 3D scene structure to generate object segmentations
for all the input images from just a few points the user
clicks in one view.

2. A new object compactness loss that removes floaters in
occluded regions and produces substantially more accu-
rate reconstruction.

3. A change of initialization for the object models that
improves surface quality and considerably speeds up con-
vergence.

4. New synthetic and real-world datasets of multi-object
compositional scenes and their individual geometries.

2. Related Work
Neural field representations for geometry. Neural rep-
resentations for surface geometry began with methods that
trained using 3D supervision [16, 22], but soon began to
focus on using more readily available multi-viewpoint im-
ages as supervision [21, 35]. Neural Radiance Fields [17]
introduced a framework to use volumetric rendering to train
radiance fields, leading to follow-on work improving training
and rendering speed [19, 25, 29, 37, 39], handling complex,
unbounded, and dynamic scenes [4, 12, 15, 23, 24, 42], and
improving representation quality [3, 5].

To obtain more explicit geometric representations than
NeRFs provide, some recent advances have optimized neu-
ral signed distance functions (SDFs) by using them to de-
fine smooth volume densities that are rendered in the NeRF
framework, which helps guide the training process stably
to accurate and detailed surfaces. VolSDF [36], NeuS [30]
and Neuralangelo [14] achieve good surface reconstructions
in this way; building on these methods, MonoSDF [41] in-



corporates monocular cues and PermutoSDF [27] achieves
detailed reconstructions of small-scale features.

Decomposing 3D scenes into objects. The methods above
focus on reconstructing geometry or radiance fields but don’t
address scene understanding as compositions of objects. Sev-
eral approaches have been proposed for disentangling ob-
jects, some Some of these methods learn from observing
scenes without further supervision. Niemeyer and Geiger
proposed GIRAFFE [20], which utilizes latent codes to gen-
erate object-centric NeRFs and conceptualize scenes as com-
positional generative neural feature fields. uORF [40] learns
unsupervised object composition models that can be used to
factor new scenes at inference time [40]. DiscoScene [33]
uses weak supervision in the form of layout prior for object-
compositional generation but fails to generalize to unknown
objects. In contrast to the high-level object decompositions
of the above work, Differentiable Blocks World [18] trains a
mid-level scene representation from multiple images. Rather
than achieving the highest geometric quality, that method
aims to decompose the scene into mid-level 3D textured
primitives. In contrast ObjectCarver aims to separate the 3D
objects with high geometric quality.

Other work uses joint language-visual embeddings like
CLIP to identify objects in 3D scenes. Sosuke et al. use
CLIP and DINO to learn neural feature fields, supporting
editing and selection mechnisms [11]. LERF [8] learns
a language field by volumetrically rendering proto-CLIP
features along the ray which is supervised with multi-scale
CLIP features on the training images, allowing radiance
fields to be decomposed into semantically distinct areas.

In contrast to CLIP, our method relies on a pre-trained
2D image segmentation network. Other work in this vein
includes [34], which separates scenes into disjoint radiance
fields for each object based on rough 2D instance masks.

More recently, the emergence of SAM [10] marked a
significant step towards segmenting 2D images. GARField
[9] and OmniSeg3D [38] hierarchically group NeRFs using
SAM. Segment Anything 3D (SA3D) [7] uses mask inverse
rendering and cross-view self-prompting to construct 3D
masks, demonstrating adaptability to various scenes and
efficiency in achieving 3D segmentation. However, unlike
our method, SA3D segments a fixed 3D representation and
does not attempt to separate objects from one another, e.g,
to modify their geometry to fill in holes at interfaces where
they are in contact. Further discussion of similar prior work
is in the supplementary material.

Another key difference with the above work is that we
seek not to produce segmented NeRFs, but instead seg-
mented, separated, and high-quality surfaces in the form
of SDFs that can be converted into convenient graphics rep-
resentations like meshes. In that sense, our work is similar
to ObjectSDF [31], which uses per-image input instance
masks to product an SDF for each object. However, this

method can encounter issues with object and scene recon-
struction accuracy, slow convergence, and training speed. Its
successor ObjectSDF++ [32] introduces an occlusion-aware
object opacity rendering strategy and an overlap regulariza-
tion term to better separate the surfaces between neighboring
objects. However, it still requires per-image, per-object input
masks, in contrast to our method. RICO [13] leverages geo-
metrically motivated regularizations to smooth unobserved
regions in indoor compositional scenes, whereas our method
goes farther to separate and reconstruct complete objects.
Our method is in the spirit of other semi-supervised methods
like that of Ren et al. [26], but scales well to complex scenes
with many objects.

3. Methodology
We assume that we are given a set of N posed images
I = {I1, . . . , IN} of a scene. We are interested in not
just reconstructing the scene, but segmenting, reconstructing
and separating each of K different objects in the scene. We
aim to do so as accurately, as efficiently, and with as little
manual annotation as possible.

Our proposed approach operates in three stages:
1. Reconstruct the full scene as a single SDF.
2. Generate segmentation masks for each of the K objects

in all images by propagating segmentation masks from
one of the views.

3. Optimize K separate SDFs using a novel loss to handle
occlusion for accurate reconstruction.

Next we describe each step below.

3.1. Scene Reconstruction

We first train a full scene reconstruction. Any SDF-based
technique can be used; however, here we use NeuS [30]
which converts the SDF into a density term to allow for
optimization through volumetric rendering. Concretely, for
every pixel, discrete samples are taken along the correspond-
ing ray {pi = o+ tiv | i = 1, . . . n, ti < ti+1} where o is
the camera center and v is the viewing direction correspond-
ing to the pixel. Then NeuS calculates densities αi and an
accumulated transmittance Ti =

∏i−1
j=1(1−αi). The density

is shown to be related to the SDF as:

αi = max

(
Φs (f(pi))− Φs (f(pi+1))

Φs (f(pi))
, 0

)
(1)

where Φs is the sigmoid function and f is the SDF. (Please
refer to Wang et. al [30] for details.) Given these densities
αi and the corresponding accumulated transmittance, the
rendered color at this pixel is computed as:

C(o,p) =
∑
i

Tiαic(pi,v) (2)

where c(pi,v) is the color at the point pi seen from the
viewing direction v.
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Figure 3. Mask Propagation pipeline: in the first iteration, a user clicks a point on each object and we use SAM [10] to generate the anchor
mask, which is then unprojected into 3D (here, we only show unprojected 3D points for the bottom can). These 3D points are subsequently
projected back into each image view, while checking for occlusions. The projected points serve as seeds for SAM [10] to generate masks for
each object (bottom and top cans, door stop). To combine these individual segmentation masks into a single image, we use a depth ordering
technique. In the next iterations, all views are used as anchor masks, allowing the pipeline to cover previously unseen regions.

The SDF is optimized to minimize rendering and eikonal
losses:

L = Lcolor + λLeik (3)

Lcolor =
1

m

∑
j

∥Ĉj − Cj∥ (4)

Leik =
1

nm

∑
j,i

(∥∇f(pj,i)∥2 − 1)2 (5)

Here j indexes over pixels in all images and i indexes
over points sampled along a ray. Ĉj is the predicted color,
Cj is the observed color, m is the number of pixels, n is
the number of samples per ray, and pj,i is the sampled point
along pixel j at index i.

3.2. Generating Segmentations

Our next step is to generate segmentation for all the views.
Given a few point clicks in one of the views, we use
SAM [10] to generate the segmentation; we call this our
anchor mask. Then we unproject the mask onto the recon-
structed 3D scene, resulting in labeled 3D points for each
object. Using these labeled 3D points we propagate the
segmentation to all views. Finally, we iterate through this
process again, using the newly obtained segmentation as the
anchor mask. Below we describe each step in detail.

3D point labeling: After generating the anchor mask,
we project it into 3D by tracing rays from each pixel through
the object mask to determine surface intersections (Figure 3).
However, segmentations can often be imprecise near object
boundaries, causing the mask to leak onto other surfaces
(Figure 4). To address this, we first erode the mask to remove
any segmentation errors where the mask overshoots the true
boundary. Second, after back-projecting the points to 3D
we remove from each object mask all points whose depths
are outliers, i.e., more than 2.5 standard deviations from the

Figure 4. Projection to 3D. Left: Example image. Middle: points
projected without mask edge erosion and outlier removal, resulting
in noisy segmentation outputs. Right: by using mask erosion and
outlier removal we obtain clean 3D points and subsequently obtain
a correct segmentation output.

mean object depth. Finally, we subsample the 3D points to
speed up downstream tasks, and ensure that each 3D point
has a unique label by discarding points with more than one
label to avoid inconsistent segmentations later on.

Propagating to a new view: To segment an object in
a new view, we project the labeled 3D points into that view
if they are unoccluded to obtain labeled 2D image points
(“seeds”). While these 2D points can theoretically be used
to prompt SAM, it often oversegments when presented with
numerous seeds. To address this, we use a coreset selection
algorithm (in the supplementary) to reduce the number of
seed points while maintaining the object’s shape. Finally, to
resolve multiple overlapping segmentations from SAM [10],
we perform a partial ordering based on depth, comparing the
depths of seed points in overlapping areas and assigning the
region to the object that is closer. For example, in Figure 3,
this depth ordering enables correct placement of the green
can pixels in front of the blue can when viewed from the top.

3.3. Object Separation

Given the images and their segmentation masks, our goal
is now to produce K separated SDFs, one per object. We
can train the K SDFs by updating the color loss so that each
SDF is responsible only for the colors of its corresponding



Figure 5. An occlusion event. The object of interest is the blue
cylinder. On the left is the segmentation mask. On the right, the
crosses (not included in the segmentation mask) represent points on
the blue object that are visible in other views but occluded in this
view. The red dotted box is the amodal mask, and its intersection
with the occluding cuboid is the set of pixels that are “present” in
the blue object, but occluded in this view.

object:

Lcolor =
1

m

∑
k

∑
j

Mk(j)∥Ĉj − Cj∥ (6)

Here Mk is the mask for k-th object. However, this is not
enough to separate out the object because the segmentation
mask only covers the visible parts. When a pixel isn’t in the
mask, it’s unclear if it’s outside the object’s extent or just oc-
cluded. In what follows, we first discuss the simpler case of
unoccluded objects and then discuss the precise ambiguities
and our proposed solution.

Special case: Unoccluded objects without contacts. Con-
sider first the special case where each object is completely
visible in each image, and does not make contact with any
other part of the scene. In this case, given a candidate object
SDF, we can render an object mask for each input viewpoint
by aggregating the density along each ray. We can then add
a loss term that encourages this predicted mask to match
the provided segmentation mask using a simple binary cross
entropy loss. Concretely, similar to Equation 2, for every
object and for every pixel we calculate a mask loss:

Lmask =
∑
k

∑
j

BCE(Ôk(j),Mk(j)), Ôk =
∑
i

Tiα
k
i (7)

Here, Ôk is a score representing the opacity of this pixel
in the k-th SDF. This loss, as proposed in NeuS [30], causes
problems in scenes with occlusions. To see this, consider
Figure 5, where a blue object is occluded by a gray box. If
we look at our mask loss behaviour for the blue object at
various pixels, The loss would suggest that pixels A, C, and
D should lie completely outside the object. Clearly, this is
not the right behavior at pixel C, and thus we need a different
strategy to handle occlusion.

Resolving occlusion: One option is not to impose any loss
on pixels C and D at all. In other words, we could exclude
all pixels where the object of interest is occluded by another

object. Past work proposes an occlusion-aware loss which
has a similar effect [32]. However, the effect of this is that
the trained SDF may now include artifacts that are occluded
from view in all images without incurring any penalty. While
this kind of an object is possible given the input views, our
intuition tells us that it is highly unlikely.

Instead, we propose a prior that the object should only
include surfaces that are visible from some input view. In
other words, we would like a compact completion of the
visible surfaces that we see in the input views. Thus, in
Figure 5, we would be okay with the object including point
C, but not okay with any artifacts that include the point D.

We formalize this intuition as follows: Given the labeled
3D points of object k we project all these points into every
view without regard to occlusion (producing e.g., the crosses
in Figure 5). In each view, we then take the bounding box of
these projected points; this is the amodal bounding box of
the object, Bk (amodal completion is the phenomenon where
humans perceive the complete shape of a background object
in spite of occlusion [6]). We then intersect this amodal
bounding box with the provided segmentation masks of the
other objects to get a “present-but-occluded” mask M occ.
We then only apply the mask loss above to pixels outside
this present-but-occluded region. Here pk is the set of 3D
points for object k in equation 8.

Bk = Bounding Box (π(pk)) (8)
M occ

k = Bk ∩ (∪i ̸=kMi) (9)

Lcompactness =
∑
k

∑
j /∈M occ

k

BCE
(
Mk(j), Ôk(j)

)
(10)

Resolving object interfaces. A final step is to resolve ob-
ject interfaces, to ensure that each object occupies a distinct
region of 3D space and does not intersect others. For this we
use a loss term that we call the overlap loss. It adds a penalty
whenever the interiors of two objects overlap. Concretely,
suppose we have K SDFs f1, . . . , fK .

For every 3D point p sampled randomly in space, we
identify the SDF that yields the most negative value (i.e., the
object for which p is farthest into the interior), and penalize
negative values from all other SDFs using a hinge loss:

k∗ = argmin
k

(fk(p)) (11)

Loverlap =
∑
p

∑
k ̸=k∗

max (fk(p), 0) (12)

Our final loss function is:

L = Lcolor + λLeik + βLcompactness + γLoverlap. (13)

We train all K SDFs in parallel using this loss with the
hyper-parameters λ = 0.1, β = 0.9, γ = 0.001. We tested
on 1 RTX 3090 GPU. We used batch sizes of 512 and 64 for
the full scene reconstruction and per-object reconstruction
respectively.
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Figure 6. Left: Previous datasets, like Replica, exhibit holes in
the individual objects in occluded regions. As a result, using the
cropped sub-meshes as ground truth for object separation is not
an adequate evaluation. Middle and right: Our proposed dataset
features complete individual objects.

Initialization. One challenge with the proposed approach
is that it trains K different SDFs, and so can be up to K
times as expensive as training the single scene SDF. Prior
work uses various strategies to reduce this training cost, such
as sharing layers between the SDFs [32] or distilling from
the scene SDF [34]. We propose a simpler strategy that
significantly reduces running time (to a few hours instead of
days) and yet preserves details: we initialize each SDF with
a copy of the full scene SDF (unlike ObjectSDF++, which
uses a sphere initialization). Because each SDF starts with
geometry that matches the scene, it has all the details and
matches the input images by default. All the network has to
do is to “cut off” the scene SDF in the appropriate regions.

4. Benchmark
Previous scene decomposition techniques evaluate their
methods on benchmark datasets like Replica and ScanNet.
A critical limitation of these is that they do not offer com-
plete ground truth geometries for the reconstructed objects.
More specifically, per-object meshes are extracted from the
full ground truth mesh of the indoor scene by cropping the
ground truth mesh with the semantic masks, and therefore
they lack completeness in regions occluded by other objects
(Figure 6).

We introduce a new benchmark for 3D scene decompo-
sition techniques, consisting of 32 real-world scenes and 5
synthetically generated ones. The scenes contain different
combinations of objects in close contact, and we provide a
high-quality complete mesh of each object.

4.1. Dataset

Real-World Scenes. We provide 22 individual 3D scanned
objects and 32 scenes, each created using a combination of
the individual objects. To scan the individual objects, we

use Polycam [2] (for analysis of Polycam, please refer to
the supplementary materials). The scenes are captured as
raw images using a phone camera at a resolution of 3008 ×
3008. We provide camera pose estimates from COLMAP
[28], ground-truth meshes from Polycam [2], and masks
generated using our mask propagation strategy. Last, we
provide rotations and translations that align the ground-truth
object meshes to the objects in the scenes.

Synthetic Scenes. We provide 5 synthetic scenes composed
by combining objects with varying geometric complexities.
We used Blender [1] to create the dataset, with each scene
centered at the origin. We used white indoor scene environ-
ment lighting. We rendered the scenes with 500 samples
at a resolution of 512×512 using the Cycles renderer, cap-
turing 100 images from cameras positioned on the upper
hemisphere around the subject. In addition to the multi-view
images, we provide ground-truth poses, geometries, masks
and transformations that align object meshes to the corre-
sponding scene. Please refer to our supplementary material
for more details on the creation of real and synthetic datasets.

4.2. Evaluation metrics

We report the precision and completion ratio. Precision is
the ratio of reconstructed points that are within a distance
0.05 from the ground truth, and penalizes floaters. Comple-
tion ratio is the ratio of ground truth points that are within a
distance 0.05 from the reconstruction, and penalizes incom-
plete reconstructions.

The two-way Chamfer distance is also measured be-
tween evenly-sampled vertex points on the ground truth
mesh and sampled vertex points on the predicted mesh ob-
tained by running marching cubes on the trained SDF.

To calculate these metrics between predicted and ground-
truth meshes, it is crucial to maintain similar point densities
to prevent imbalance. This can be difficult if the two meshes
are very different in size. ObjectSDF++[32] addresses this
by clipping predicted meshes using ground-truth bounds to
improve density similarity and remove outliers. However,
this approach can artificially inflate precision by not penal-
izing floaters outside the bounding box. Instead, we keep
the meshes as is but propose a refinement technique that
uses rejection sampling to maintain consistent point densi-
ties, adjusting for mesh saturation until the surface cannot
hold more points, ensuring a fair comparison. Please see the
supplement for more details.

5. Experiments
We first evaluate how our mask propagation strategy per-
forms with increasing number of anchors and iterations.
Then, we compare our full pipeline qualitatively (Fig. 8) and
quantitatively (Table 2) against two baselines, ObjectSDF++
[32] and RICO [13] (Qualitative evaluations for ScanNet and



Table 1. mIOU values of the predicted masks using our mask prop-
agation strategy, varying the number of propagation iterations and
anchor images per scan. Mask quality does not improve signif-
icantly after the second round of mask propagation, and adding
additional anchors offers little improvement after a few propagation
iterations.

Scan 1 2 3 4 5
No of anchor views 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

iter
1 0.73 0.77 0.86 0.60 0.63 0.65 0.71 0.71 0.77 0.86 0.91 0.91 0.80 0.77 0.90
2 0.90 0.90 0.91 0.64 0.64 0.64 0.78 0.78 0.78 0.91 0.92 0.91 0.94 0.94 0.94
3 0.91 0.91 0.91 0.63 0.63 0.63 0.78 0.78 0.78 0.90 0.91 0.91 0.94 0.94 0.94

Replica dataset are in the supplementary). We benchmark
these methods on the five synthetic datasets. Because Ob-
jectSDF++ and RICO fail to produce meshes for some of
the real-world scans, we evaluate on a subset of 6 real scans
and 3 synthetic result for which all methods can produce
valid meshes. Finally, we ablate components of our proposed
method to see their impact on the quality of our solution.

5.1. Mask Propagation Evaluation

We first evaluate the performance of our segmentation propa-
gation approach using our synthetic dataset where all scenes
have corresponding ground-truth segmentation.

The first column of each scan in Table 1 shows the mIOU
(Mean Intersection over Union) for each iteration, starting
with one anchor image. We observe that the first iteration
generally performs poorly but the mIOU improves with more
iterations; however, after the second iteration, the improve-
ment becomes minimal. Our method can also take multiple
anchor images if provided; this can be useful, for instance,
if all the objects are not visible in one image or the user
wants to provide more information. We evaluate the effect
of providing multiple anchor masks in the second and third
columns of each scan. However, after the third iteration,
whether we start from a single or multiple anchor masks, all
converge to similar results, as shown in the third row.

A mask propagation failure is shown in scan 2 in Table 1,
where the mIOU is low. This is because some parts of one
object end up being labeled as another object; for example,
the duck in Figure 9 (top left) is classified as the horse.
Note that the same surface may be correctly labeled in a
different image, since SAM is performed independently for
each image.

Despite the low mIOU mask in scan 2, our object separa-
tion module still produces plausible reconstructions, because
the majority of the masks are still correctly labeled. Please
refer to the supplementary material for details.

5.2. Reconstruction Evaluation

The results in Table 2 reveal the failures of the baselines.
First, RICO performs poorly in the quantitative results, de-

Table 2. Quantitative evaluation: RICO performs the lowest
among all methods. ObjectSDF++ performs well on synthetic
data, but its performance drops on real data, especially in terms of
precision ratio. This drop is due to the imperfect masks in the real
scans. On both synthetic and real datasets, our method outperforms
the baseline in all metrics. We used GT masks for the synthetic
evaluation and masks generated by our mask propagation for the
real dataset.

Dataset Metrics RICO ObjectSDF++ Ours

Synthetic
Chamfer ↓ 0.124 0.010 0.005

Prec. Ratio ↑ 0.581 0.972 0.990
Comp. Ratio ↑ 0.938 0.994 0.985

Real
Chamfer ↓ 0.106 0.094 0.012

Prec. Ratio ↑ 0.768 0.768 0.945
Comp. Ratio ↑ 0.784 0.836 0.945

Time 13.3 hrs 7 hrs 14 hrs 6 days

Loss variant Compactness Naïve mask Occlusion aware mask Compactness

Scene initialization Yes Yes Yes No

Figure 7. Importance of the compactness loss and initialization.
Left: our compactness loss and initialization together avoids float-
ing artifact and achieves high-quality results. Middle: a naive mask
loss as in NeuS carves out objects whenever there is an occlusion
and with occlusion aware mask, and we see floating artifacts in
unobserved parts of the scene. Right: without scene initialization
details are lost and the runtime grows significantly.

spite having decent qualitative results. The reason is that
RICO, while often complete, produces large floaters like
those seen in ‘Real scan7’ in Figure 8, which significantly
hurt quantitative performance. While RICO achieves good
completion metrics, it struggles to precisely generate meshes
of the object of interest.

Second, ObjectSDF++, while competitive on the syn-
thetic datasets, loses out in the real dataset benchmarks.
Unlike the synthetic ground-truth masks, the masks used in
the real-world benchmark were obtained using our proposed
mask propagation strategy, which is still imperfect. This
not only results in floaters, which are not handled due to the
absence of a compactness loss, but also a loss of detail of
objects at sharp edges as shown in ‘Real scan3’ and ‘Real
scan16’. In contrast, we initialize the object SDF from the
reconstructed scene, resulting in more robust results.

From Figure 8 and Table 2, we can conclude our method
produces results with higher quality and fewer floating arti-
facts. Most of our quantitative improvement comes from the
lack of undesired artifacts like floaters and carved holes. The
remaining improvement, more evident qualitatively, comes
from the scene initialization.
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Figure 8. Qualitative Comparison: RICO and ObjectSDF++
produce floating artifacts, as shown in Real scans 7 and 12. RICO
also sometimes carves out the object, leaving a hollow area, as
shown in Real scan 16, 3 and 12. In contrast, our method produces
fewer artifacts while also providing more detail.

5.3. Ablation

To understand the importance of our contributions, we ablate
the proposed compactness loss and the scene initialization
as shown in Figure 7.

To evaluate the compactness loss, we compare to two
alternatives:
1. The first baseline is the naive mask loss used in NeuS,

which does not take object occlusion into account. This
loss is defined in Equation (7).

2. The second alternative without compactness is an
occlusion-aware mask loss: we simply apply the mask
loss only to the unoccluded pixels, i.e., to discount pixels
that are marked as belonging to other objects.

M̃ occ
k = (∪i ̸=kMi) (14)

Locc-aware =
∑
k

∑
j/∈M̃ occ

k

BCE
(
Mk(j), Ôk(j)

)
(15)

While this strategy correctly avoids penalizing pixels that
are part of the object but occluded, it does not encourage
the object to be compact. As such, the model is free to
hallucinate other floaters as long as they are completely
occluded in the view.
The three loss variants are shown in the first three columns

of Figure 7. When using naive mask loss, object geometries

Predicted mask (0.633 mIOU)

GT mask Reconstruction

Figure 9. Top: Despite low mIOU, our object separation pipeline
remains robust. This is due to our the mask labels are correct in
other views. However, the reconstruction of the horse includes part
of the kettle handle, as most of the mask incorrectly classifies the
handle as part of the horse. Bottom: Ground truth mask and its
respective reconstruction.

are carved out, resulting in incomplete reconstructions. This
is because the model is penalized whenever it produces a
surface that is occluded, evident in the hand’s fingers be-
coming detached as a result of the object sitting on it. The
occlusion-aware mask loss prevents the objects from being
carved out, but introduces floaters, sometimes inside the
other objects, which are reconstructed as hollow shells. This
occurs because any floater that is completely inside the shell
of another object will never be visible and therefore never
be penalized. The compactness loss both removes floaters
and prevents the objects from being carved out.

The last column of Figure 7 shows the reconstruction
without the scene initialization. In this case, the recon-
struction quality is significantly reduced and reconstruction
requires a prohibitively long time. Scene initialization is
critical to reducing computational time and obtaining high-
quality results.

6. Conclusion

We proposed ObjectCarver, a method that separates objects
in a scene into individual high-resolution meshes by auto-
matically generating segmentation masks for all multi-view
training images from a few clicks on just one image. We
introduced compactness loss, a novel loss function that re-
moves many of the floaters that have plagued prior methods.
Finally, we show that initializing the per-object models with
the scene model not only improves convergence and reduces
training time but also maintains the details of the objects.
While transparent and reflective objects are beyond the scope
of this work, future efforts could address these by improving
the scene representation.
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