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Supplementary Material to
“A spherical analysis of Adam with Batch Normalization”

A RADIAL INVARIANCE OF FILTERS WITH BN

In this section, we show the radial invariance of a set of filters equipped with BN. Please note that the
following notations are specific and restricted to this section.

For the sake of simplicity, we only consider the case of a convolutional layer that preserves the spatial
extension of the input. We also focus on a single filter. Since all filters act independently on input
data, the following calculation holds for any filter.

Let x ∈ RC×K be the parameters of a single filter, where C is the number of input channels and K
is the kernel size. During training, this layer is followed by BN and applied to a batch s ∈ RB×C×D
of B inputs of spatial size D. The output of the convolution operator φ applied to a filter x ∈ RC×K
and to a given batch element sb ∈ RC×D, with b ∈ J1, BK, is thus:

tb
def
= φ(x, sb) ∈ RD. (21)

The application (x, sb) 7→ φ(x, sb) is bilinear. BN then centers and normalizes the output t using the
mean and variance over the batch and the spatial dimension:

µ =
1

BD

∑
b,j

tb,j , (22)

σ2 =
1

BD

∑
b,j

(tb,j − µ)
2
, (23)

t̂b
def
= (σ2 + ε)

−1/2 (tb − µ1D) , (24)
where 1D denotes the all-ones vector of dimension D and ε is a small constant.

Now if the coefficients of the filter are rescaled by ρ > 0, then, by bilinearity, the new output of the
layer for this filter verifies:

t̃b = φ(ρx, sb) = ρφ(x, sb). (25)
Since the variance of inputs is generally large in practice, for small ε, the mean and variance are:

µ̃ = ρµ, (26)

σ̃2 ≈ ρ2σ2. (27)

It can then be considered that the subsequent BN layer is invariant to this rescaling, i.e., ˆ̃tb ≈ t̂b.

B EXTENSION TO OTHER NORMALIZATION LAYERS

The radial invariance for BN described above in Appendix A applies as well to InstanceNorm (IN)
(Ulyanov et al., 2016) as the normalization is also done with respect to channels but without the
batch dimension. Regarding LayerNorm (Ba et al., 2016) (LN), the normalization is performed over
all channels and the entire weight layer can thus be rescaled too, without impacting the output. As
for GroupNorm (Wu & He, 2018) (GN), it associates several channels for normalization; the radial
invariance in this case concerns the corresponding group of filters.

Thanks to this general property of radial invariance, the results in this paper not only concern BN but
also IN. In fact, they apply as well to LN and GN when considering the suitable group of parameters.
The optimization in this case concerns the proper slice of the parameter tensor of the layer, i.e., the
whole tensor for LN, and the selected group of filters for GN.

C RESULTS IN SECTIONS 2 AND 3

In this section, we provide proofs and/or empirical results supporting the claims in Sections 2 and 3
of the paper.
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In the following, the double parentheses around an equation number, e.g., ((10)), indicate that we
recall an equation that was previously stated in the main paper, rather than introduce a new one,
e.g., noted (28). Also, framed formulas actually refer to results stated in the main paper, thus with
double-bracket equation numbering.

C.1 PROOF OF THEOREMS AND VALIDITY OF ASSUMPTIONS

C.1.1 PROOF OF THEOREM 2 (IMAGE STEP ON Sd−1) IN SECTION 2.3

We recall the main theorem in Section 2.3.

Theorem 2 (Image step on Sd−1) The update of a group of radially-invariant parameters xk at
step k corresponds to an update of its projection uk on Sd−1 through an exponential map at uk
with velocity ηekc

⊥
k at order 3:

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
, ((10))

where Expuk
is the exponential map on Sd−1, and with

ck
def
= rkak �

bk

d−1/2‖bk‖
, ηek

def
=

ηk

r2kd
−1/2‖bk‖

(
1− ηk〈ck,uk〉

r2kd
−1/2‖bk‖

)−1
. ((11))

More precisely:

uk+1 =
uk − ηekc⊥k√

1 + (ηek‖c⊥k ‖)2
. ((12))

Proof. To simplify the calculation in the demonstration, we introduce the following notation:

Ak
def
=

ηk

r2kd
−1/2‖bk‖

. (28)

We first demonstrate the expression for the radius dynamics in Eq. (14) and the precise step for u
in Eq. (12). Then we use geometric arguments and a Taylor expansion to derive the update on the
sphere stated in Eq.(10).

Radius dynamics. We first show Eq. (14), which we recall here using the Ak notation:

rk+1

rk
= (1−Ak〈ck,uk〉)

√
1 + (ηek‖c⊥k ‖)2. ((14))

First, we rewrite the step of a generic scheme in Eqs. (3-4) along the radial and tangential directions
and separate the division vector bk into its deformation bk

d−1/2‖bk‖
and its scalar scheduling effect

d−1/2‖bk‖, as stated in the discussion:

rk+1uk+1 = rkuk −
ηk

d−1/2‖bk‖
ak �

bk

d−1/2‖bk‖

= rk

[
uk −

ηk

r2kd
−1/2‖bk‖

rkak �
bk

d−1/2‖bk‖

]
= rk

[
uk −Akrkak �

bk

d−1/2‖bk‖

]
. (29)

We can note the appearance of a new term rkak. The vector ak is a gradient momentum and therefore
homogeneous to a gradient. Using Lemma 1, rkak is homogeneous to a gradient on the hypersphere
and can be interpreted as the momentum on the hypersphere.
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From Eq. (29), we introduce ck (the deformed momentum on hypersphere) as in Eq. (11) and
decompose it into the radial and tangential components. We have:

rk+1

rk
uk+1 = uk −Akck

= (1−Ak〈ck,uk〉)uk −Akc⊥k . (30)

By taking the squared norm of the equation, we obtain:

r2k+1

r2k
= (1−Ak〈ck,uk〉)2 +

(
Ak‖c⊥k ‖

)2
. (31)

Making the assumption that 1−Ak〈ck,uk〉 > 0, which is true in practice and discussed in the next
subsection, we have:

rk+1

rk
= (1−Ak〈ck,uk〉)

√
1 +

(
Ak

1−Ak〈ck,uk〉
‖c⊥k ‖

)2

. (32)

After introducing ηek = Ak

(1−Ak〈ck,uk〉) as in Eq. (11), we obtain the result of (14).

Update of normalized parameters. We then show Eq. (12):

uk+1 =
uk − ηekc⊥k√

1 + (ηek‖c⊥k ‖)2
. ((12))

Combining the radius dynamics previously calculated with Eq. (30), we have:

uk+1 =
(1−Ak〈ck,uk〉)uk −Akc⊥k

(1−Ak〈ck,uk〉)
√

1 + (ηek‖c⊥k ‖)2
(33)

=
uk − Ak

1−Ak〈ck,uk〉c
⊥
k√

1 + (ηek‖c⊥k ‖)2
. (34)

Hence the result (12) using the definition of ηek.

This result provides a unique decomposition of the generic step as a step in span(uk, c
⊥
k ) for the

normalized filter (Eq. (12)) and as a radius update (Eq. (14)).

We split the rest of the proof of the theorem in three parts.

Distance covered on the sphere. The distance covered on the hypersphere Sd−1 by an optimization
step is:

distSd−1
(uk+1,uk) = arccos(〈uk+1,uk〉). (35)

From Eq. (12) and with Lemma 1, we also have:

〈uk+1,uk〉 =
1√

1 + (ηek‖c⊥k ‖)2
. (36)

Therefore, distSd−1
(uk+1,uk) = ϕ(ηek‖c⊥k ‖) where ϕ : z 7→ arccos

(
1√

1+z2

)
, which is equal to

arctan on R+. Then a Taylor expansion at order 3 of arctan yields for ηek‖c⊥k ‖:

distSd−1
(uk+1,uk) = ηek‖c⊥k ‖+O

((
ηek‖c⊥k ‖

)3)
. (37)

The Taylor expansion validity is discussed in the next subsection.

Exponential map on the sphere. Given a Riemannian manifoldM, for a point u ∈M there exists
an open set O of the tangent space TuM containing 0, such that for any tangent vector w ∈ O
there is a unique geodesic (a path minimizing the local distance onM when conserving the tangent
velocity) γ : [−1, 1]→M that is differentiable and such that γ(0) = u and γ′(0) = w. Then, the
exponential map of w from u is defined as Expu(w) = γ(1).
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In the case of the manifold Sd−1, the geodesics are complete (they are well defined for any point
u ∈ Sd−1 and any velocity w ∈ TuSd−1) and are the great circles: for any u ∈ Sd−1 and any
w ∈ TuSd−1, the map ψ : t ∈ R 7→ Expu(tw)) verifies ψ(R) = Sd−1 ∩ span({u,w}) which is a
great circle passing through u with tangent w. Furthermore, since the circumference of the great
circle is 2π, we have that for any p ∈ Sd−1\{−u} there is a unique w verifying ‖w‖ < π such that
p = Expu(w) and we have:

distSd−1
(u,p) = ‖w‖ and 〈p,w〉 ≥ 0. (38)

Optimization step as an exponential map. We will use the previously stated differential geometry
properties to prove:

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
. ((10))

For an optimization step we have:

• by construction, c⊥k ∈ Tuk
Sd−1;

• from Eq. (12), uk+1 ∈ Sd−1 ∩ span({uk, c⊥k });
• from Eq. (12), 〈uk+1, c

⊥
k 〉 ≤ 0.

Then, there exists α that verifies ‖αc⊥k ‖ < π such that:

uk+1 = Expuk

(
αc⊥k

)
. (39)

From Eq. (38), because 〈uk+1, c
⊥
k 〉 ≤ 0, we have α < 0. We also have that ‖αc⊥k ‖ =

distSd−1
(uk+1,uk). Then, using the distance previously calculated in Eq. (37), we have:

|α|‖c⊥k ‖ = ηek‖c⊥k ‖+O
((
ηek‖c⊥k ‖

)3)
, (40)

|α| = ηek

[
1 +O

((
ηek‖c⊥k ‖

)2)]
. (41)

Combining the sign and absolute value of α, we get the final exponential map expression:

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
, ((10))

≈ Expuk

(
−ηekc⊥k

)
. (42)

Note that we implicitly assume here that |α|‖c⊥k ‖ ≈ ηek‖c⊥k ‖ < π, which is discussed in the next
subsection.

C.1.2 VALIDITY OF THE ASSUMPTIONS IN THEOREM 2

Sign of 1 − Ak〈ck,uk〉. We tracked the maximum of the quantity Ak〈ck,uk〉 for all the filters
of a ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M or Adam (see Appendix
?? for implementation details). As can be seen on Fig. 4, this quantity is always small compared
to 1, making 1−Ak〈ck,uk〉 always positive in practice. The order of magnitude of this quantity is
roughly the same for different architectures and datasets.

Taylor expansion. We tracked the maximum of the quantity ηek‖c⊥k ‖ for all the filters of a ResNet20
CIFAR trained on CIFAR10 and optimized with SGD-M or Adam. The observed values justify the
Taylor expansion and validate the assumption |α|‖c⊥k ‖ ≈ ηek‖c⊥k ‖ < π. (cf. Fig 5). The order of
magnitude of this quantity is roughly the same for other different architectures and datasets.

C.1.3 νk , ORDER 2 MOMENT ON THE HYPERSPHERE FOR ADAM

Scheduling effect of Adam division vector. With Eq. (64) and using Lemma 1, we can give the
expression of the second-order moment on the sphere, defined as νk = rkd

−1/2‖bk‖:

νk =d−1/2 1− βk+1
1

1− β1

( 1− β2
1− βk+1

2

)1/2( k∑
i=0

βk−i2

r2k
r2i
‖∇L(ui) + λr2i ui‖2

)1/2

. (43)
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Figure 4: Tracking of Ak〈ck,uk〉 for SGD-M and Adam. The above graphs show the maximum of the
absolute value ofAk〈ck,uk〉 for all filters in all layers of a ResNet20 CIFAR trained on CIFAR10 and optimized
with SGD-M (left) or Adam (right). The quantity is always small compared to 1. Therefore we may assume that
1−Ak〈ck,uk〉 ≥ 0.

Figure 5: Tracking of ηek‖c⊥k ‖ for SGD-M and Adam. The above graphs show the maximum of the absolute
value of ηek‖c⊥k ‖ for all filters in all layers of a ResNet20 CIFAR trained on CIFAR10 and optimized with
SGD-M (left) or Adam (right).

C.1.4 PROOF OF THEOREM 4 (SGD EQUIVALENT SCHEME ON THE UNIT HYPERSPHERE) IN
SECTION 3.2

We prove the following theorem:

Theorem 4 (SGD equivalent scheme on the unit hypersphere.) For any λ > 0, η > 0, r0 > 0,
we have the following equivalence at order 2 in the radius dynamics:

(SGD)
x0 = r0u0

λk = λ
ηk = η

is scheme-equivalent at order 2 to


(AdamG*)
x0 = u0

β = (1− ηλ)4

ηk = (2β)−1/2

v0 = r40(2η2β1/2)−1

Proof. As summarized in Table 1, the expressions of the effective learning rates and directions for
SGD are c⊥k = rk∇L(xk) = ∇L(uk) and ηek = ηk

r2k(1−ηkλk)
.

Equivalence with SGD and L2 regularization. We look for conditions leading to an equivalence
between SGD with L2 regularization and SGD without L2 regularization. Using Lemma 3, the
equality of effective directions is trivial and the equality of effective learning rates for any step k
yields the following equivalence:

(SGD)
x̃0 = r0u0

λ̃k = λ
η̃k = η

is scheme-equivalent to


(SGD)
x0 = r0u0

λk = 0
ηk = η(1− ηλ)−2k−1

(44)

L2 regularization is equivalent to an exponential scheduling of the learning rate, as found in Li &
Arora (2020). Here, we provide a proof in a constructive manner. We are going to use Lemma 3 and
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find a sufficient condition to have:{
(i) u0 = ũ0

(ii) ∀k ≥ 0, ηek = η̃ek, c
⊥
k = c̃⊥k .

Equation (i) is trivially satisfied by simply taking the same starting point: x̃0 = x0.

Regarding (ii), because effective directions are the same and only depend on uk, we only need a
sufficient condition on ηek. For effective learning rates, using Eq. ((14)) and expressions in Table 1,
we have:

ηek = η̃ek ⇔
ηk
r2k

=
η̃k

r̃2k(1− η̃kλ)
. (45)

Since η̃k = η, we obtain:

(45)⇔ ηk =

(
rk
r̃k

)2
η

(1− ηλ)
.

Therefore:

ηk+1

ηk
=

(
rk+1r̃k
r̃k+1rk

)2

=

(
rk+1/rk
r̃k+1/r̃k

)2

.

By using the radius dynamics in Eq. (14) for the two schemes, SGD and SGD with L2 regularization,
and by the equality of effective learning rates and directions, we have:

ηk+1

ηk
=


√

1 + (ηek‖c⊥k ‖)2

(1− ηλ)

√
1 + (η̃ek‖c̃⊥k ‖)2

2

= (1− ηλ)−2.

By taking Eq. (45) for k = 0, because r0 = r̃0 we have: η0 = η(1− ηλ)−1. Combining the previous
relation and the initialization case, we derive by induction that ηk = η(1− ηλ)−2k−1 is a sufficient
condition. We can conclude, using Lemma 3, the equivalence stated in Eq. (44).

Resolution of the radius dynamics. Without L2 regularization, the absence of radial component in
ck makes the radius dynamics simple:

r2k+1 = r2k +
(ηk‖∇L(uk)‖)2

r2k
. (46)

With a Taylor expansion at order 2, we can show that for k ≥ 1 the solution r2k =√
2
∑k−1
i=0 (ηi‖∇L(ui)|)2 + r40 satisfies the previous equation. Indeed using the expression at step

k + 1 gives:

r2k+1 =

√√√√2

k−1∑
i=0

(ηi‖∇L(ui)|)2 + r40 + 2(ηk‖∇L(uk)‖)2

= r2k

√
1 + 2

(ηk‖∇L(uk)‖)2
r4k

= r2k

(
1 + (1/2)2

(ηk‖∇L(uk)‖)2

r4k
+ o

(
(ηk‖∇L(uk)‖)2

r4k

))
= r2k +

(ηk‖∇L(uk)‖)2

r2k
+ o

(
(ηk‖∇L(uk)‖)2

r2k

)
.
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Figure 6: Validity of Taylor expansion. We tracked the maximum value of (ηk‖∇L(uk)‖)2/r2k for all filters
in all layers of a ResNet20 CIFAR trained on CIFAR10 with SGD. The order of magnitude of the gradient is
roughly the same for other architectures or datasets. It empirically validates the approximation by the Taylor
expansion.

Using ηk = η(1 − ηλ)−2k−1, introducing β = (1 − ηλ)4, omitting the o
(

(ηk‖∇L(uk)‖)2
r2k

)
and

injecting the previous solution in the effective learning rate, we obtain the closed form:

ηek =
η(1− ηλ)−2k−1√

2
∑k−1
i=0 η

2(1− ηλ)−4i−2‖∇L(ui)‖2 + r40

=
(2β)−

1
2√∑k−1

i=0 β
(k−1)−i‖∇L(ui)‖2 + βk

r40

2η2β
1
2

. (47)

AdamG*. The AdamG* scheme is constrained on the hypersphere thanks to the normalization; the
radius is therefore constant and equal to 1. The absence of radial component in the update gives:
c⊥k = ∇L(uk) and ηek = ηk√

vk
. Thus, the resolution of the induction on vk leads to the the closed

form:

ηek =
ηk√∑k−1

i=0 β
(k−1)−i‖∇L(ui)‖2 + βkv0

. (48)

Hence the final theorem, when identifying the closed-form expressions of effective learning rates and
using Lemma 3.

C.1.5 VALIDITY OF THE ASSUMPTIONS IN THEOREM 4

Validity of the Taylor expansion. We tracked, for a CNN trained with SGD, the quantity
(ηk‖∇L(uk)‖)2/r2k, which is the variable of the Taylor expansion. As can be seen in Figure 6,
the typical order of magnitude is 10−2, justifying the Taylor expansion.

A quick formal analysis also suggests the validity of this hypothesis. Thanks to the expression of
ηk = (1 − ηλ)−2i−kη shown in the previous section, if we replace ‖∇L(uk)‖ by a constant for
asymptotic analysis, the comparison becomes:

(1− ηλ)−4k−2 � (1− ηλ)−2
1− (1− ηλ)−4k

1− (1− ηλ)−4
(49)

1� 1− (1− ηλ)4k

(1− ηλ)−4 − 1
. (50)

It is asymptotically true.
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D RESULTS IN SECTION 4 (GEOMETRIC PHENOMENA IN ADAM
OPTIMIZATION)

D.1 RESULTS IN SECTION 4.2 (IDENTIFICATION OF GEOMETRICAL PHENOMENA IN ADAM)

Decomposition of the effective direction. We decompose the effective direction as a gradient term
and an L2 regularization term:

cgrad
k = ∇L(uk) +

k−1∑
i=0

βk−i
rk
ri
∇L(ui), ((17))

cL2

k = uk +

k−1∑
i=0

βk−i
ri
rk

ui. ((17))

Note that these expressions highlight the main terms at step k and the dependency on ri.

Developing the recurrence in Eq (4), we obtain:

ak =

k∑
i=0

βk−i (∇L(xi) + λxi) . (51)

Using Lemma 1 and decomposing on∇L(ui) and ui, we have:

ak =

k∑
i=0

βk−i
(

1

ri
∇L(ui) + λriui

)
(52)

=
1

rk

(
k∑
i=0

βk−i
(
rk
ri
∇L(ui) + λrkriui

))
. (53)

Thus:

rkak =

k∑
i=0

βk−i
rk
ri
∇L(ui) + λr2k

k∑
i=0

βk−i
ri
rk

ui, (54)

which leads to the expression of cgradk and cL2

k when we define ck
def
= rkak � bk

d−1/2‖bk‖
(Eq. (11)).

D.2 RESULTS IN SECTION 4.2 (EMPIRICAL STUDY)

Clarification on Adam without deformation of gradients (a). Following Theorem 2, the division
vector bk has two contributions in the decomposition:

• a deformation in ck applied to ak: ck = rkak � bk

d−1/2‖bk‖
;

• a scheduling effect in the effective learning rate d−1/2‖bk‖ (Eq. (11)).

The goal is to find a new division vector S(bk) that does not create a deformation while preserving
the scheduling effect of bk in the effective learning rate. This means:

S(bk)

d−1/2‖S(bk)‖
= [1 · · · 1]>, (55)

d−1/2‖S(bk)‖ = d−1/2‖bk‖. (56)

This leads to S(bk) = d−1/2‖bk‖[1 · · · 1]>.

In the case of β1 = 0, ak = ∇L(xk), for any bk. When we apply the standardization, we obtain:

ck = rk∇L(xk)� S(bk)

d−1/2‖S(bk)‖
= ∇L(uk)� [1 · · · 1]> = ∇L(uk). (57)
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The direction lies in the tangent space because, by Lemma 1, the gradient belongs to it.

In the generic scheme, using the standardization gives:

xk+1 = xk − ηkak � S(bk) (58)

= xk − ηkak � (d−1/2‖bk‖[1 · · · 1]>) (59)

= xk − ηkak/(d−
1/2‖bk‖). (60)

This means that the standardization consists in replacing the Hadamard division by bk with a scalar
division by d−1/2‖bk‖.
In the case of Adam, we recall that:

bk =
1− βk+1

1

1− β1

√
vk

1− βk+1
2

+ ε . ((9))

Omitting ε for simplicity we have:

d−1/2‖bk‖ =
1− βk+1

1

1− β1

(
1

1− βk+1
2

) 1
2

d−1/2‖
√
vk‖. (61)

Let us calculate ‖√vk‖. Developing the recursion of vk, as defined in Eq. (8), leads to:

vk = (1− β2)

k∑
i=0

βk−i2 (∇L(xi) + λxi)
2
, (62)

√
vk =

√
1− β2

√√√√ k∑
i=0

βk−i2 (∇L(xi) + λxi)
2
, (63)

where the square and the square-root are element-wise operations. Hence, if we take the square norm:

‖
√
vk‖2 = (1− β2)

d∑
j=1


√√√√ k∑

i=0

βk−i2 (∇L(xi) + λxi)
2

2

j

= (1− β2)

d∑
j=1

k∑
i=0

βk−i2 (∇L(xi) + λxi)
2
j

= (1− β2)

k∑
i=0

βk−i2

d∑
j=1

(∇L(xi) + λxi)
2
j

= (1− β2)

k∑
i=0

βk−i2 ‖∇L(xi) + λxi‖2, (64)

where the j subscript denotes the j-th element of the vector. It is exactly the order-2 moment of the
gradient norm.

Therefore, we define the scalar vk:

vk = β2vk−1 + (1− β2)d−1‖∇L(xk) + λxk‖2, (65)

which is the order-2 moment of the gradient norm with a factor d−1. It verifies
√
vk = d−1/2‖√vk‖,

needed for the scalar division stated in Eq. (61). By applying the bias correction, it gives the formula
given in the paper of Adam w/o (a):

xk+1 = xk − ηk
mk

1− βk+1
1

/

√
vk

1− βk+1
2

+ ε, (66)

mk = β1mk−1+(1− β1)(∇L(xk) + λxk), (67)

vk = β2vk−1 + (1− β2)d−1‖∇L(xk) + λxk‖2. (68)
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Note that the previous demonstration makes the factor d−1 appear in vk to have exactly the scheduling
effect of Adam without the deformation.

Clarification on Adam without deformed gradients and no additional radial terms (ab).

We introduce the rescaling and transport transformation of the momentum to neutralize the identified
effects on the effective direction (cf. Section 4.2). The resulting, new ck is orthogonal to uk and does
not contribute in the effective learning rate tuning with its radial part.

To avoid gradient history leaving the tangent space and thus neutralize (b), we perform a parallel
transport of the momentum ak−1 from the corresponding point on the sphere uk−1 to the new point
uk denoted as Γuk

uk−1
(ak−1) at each iteration k ≥ 1. Figure 12(c) illustrates the transport of a gradient.

The parallel transport between two points associates each vector of the tangent space of the first point
to a vector of the second tangent space by preserving the scalar product with the derivatives along the
geodesic. Consequently, the gradients accumulated in the resulting momentum now lie in the tangent
space of uk at each step. This neutralizes the additional radial terms phenomena from cgrad

k . Since
uk−1, uk and ak are coplanar, the transport of the momentum on the hypersphere can be expressed
as a rotation:

T(ak−1)
def
= Γuk

uk−1
(ak−1)=〈uk−1,uk〉ak−1 − 〈ak−1,uk〉uk−1, (69)

ak = βT(ak−1) +∇L(xk) + λxk. (70)

Although the transport operation is strictly defined on the tangent space only, the scalar product
formulation enables its extension to the whole space. The transformation is linear and T(uk−1) = 0.
We thus have:

T(ak−1 − λuk−1) = T(ak−1). (71)

In the previous formulation, we see that the L2 component is not transported and does not contribute
in the new momentum. Finally, the momentum only contains the contribution of the current L2

regularization. This means that the RT transformation decouples the L2 regularization and thus
neutralizes the additional radial terms from cL2

k .

Clarification on Adam without deformed gradients, no additional radial terms and no radius
ratio (abc).

To avoid the ratio rk
ri

in the effective learning direction and thus to cancel (c), we rescale the
momentum in the update by the factor rk−1

rk
at each iteration k ≥ 1. From Lemma. 1, we obtain:

R(ak−1)
def
=

rk−1
rk

ak−1 (72)

ak = βR(ak−1) +∇L(xk) + λxk (73)

=
1

rk

( k∑
i=0

βk−i(∇L(uk) + λrkriui)
)
. (74)

Note that now, the factor rk
ri

is not contained anymore in the gradient contribution of ck = rkak,
which neutralizes the radius ratio phenomenon.

We can note that R and T are commutative and that we can combine them in a simple concise scalar
expression:

RT(ak−1)
def
=
〈xk,xk−1〉ak−1 − 〈xk,ak−1〉xk−1

〈xk,xk〉
, (75)

ak = βRT(ak−1) +∇L(xk) + λxk. (76)

This new momentum leads to ck = cRTk + r2kλuk with 〈ck,uk〉 = λr2k and c⊥k = cRTk . The latter
relies only on the trajectory on the hypersphere and always lies in the tangent space:

cRTk = βΓuk
uk−1

(cRTk−1) +∇L(uk). (77)
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The final Adam w/o (abc) scheme reads:

xk+1 = xk − ηk
mk

1− βk+1
1

/

√
vk

1− βk+1
2

+ ε, (78)

mk = β1RT(mk−1)+(1− β1)(∇L(xk) + λxk), (79)

vk = β2
r2k−1
r2k

vk−1 + (1− β2)d−1‖∇L(xk) + λxk‖2. (80)

We also rescale the introduced scalar vk at each step with the factor r
2
k−1

r2k
. This removes the radius

from the gradient contribution of the scheduling νR = rkvk, in contrast with νk from Eq. (43). The
new scheduling effect reads:

νRk = d−1/2 1− βk+1
1

1− β1

√
1− β2

1− βk+1
2

( k∑
i=0

βk−i2 ‖∇L(ui) + λrirkui‖2
)1/2

.

D.3 TRAINING AND IMPLEMENTATION DETAILS

To assess empirically the significance of the above phenomena in the context of CNNs with BN, we
evaluate the different variants of AdamW, AdamG, Adam w/o (a), w/o (ab), w/o (abc) over a variety
of datasets and architectures.

Note that the set of parameters θ of a CNN with BN layers can be split in two disjoint subsets:
θ = F ∪ R, where F is the set of groups of radially-invariant parameters and R the remaining
parameters. As demonstrated in Appendix A, the subset F includes parameters of all filters followed
by BN. Since we are only interested in comparing optimization on F , Adam variants w/o (a), w/o
(ab), w/o (abc), AdamW AdamG are applied only to the optimization of the parameters in F whereas
the ones in R are optimized with the original Adam scheme. The algorithm of Adam w/o (abc) is
illustrated in Algorithm 1.

For each optimization scheme, each dataset and each architecture, the same grid search range and
budget was performed while mini-batch size was fixed. We used a mini-batch size of 128 for SVHN,
CIFAR10 and CIFAR100. The learning rates η varied in {10−4, 10−3, 10−2, 10−1}, the weight decay
in 10−3 · {0, 1

128 ,
1
64 ,

1
32 ,

1
32 ,

1
16 ,

1
8 ,

1
4} (similar to Loshchilov & Hutter (2019)), the momentum was

fixed to 0.9 (β1 for variants of Adam) and the order-two moment β2 in {0.99, 0.999, 0.9999} (as in
Kingma & Ba (2015)).

We used the same step-wise learning rate scheduler for each method. For SVHN, CIFAR10 and
CIFAR100, models were trained for 405 epochs, and the learning rate multiplied by 0.1 at epochs
135, 225 and 315.

The optimization schemes introduced in this paper do not change the complexity in time of the
algorithm. During the update of parameters in a layer, we only do a temporary copy of the parameter
tensor just before the update to perform the RT transformation. This temporary copy is flushed after
the RT transformation. Nothing permanent is stored in the optimizer.

Note that, for each architecture and each dataset, the same learning rate was systematically found for
each method while the momentum factor was fixed at 0.9 (cf. Table 3).

Other hyperparameters, e.g., L2 regularization and order-2 moment, are illustrated in Table 4.

D.4 ADDITIONNAL EMPIRICAL RESULTS

In this section we provide the mean loss training curves associated to Table 2 for every Adam variant.
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Table 3: Best learning rate and momentum factor. We systematically found the same learning rate for each
dataset and architecture while the momentum factor was fixed to 0.9.

Method η0 β, β1
Adam w/o (a) 0.001 0.9
Adam w/o (ab) 0.001 0.9
Adam w/o (abc) 0.001 0.9

Adam 0.001 0.9
AdamW 0.001 0.9
AdamG 0.01 0.9

Algorithm 1 Adam w/o (abc) and its algorithm illustrated for a filter x ∈ Rd followed by BN. Steps
that are different from Adam are shown in highlight . For non-convolutional layers we use standard
Adam.
Require: β1, β2 ∈ [0, 1); λ, η ∈ R; L(x)

1: initialize step k ← −1; mk ← 0; vk ← 0; x ∈ Rd
2: while stopping criterion not met do
3: k ← k + 1
4: g← ∇L(xk) + λxk
5: mk ← β1mk−1 + (1− β1)g

6: vk ← β2vk−1 + (1− β2)d−1g>g
7: m̂←mk/(1− βk+1

1 )

8: v̂ ← vk/(1− βk+1
2 )

9: xk+1 ← xk − ηm̂/(
√
v̂ + ε)

10: mk ←mk(x>k+1xkmk −m>k xk+1xk)/(x>k+1xk+1)

11: vk ← vk(x>k xk/x
>
k+1xk+1)

12: return resulting parameters xk

Table 4: Best L2 regularization (λ) and order-2 moment factors (β2).

Setup Adam AdamW AdamG Adam w/o (a) Adam w/o (ab) Adam w/o (abc)

CIFAR10

ResNet20
λ 0.000250 0.000500 0.000125 0.000031 000125 0.000500
β2 0.99 0.99 0.99 0.99 0.99 0.99

ResNet18
λ 0.000250 0.000008 0.000063 0.000250 000125 0.000016
β2 0.999 0.99 0.99 0.99 0.99 0.99

VGG16
λ 0.000250 0.000031 0.000250 0.000063 0.0 0.000031
β2 0.999 0.999 0.999 0.999 0.99 0.999

CIFAR100
ResNet18

λ 0.000125 0.000125 0.000125 0.000125 000125 0.0
β2 0.999 0.99 0.99 0.99 0.99 0.999

VGG16
λ 0.000063 0.000016 0.000063 0.000063 000125 0.000008
β2 0.99 0.99 0.99 0.99 0.99 0.99

SVHN
ResNet18

λ 0.0 0.000008 0.000500 0.000031 0.0005 0.000008
β2 0.999 0.999 0.99 0.99 0.999 0.999

VGG16
λ 0.0 0.000031 0.000500 0.000008 0.00025, 0.000250
β2 0.99 0.99 0.99 0.99 0.99 0.999
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Figure 7: Training speed comparison with ResNet18 on CIFAR10. Left: Mean training loss over all training
epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 2 for the corresponding accuracies.

Figure 8: Training speed comparison with VGG16 on CIFAR10. Left: Mean training loss over all training
epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 2 for the corresponding accuracies.

Figure 9: Training speed comparison with ResNet18 on CIFAR100. Left: Mean training loss over all
training epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please
refer to Table 2 for the corresponding accuracies.
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Figure 10: Training speed comparison with VGG16 on CIFAR100. Left: Mean training loss over all training
epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 2 for the corresponding accuracies.

Figure 11: Training speed comparison with ResNet18 on SVHN. Left: Mean training loss over all training
epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 2 for the corresponding accuracies.

Figure 12: Training speed comparison with VGG16 on SVHN. Left: Mean training loss over all training
epochs (averaged across 5 seeds) for different Adam variants. Right: Zoom-in on the last epochs. Please refer to
Table 2 for the corresponding accuracies.
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