Supplementary Material

A. Discussion
A.1. Mask Propagation

While the focus of this paper is to obtain high-quality object-
level 3D reconstruction by separating it from the full scene,
we have proposed a mask propagation pipeline that can be
used independently to obtain consistent 3D segmentation
from a 2D mask. In this section, we discuss prior works
that attempt to perform 3D segmentation from 2D. These
techniques can be classified into two categories: automatic
and user-assisted. Automatic methods include SAM3D [1],
OmniSeg3D [12], SAM-guided Graph Cut [5], NeRF-SOS
[4], and Garfield [6]. User-assisted methods include SA3D
[2] and ObjectCarver.

SAM3D uses inconsistent segmentation pairs, projects
them into 3D, merges the labels in 3D for each pair, and
then aggregates all pairs. Unlike other methods, SAM3D
does not require training a model, which makes it similar to
our method in that sense. OmniSeg3D, on the other hand,
performs automatic segmentation by hierarchically grouping
similar components. Starting from multiview inconsistent
segmentation, it uses contrastive learning to refine the seg-
mentation. SAM-guided Graph Cut also performs automatic
3D scene segmentation but it begins with a mesh or point
cloud and over-segments the 3D scene then uses SAM to
group and build a graph, and applies a graph-cut algorithm
to improve segmentation. NeRF-SOS predicts segmentation
masks directly by adding features to NeRF without using
SAM. However, it is limited to segmenting only one primary
focus object, unlike other methods. Garfield hierarchically
groups NeRF using contrastive learning. SA3D outputs seg-
mented NeRF by training a neural field. It requires user input
from a single view and iteratively improves segmentation
using self-prompting.

Methods that output segmented NeRFs typically only seg-
ment the visible regions and do not account for occluded
areas, leaving the model free to produce arbitrary results
in those regions such as holes. In contrast, our method
explicitly addresses occlusion, making it more robust. Nev-
ertheless, these methods can be an alternative to our mask
propagation approach, and we can use these to obtain con-
sistent masks and proceed with the object separation stage
of our pipeline. However, our method is advantageous in
scenarios where training a full network to produce masks

is unnecessary or when hierarchical grouping fails. Our
method could also be extended to automatic segmentation
using an out-of-the-box single-image segmenter. Once this
segmentation is obtained, our mask propagation framework
can provide consistent 3D segmentation.

A.2. Computational efficiency

With respect to computational efficiency, our choice of scene
modeling NeuS [10] could be replaced by any SDF-based
methods that are more recent, potentially improving the
processing time. We leave this exploration to future work.

B. Runtime analysis

We provide a runtime analysis for all stages of our method,
considering an image size of 512x512 with a single RTX
3090 GPU.

* Stage 1: Scene reconstruction for 200k iterations takes 5.8
hours.

 Stage 2: Segmentation takes 2 minute per image.

» Stage 3: The amount of time Object Separation takes
depends on the number of objects in the scene. For two,
four, and six objects, Object Separation takes 2.7, 3.5, and
7.5 hours respectively.

C. Dataset

The problem of object separation in 3D reconstruction is a
fairly new topic and, as such, lacks the proper benchmark
dataset. Previous methods evaluated their approach on a
cropped sub-meshes from a full scene, which has in holes
in occluded regions. Thus, during the evaluation, the area
that needs to be properly evaluated will be ignored. Figure
6 illustrates the issue with previous datasets. To address
the gap in the literature, we introduce a new benchmarking
dataset composed of real-world and synthetic scenes. Below,
are the details on how we created the dataset.

C.1. Real-world dataset creation

Figure 11 shows the steps we took in creating the dataset.
First, we scanned the individual object to obtain the ground
truth mesh using Polycam. Second, we captured the scene
using a handheld camera and then obtained the camera pose
using COLMAP. The fourth step involved obtaining the full

Reconstruction

Figure 10. Analysis of failure modes: [first row] illustrates our
method’s failure due to segmentation errors. Here, SAM itself
struggles to obtain the correct mask as the two gingerbread houses
are colorful, making it difficult to segment them. In the [second
row], the segmentation is correct, but there is a flat surface floating
in the pink box. This is due to the limitation of our amodal bounding
box, which is contain this space from all views. In addition the
overlap loss may not be computed at area as we are using fixed
random points (of 10,000) in 3D space to compute the overlap loss
and the pink floating surface is thin, and the points may not lie
within this area. In the [third row], both the torus and the pipe
occupy the space. Once again, this highlights the shortcomings of
the amodal bounding box and overlap loss.

scene reconstruction so that we could use it to align the
individual meshes. We trained vanilla NeuS to obtain the
full mesh. The fifth step involved aligning the meshes, We
used Blender software to transform the individual meshes
to their respective positions within the scene. To further
refine the alignment and avoid human error, we applied ICP
to align the meshes together. Ultimately, we obtained each
scene images, camera pose, and the transformation matrix
for each individual object. Below, we describe in more detail
how we scanned the individual meshes and the scene.

C.1.1 Individual mesh scanning.

We provide 22 object scans. We collected 80-150 images
per object and used Polycam to generate the full mesh. We
set the option Isolate object from environment to true and
exported the final mesh in raw format. Since Polycam is
not open-source software, we conducted an analysis of its
reconstruction quality. We performed an experiment where
we used the same object in different environments. We
captured the object and obtained a mesh with Polycam and
analyzed the robustness of Polycam. Figure 12 illustrates our
analysis. We used a boot and took pictures in three different

2. SCENE IMAGES 3. CAMERA POSE Estimation

1. GT Meshes

P
L hﬁ&&{‘&g

y & <
Py ope 84ty

Ground truth meshes are
created using Polycam

4,000 raw images manually Camera pose are estimated using
taken of scenes COLMAP
6. FURTHER OBJECT ALIGNMENT

4. SURFACE RECONSTRUCTION 5. SCENE ALIGNMENT

Obtained full scene using NeuS

Align ground truth objects to Further align scenes using iterative closest
each scene using blender point (ICP) registration

Figure 11. Real-world dataset creation steps: (1) Scanning indi-
vidual objects with Polycam for ground truth meshes, (2) Capturing
the scene with a handheld camera, (3) Estimating camera pose with
COLMAP, (4) Full scene reconstruction for mesh alignment, (5)
Aligning individual meshes with Blender to the full scene, and
(6) Further aligning the meshes with ICP for precision. From this
process, we obtain scene images, camera poses, and transformation
matrices for each object.

environments and used these three sets of images to obtain
the meshes. Then we compared them to each other to see
if there is a significant quality drop. However, we found
that they are very similar, and we concluded that Polycam is
consistent in its output.

C.1.2 Scene capture.

We provide 32 real-world scene. We used a Samsung Note9
with a 12-megapixel camera to capture the scenes, utilizing
the raw option in the pro-mode to capture raw images. The
original images are 3008 x 3008 pixels with 16-bit depth. We
converted the raw format to .png for lossless compression
and downscaled it to 1002 x 1002 pixels. We show the
steps we took to collect the dataset on Figure 11. Both
the individual scene and individual objects can be found in
Figure 15.

C.2. Synthetic data creation

We generated five realistic scenes, each with its own level
of difficulty. Each scene has N objects, N ranging from
3 to 10. We used Blender to create the dataset, with each
scene centered at the origin. We used white indoor scene
environment lighting. We rendered the scenes with 500 sam-
ples at a resolution of 512 x 512 using the Cycles renderer,
capturing 100 images from cameras positioned on the upper
hemisphere around the subject.

Figure 12. Analysis of the robustness of Polycam: [Left] images
captured in different environments and their respective Polycam
meshes. [Right] Quantitative evaluation where we compare each
mesh against each other (unit in millimeters). We can observe that
both qualitatively and quantitatively, Polycam is consistent.

D. Rejection sampling

When calculating the point-to-point Chamfer distance be-
tween predicted and ground-truth meshes, it is important to
ensure locally similar point densities to avoid one of the di-
rectional Chamfer distances from being larger than the other.
While the ideal metric here is the point-to-surface Chamfer
distances (i.e. the average unsigned distances), this is often
prohibitively slow; hence, it is common practice to resample
the two point clouds to have the same number of points for
an accurate point-to-point Chamfer distance. However, when
the predicted mesh contains floaters and extraneous artifacts,
this results in a diluted sampled point cloud and causes the
densities to differ in the region of interest. The reverse holds
true when the predicted mesh experiences carved out regions
that lower its surface area for point sampling. ObjectSDF++
[11] and Rico [7] are evaluated on Replica [8] and ScanNet
[3], and they clip the predicted meshes using the 3D bounds
calculated from the ground-truth meshes. While this was
likely done to try to ensure similar point densities, it removes
any floater artifacts that exist outside the clipping bounds,
yielding in a artificially lower smaller precision metric. We
revise this evaluation by using a rejection sampling based
approach that samples points only if it is some radius away
from the growing list of samples. If the desired number
of points is large enough to saturate the mesh (i.e. desired
number of points is impossible due to the radius constraint),
we ensure that the point density is similar between the two
meshes.

E. Ablation

E.1. Effect of mask propagation on object recon-
struction:

Figure 16 shows the effect of mask propagation using the
mask obtained from each iteration. We see that the first
iteration is not enough to capture the full object, as some
parts of the segmentation are missing, resulting in carving

out. However, after the second iteration, we observe that we
can obtain the full geometry.

E.2. Effect of increasing number of SDF parameters
of baselines

One possible reason why ObjectCarver achieves more details
in the reconstruction is that increase in model capacity with
a whole SDF network being dedicated to each model. On
the other hand, ObjectSDF++ and RICO use a single SDF
network backbone with separate heads for each object’s SDF.
In order to determine if the expressivity of the SDF networks
in RICO and ObjectSDF++ is the limiting factor, we increase
the learnable parameters of the SDF networks in RICO and
ObjectSDF++ by the number of objects k. For ObjectSDF++,
we increase the dimensionality of the feature vector learned
at each level of the hash-grid by k. For RICO, we increase
the width of the network by [v/k]. These modified models
are called RICO* and ObjSDF++*.

Figure 18 shows the evaluation results of this comparison.
RICO* tends to over-smooth the geometry and create more
floater artifacts than RICO. ObjectSDF++ achieves better re-
construction quality and even reduces the number of floaters.
However, ObjectCarver still achieves the best qualitative
and quantitative results among the baselines, demonstrat-
ing the effectiveness of scene initialization for learning the
geometries with more parameters.

F. Additional Results

We provide more qualitative results on our dataset in Figure
19 and large indoor scene on Replica and Scannet dataset
Figure 17. We can observe that our method produces much
higher quality and fewer floating artifacts compared to previ-
ous methods.

For the indoor scene, we build on NeuRIS [9] instead of
NeusS [10] due to the latter’s difficulty with indoor and large
scenes. We omit a quantitative table because neither Replica
nor Scannet includes complete ground-truth geometries. For
the indoor scene, one could also represent the background as
a separate SDF, though our background SDF would not ben-
efit from the compactness loss, making our method similar
to ObjectSDF++ [11].

G. Implementation details
G.1. Coreset Algorithm

This algorithm takes as input a set of projected 2D points
and selects n points that will later be used as seed points
for SAM to segment a specific object (seed points being the
set of (z,y) coordinates used to prompt SAM to segment
the object). The intuition behind using this algorithm is to
simulate how a human would select the seed point to segment
an object using SAM. It starts by clicking the centroid of
the object; the next point will be far away from the centroid,

Scan 18
Scan 21 Scan 28

Scan 37

Scan 36

Boots DeepSeaDeoderant Spatula

ThroneBox

Milk

.’;#;

GhostPreWorkout DoorStop SmokeBox Android
OctagonalPrism RedCleat half_cylinder cylinder

rectangle

rectangle_short

Figure 14. Full list of scanned individual meshes using Polycam.

Scan 2

Scan 3

Scan 4 Scan 5

Figure 15. Full list of synthetic scenes.

0.143

Real scan16

0.16

chamfer 0.143

Iteration 1 2 3

Figure 16. Effect of mask propagation on the reconstruction, [Top]
reconstruction of using the mask, [bottom] mask used for.

and the following point will be far away from both of the
previous points. As a result, these points capture the overall
shape of the object. We chose n = 15 as it works for most
cases.

Algorithm 1 Modified Coreset Algorithm

1: Input: projected points S C R?, coreset size n
2: Output: C'

3 O+ {}

4: g < argmingeg ||s — mean(S)||2

5. C.add(zo)

6: S.remove(zg)

7. while |C| < n do

8 y « arg maxsecs min{||s — c¢|la : ¢ € C}
9 C.add(y)

10: S.remove(y)

G.2. Partial depth ordering

When there is an overlap between two segmentation outputs

from SAM, the partial depth ordering is used to break the tie.

Below we describe the steps:

Step 0: Initialization

* Initialize the depth as zero for each of the K objects.

Step 1: Overlap Checking

* For each pair of objects (ky, k;) where h # i: Check if the
segmentation masks of object k;, and object k; overlap.

Step 2: Overlap Resolution

* If there is an overlap between the segmentation masks of

objects kp, and k;:

1. Count the number of seed points in the overlapping
region for both segmentation masks.

2. Identify the object with more seed points in the overlap-
ping region as the “top” object and the one with fewer
seed points as the ’bottom” object.

3. Increase the depth of the top object by one relative to
the depth of the bottom object.

-

:. -
e ®

e >

Replica scan2

CRIN
*q ‘t ’

~ L

Scannet scanl

\J

Scene Rico ObjSDF++ Ours

, R
¥ 4

L)

Scannet scan4

Figure 17. Qualitative comparison on large indoor scenes: Due to our compactness loss, our method results in fewer artifacts compared to
the baseline, which is plagued by floating artifacts, most apparent in row 3, and carving of the objects shown in row 2 of the RICO output.

real_scan3

‘Q‘-

®
g
&

mfer': 0.00665

a Q@ P

Chanfer': 0.00605

B
g
 §

fer': 0.00720

D ol

R
S/
g

Chamfer': 0.0246

‘Q'

A
&g
&

mfer': 0.00443

10 Cr

real_scan9

§9 =

Cham:

f
®
v

fer': 0.0654

i

p -
v
|

v

Chamfer': 0.608

Chamfer': 0.0401

8
°
-

g 8
7 A
| .

Chamfer*:*0.0228

Cham.

< @@

fer': 0.00489

~ dJ) wa

RICO

RICO*

ObjSDF++

ObjSDF++*

Ours

Figure 18. Comparison of increasing the expressivity of the model backbone of RICO and ObjectSDF++

GT

Real scan3

—

R/

Real scan4

Real scan6
=

Real scan7

Y8

Real scan9

, . .o
L < v . .o_
as
Real scanl2
Scene GT Rico ObjSDF++ Ours GT Rico ObjSDF++ Ours

Figure 19. Comparison between RICO, ObjectSDF++ and our approach. ObjectSDF++ produces fewer details and more floating artifacts

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8

—_—

(9]

(10]

(11]

[12]

Nhat-Tan Bui, Dinh-Hieu Hoang, Minh-Triet Tran, Gian-
franco Doretto, Donald Adjeroh, Brijesh Patel, Arabinda
Choudhary, and Ngan Le. Sam3d: Segment anything model
in volumetric medical images. arXiv:2309.03493, 2023. 1
Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Wei Shen, Lingxi
Xie, Xiaopeng Zhang, and Qi Tian. Segment anything in 3d
with nerfs. arXiv preprint arXiv:2304.12308, 2023. 1
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias NieBner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proc. Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2017.
3

Zhiwen Fan, Peihao Wang, Yifan Jiang, Xinyu Gong, De-
jia Xu, and Zhangyang Wang. Nerf-sos: Any-view self-
supervised object segmentation on complex scenes, 2022.
1

Haoyu Guo, He Zhu, Sida Peng, Yuang Wang, Yujun Shen,
Ruizhen Hu, and Xiaowei Zhou. Sam-guided graph cut for
3d instance segmentation. In ECCV, 2024. 1

Chung Min Kim, Mingxuan Wu, Justin Kerr, Ken Goldberg,
Matthew Tancik, and Angjoo Kanazawa. Garfield: Group any-
thing with radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 21530-21539, 2024. 1

Zizhang Li, Xiaoyang Lyu, Yuanyuan Ding, Mengmeng
Wang, Yiyi Liao, and Yong Liu. Rico: Regularizing the
unobservable for indoor compositional reconstruction, 2023.
3

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 3

Jiepeng Wang, Peng Wang, Xiaoxiao Long, Christian
Theobalt, Taku Komura, Lingjie Liu, and Wenping Wang.
Neuris: Neural reconstruction of indoor scenes using normal
priors. arXiv preprint, 2022. 3

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
CoRR, abs/2106.10689, 2021. 1, 3

Qianyi Wu, Kaisiyuan Wang, Kejie Li, Jianmin Zheng, and
Jianfei Cai. Objectsdf++: Improved object-compositional
neural implicit surfaces, 2023. 3

Haiyang Ying, Yixuan Yin, Jinzhi Zhang, Fan Wang, Tao
Yu, Ruqi Huang, and Lu Fang. Omniseg3d: Omniversal 3d
segmentation via hierarchical contrastive learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20612-20622, 2024. 1

	. Discussion
	. Mask Propagation
	. Computational efficiency

	. Runtime analysis
	. Dataset
	. Real-world dataset creation
	Individual mesh scanning.
	Scene capture.

	. Synthetic data creation

	. Rejection sampling
	. Ablation
	. Effect of mask propagation on object reconstruction:
	. Effect of increasing number of SDF parameters of baselines

	. Additional Results
	. Implementation details
	. Coreset Algorithm
	. Partial depth ordering

