Appendices

A Preliminary Remarks

B Proofs of the Theoretical Results
B.1 Proofsof Lemmas 1,2,and3
B.2 Proofsof Theorems land2.0

C Proofs of the Results about Optimal Baselines
C.1 Proofof Theorem3
C.2 Remarks about the surrogate optimal baseline

C.3 Proofof Theorem4 e
D Pytorch Implementations of the Optimal Baseline
E Computations for the Numerical Toy Example

F Detailed Hyper-parameter Settings for Experiments

14

15

16
16
18

21
21
22
23

25

26

29

A Preliminary Remarks

Remark 1. The multi-agent state-action value function obeys the bounds

‘Qg,...,ik (S7a(i1,...,ik))‘ < B forall s € S, aliti) g Alivin)
-7

Proof. 1t suffices to prove that, for all ¢, the total reward satisfies | R;| < %, as the value functions
are expectations of it. We have

o0 o0 o0 ﬁ
Rl — ky < ky < kg_ P
| Ry Z’Y t+k_Z|’Y t+k‘_275 1—~
k=0 k=0 k=0
O
Remark 2. The multi-agent advantage function is bounded.
Proof. We have
‘Ag,...,ik (87a(jl,...,jm)’a(il,...,ik))‘
_ ‘lewufjm»ilv'wik (S’a(jl;~~7j'm7i17'~~)ik)> _ Q‘glp-wjm (s,a(jlwnx.j'm)‘
< ‘Qje‘l,...,jm,il,...,ik (8’a(jl,...,jm,il,...,ik.))‘ n ‘Qél,...,jm (S’a(jl,...,jmﬂ < 23
I—v
O

Remark 3. Baselines in MARL have the following property
Esvat anme [b(s,a™") Vgilogmg(a’ls)] = 0.
Proof. We have
Eqat,amm, [0 (s;a7") Vi log my(a’ls)] = Byt ainms {b (5,87") Eyiors [Voi log 7rf;,(ai|s)ﬂ :
which means that it suffices to prove that for any s € S
Eyivrj [Voi logmp(a'ls)] = 0.

We prove it for continuous A, The discrete case is analogous.

Eoioms [Vi log my(a’|s)] = /A’_ Ty (a’|s) Vi log mp(a'|s) da’

= / Voimg (a'|s) da' =V / Ty (a’|s) da' = Vgi(1) =0
At At

15

B Proofs of the Theoretical Results

B.1 Proofs of Lemmas 1, 2, and 3

In this subsection, we prove the lemmas stated in the paper. We realise that their application to
other, very complex, proofs is not always immediately clear. To compensate for that, we provide the
stronger versions of the lemmas; we give a detailed proof of the strong version of Lemma 1 which is
supposed to demonstrate the equivalence of the normal and strong versions, and prove the normal
versions of Lemmas 2 & 3, and state their stronger versions as remarks to the proofs.

Lemma 1 (Multi-agent advantage decomposition). For any state s € S, the following equation holds
for any subset of m agents and any permutation of their labels,

A(I,""’m (s,a(l""’m)) = ZA@ (S,G(l""’ifl),aﬁ .
=1

Proof. We prove a slightly stronger, but perhaps less telling, version of the lemma, which is

Agttem (s al k) gktLs..) = Z Ap (s,a(l""’i_l),ai). (13)
i=k+1
The original form of the lemma will follow from the above by taking k£ = 0.
By the definition of the multi-agent advantage, we have

_ Qé,...,k,k-&-l,.“,m (8 Lokt)) _ Qé,...,k (S7a(1,...,k))

which can be written as a telescoping sum

Il
o
=
—
)
Q
=
Q@
N

Lemma 2. For any state s € S we have

Varawﬂ'g AG S a ZEalwﬂ' Lat— 1N7" |:VarleTr |:A9 (S a(l’“"i_l),ai>:|:| '

Proof. The trick of this proof is to develop a relation on the variance of multi-agent advantage which
is recursive over the number of agents. We have

Vara.r, [Ae(s,a)] = Var, R [Atla n (573'(1,“.,77,)):'

2
= 1,...n 1,....n
S [E [(s.atm)’

2 2
. EanNﬂ—g [Aé,n <S7a(1,...,n))} +Ea”~ﬂ—g [A;,m (873(1"“@))] ‘|

alror),.an =Lt [Vardnwﬂ {Al (S’a(l,...,n)):H

2
+Ea1wﬂ,9 Lan |:A1 on—1 (s7a(1"“’”_1)> :|

=E

16

which, by the stronger version of Lemma 1, given by Equation 13, applied to the first term, equals

Eqo s [Varanwﬂn {Ae (s all- n—1)’an)H

At~ g,..at T

2
+]E2‘11N71'é .,an— 1~ﬂ. |:A1 o7 (S,a(l’”"nil)) :|

Hence, we have a recursive relation

1,...
Varalwﬂé7...,a”~7rg |:A97 " (s’a(l,...,n)>:|

= Ealmr},,...,a"—lwrg‘l [Varanwrrg [AZ (s,a(l,...,n—1)7an)”
1,. 1,...,n—1
JFVaraané,...,an Lo? [A (s,a(n))}

from which we can obtain
VaralN7r vy [Al (s, a(l’”"”)”

E i 1,...,i—1 i
= Ea1N7r17...,ai*1N7r271 {Vara,:wﬂé |:A10 (S, a(FERRTY)’ al):|:|
i=1

O
Remark 4. Lemma 2 has a stronger version, coming as a corollary to the above proof; that is
1, 1. 1.,
Varak+1w7rlec+1 At~y |:Ak+ (570,() 7k)7a(k+ s n))}
n
Lok k41,.6—1 i
D e O T} | P CED
i=k+1

We think of it as a corollary to the proof of the lemma, as the fixed joint action a~* has the same
algebraic properites, throghout the proof, as state s.

Lemma 3. For any state s € S, we have

VaI'aNﬂ-e [Ag(s,a)] < ZVara,iNﬂ_;iyaiNﬂg [Aé(s’a_i,ai)].

i=1

Proof. By Lemma 2, we have

Vara.r, [4e(s, a)] ZE Lomh,.ai=lomh” {Varawﬂ {Al (')iil)’ai)H (15

Take an arbitrary 7. We have

E [Varalw [Al(a(lr-wi—l)’ai)

)
i Al (873(1,“.,1—1),2[1') ”
[,

al ~7r9 ..,at—l ~7r

= El 1 i—1 IE

alrmg,..,at g

2
i n 1 i—1 (2N ()
= Ea1~7ré,...,ai*1~7rg_l EaiNﬂ. Eai+1~7rg+1,,,.,a"~7r” Ae’ > <S,a(ERE))7a(7 s)):| :|:|
B B . 2
ByerryM 1,...,i—1 [N)
< Ea1~7ré,...,ai 1~7r; 1 Eai,\,ﬂ.é Ea’i+1~7r;+1,_,.,a"~7rg AO (S,a(FRRE),3(7))) :|:|:|

it (o (=) i)
— . . [EREEY St T5.05M
- Ealwﬂé,...,aiflwﬂ'é*l,ai+1~7ré+1,...,a’L~7rg al o)) A (57 a ;a)

The above can be equivalently, but more tellingly, rewritten after permuting (cyclic shift) the labels of
agents, in the following way

E . { l {AZ“ (s Al)a<¢+1,..,,n,¢)>2”
a*"wﬂ'g a~7r Y

—E . . [Varawﬂ [Am-l (573(1,..,,%1)’ a(i+1,..,,n,i))H

17

which, by the strong version of Lemma 1, equals
Ea,mﬂgi {Varamﬂg (45 (s,aﬂ,al)]}
which can be further simplified by
i —i i i —i ,i)2
Eafiwﬂsf@ [Varamﬂg [Ay (s,a™",a)H :Ea,mﬂgi |:]Ea7’,Nﬂ.é [o (s,a™’ a) ”
i —i i\2 i —i i

= Earmy | 4f (5,27,2")°| = Varaom, [45 (s.a7%,a')]

which, combined with Equation 15, finishes the proof. O

Remark 5. Again, subsuming a joint action a'V>*) into state in the above proof, we can have a
stronger version of Lemma 3,

k+1,...,n 1,....k k+1,....n
Varak+1Nﬂlg+l7“‘7anNﬂ.g |:A9 (5,0,()’a()):|
n
; E41,..i—1,i41,..., ;
< E Varak_,_lwﬂg-pl"”’anNWg {Al (s,a(+ i—1,i4 ”)7211)} (16)
1=k+1

B.2 Proofs of Theorems 1 and 2

Let us recall the two assumptions that we make in the paper.

Assumption 1. The state space S, and every agent i’s action space A' is either discrete and finite,
or continuous and compact.

Assumption 2. Foralli € N, s € S, a' € A", the map 0" — 7y(a’|s) is continuously differentiable.

These assumptions assure that the supremum sup; i

We notice that the supremum sup, ,—i i ‘Ai(s, a”t, az)’ exists regardless of assumptions, as by
Remark 2, the multi-agent advantage is bounded from both sides.

Theorem 1. The CTDE and DT estimators of MAPG satisfy

|Vg: log mj (a’|s)|| exists for every agent .

.) B2
VarSo:OOngzooyao:OON‘lre [gZC] - VarSO:oong:oovaO:ooNﬂ'e [gzD] < 1 _172 Z e? < (n - 1)
J#i

where B; = sup, , ||Vgilogmg (a'[s)||, € =sup, i ,i |[AG(s,a™",a’)|, and e = max; ¢; .

Proof. 1t suffices to prove the first inequality, as the second one is a trivial upper bound. Let’s
consider an arbitrary time step ¢ > 0. Let

gl = Q(st,a;) Vi log T (s¢, af)
gh = Q' (s, a}) Vi log mh (s, a})

be the contributions to the centralised and decentralised gradient estimators coming from sampling
st ~ df, a; ~ mwe. Note that

o0 o0
ge=> 7'gt, and gh=) 'gh,
t=0 t=0

Moreover, let gf. , s and gf, ; ; be the j*" components of gf. , and gf, ;, respectively. Using the law of
total variance, we have

Varswd’é,aw‘rrg [gé,t,j] - VarSNdf,,aN‘rrg [g;‘),t,j]
_ (vang [Eanrmo [8505]] + Evuay [VaTaunm, [ggtﬁj}])

- (VarsNd:, [Ba~ro [2D,1,]] + Eonay [VaTanm [gﬁt,j]]) (0

18

Noting that gl and g, have the same expectation over a ~ g, the above simplifies to

Bvay [VaraN,Te [gZCtJH = Egvay [VaraNPie [glg,t,j]]
=]Eswdg [VaraN‘ll'e [gé,t,j] - VaraNﬂ'G [gli),t,j” (18)

Let’s fix a state s. Using (again) the fact that the expectations of the two gradients are the same, we
have

VaI‘aNﬂ-e [gé,t,j] - Varaw‘ll'g [g]ilt,j]

i 2 i 2 i i
- (ane {(gcw‘) } — Banmy [201,5]) - (Ea”"" [(gD-rtvj)z} ~ Barm, [gD’t’j]z)
:EaNﬂ'e (g C,t,j) j| a~7r9 [(g%,td)z}

= Eoory (g o) - (Dwﬂ

B Ologmy(a'ls) A ? dlogmy(a'ls) ;. ’
=Eaune (WQ(S’a)> - (WQ (s,a))]

- dlog mh(ai]s) A S
= an‘,,\,ﬂ.‘ig <8907’>]Ea*iwwgi |:Q(S7 al’ a*’L)Q . QZ(S, a’b)2:|‘| .

The inner expectation is the variance of ()(s,a’,a™"), given a*. We rewrite it as

[/ log i (ai 2 .)) . N2
By | (LR) B (@t - Qsia) H

~ Ear, [(W) (@)~ Q%s,ai))Q] .

Now, recalling that the variance of the total gradient is the sum of variances of the gradient components,
we have

Vara.r, [gé’t] — Varaon, [gﬁt] =Eam, |:HV91’ log 7r§(ai\s)H2 (Q(s,a) — Qi(s, ai)>2]

B2 Eyirry {an [(Q(a) - Qi(s’ai)f”
S | CRRPRT

= B} Eyirrj []Eaﬂwe' [Afi(s,agafi)z}: = B?Eyins {Var o {Afi(s,ai,afi)}}

a l~7're

IN
ey
=
©
14
3
)
1
N
O»
2
B
O»
2
m@
N
()
| I
1

which by the strong version of Lemma 3, given in Equation 16, can be upper-bounded by

B? Egi i ZVar - {A](s a™’ aj)} = sz B {Vara,mﬂg_i {Aj(s,a_j7aj)H
J#i i J#i

Notice that, for any j # i, we have
Eyioms [Var iy [Aj(s,a_j,aj)ﬂ
= Eyirory [Bainmy | A7 (5,277,a)?] |
=Earme [flj(s,a*j,aj)ﬂ < e?
This gives
Vara.n, [g8¢,] — Varan, [gh,] < B} Z €2
JFi

19

and combining it with Equations 17 and 18 for entire gradient vectors, we get

VarSNdé,aNﬂ'e [gZC,t] - VarSNdé,aNﬂ'e [glllt} < B22 ZE? (19)
J#i

Noting that

o0
il E t ol
VarSO:oo"’dg:oo7aO:oo~7"6 [g} - VarSO:oo"/dg:oo;aO:eoNﬂ'B [v g':t‘|
t=0

00 0o
E : t 0 2 : 2t i
= Var t = Var t
t) El
st~dg,a~me [’7 g-,t] Y st~dg,a~me [g~,t}
t=0 t=0

Combining this series expansion with the estimate from Equation 19, we finally obtain

7 7
VarSo;OOngzo"yao:oo“Jﬂe [gC} - Varso:oo“*dg’w,ao:oo“*ﬂ'e [gD]

<y (mya)s e

t=0 J#i J#
O
Theorem 2. The COMA and DT estimators of MAPG satisfy
2
Varg, a3 ag.e~mo [gé‘OMA} — Vary i9 ag...~me [g}}] = (1€iBf32
Proof. Just like in the proof of Theorem 1, we start with the difference
VaPSng,a~7re [géOMA,t,j} - Vars~d§,a~7re [g;ﬁ,t,j]
which we transform to an analogue of Equation 18:
EsNdfe [Varawre [géOMA,t,j] — Vara.r, [gliltyj H
which is trivially upper-bounded by
Ewdé [Vara~7rs [géOMA,t,j”
Now, let us fix a state s. We have
Varar, [géOMA7t7j] = Vara*mﬂ—gi,az‘wﬂg lal()ggéwlqi(s, a~’ a%)
i (i 2 j
S Boiimy i (W) Al(s,a™,a')?
i (a0 2
By it i (W) (20)
J

which summing over all components of § gives

Varar, [géOMA,t] < (GiBi)Z

Now, applying the reasoning from Equation 19 until the end of the proof of Theorem 1, we arrive at
the result

7 7
Varg, i3 ag.c~me [8comal — Varg, i3 ag...~mo [gb] <

20

C Proofs of the Results about Optimal Baselines

In this section of the Appendix we prove the results about optimal baselines, which are those that
minimise the CTDE MAPG estimator’s variance. We rely on the following variance decomposition

(88 (0)] = Var,, _ue [Bajnmg [80,(0)]] +E, gy [Varam, [26.(0)]] 21

iwﬂ_g—i |:]Ez|'ti~7ré {gét(b)H +Ea:i~we—i [Varﬂ%Nwé {gét(b)]H

Var, ~dl.ap~Tg

= VarStng {]EatNﬂe [gé,t(b)]] +]EStNd§ |:Vara;

iN,‘-;i |:]Ea%~1r§ [gé,t(b)]H +Est~dte,a7i~-n—9*i [Vara;'iNﬂé [gét(b)H :

= VarStNd;,’ {Eatwﬂ.e [gé,t(b)]] —HEStng [Vara, ;

t

Variance from state Variance from other agents’ actions Variance from agent ¢’s action

This decomposition reveals that baselines impact the variance via the local variance
Var, .. [g’ct(b)] . We rely on this fact in the proofs below.
C.1 Proof of Theorem 3

Theorem 3 (Optimal baseline for MAPG). The optimal baseline (OB) for the MAPG estimator is

A By |Q(s,a7i at) || Vi log 7 (afls) 2
boplzmal(&a—z) — 6 |: H 0, ‘ 92 H } (7)
Eqirors [||V log i (ails) | }

Proof. From the decomposition of the estimator’s variance, we know that minimisation of the
variance is equivalent to minimisation of the local variance

Var, . [(Q(s, a ' a') — b) Vi log ﬁé(aﬂs)}

For a baseline b, we have

o 2
=Eyiri (Q(s, a ' a’) — b))2 <6log779(as)>

39;
dlog i (ails) \ |
= Byior [(Q(Sya_i,a") —b)) <Ogggl(a|s)>]
J
. . 2
J

. . 2
—Eyiors [Q(s,aﬁa") <8logggi<a |S)>]
J

21

as b is a baseline. So in order to minimise variance, we shall minimise the term 22.

L 2
. i 2 [Dlogmh(a*|s)
o |ty (L)
J
dlogmh(a'ls) |
R i . i og my(a*|s
= Eai,\,ﬂ'é <b2 —2b Q(Sva ,a) + Q(Saa ya)2)) (gagz>
J

o 2 o 2
Ologmh(a']s) A i o [Ologmy(alls)
=0 Eyiors || ——— | | —20Eqip Lal) | =0
ai oy (o ainm |Q(s, a7, ") o0;

S 2
. L dlog mh(a'ls)
. AW 0
+Epimy [Q(s,a7", ") (89;5

which is a quadratic in b. The last term of the quadratic does not depend on b, and so it can be treated
as a constant. Recalling that the variance of the whole gradient vector g’ (b) is the sum of variances
of its components g’ (b), we obtain it by summing over j

Var, . [(Q(s, a ' a’) — b) Vi log Wé(ai|s)}

o 2
Ologmy(a’ls)
— 2| 0 Z
= E (b B < 2!

J
Dlog T (ails) \
=20 By Q(s,a™ a’) M + const
00;

_ 2
=0 By [vaz log j (a's) | }
=20 B ns {Q(s, a ' a")||Vyilog 7rf9(ai|s)||2} + const (23)
As the leading coefficient is positive, the quadratic achieves the minimum at
Eyirons [Q(s, a=',a") || Vi log mj(a’l s)’ﬂ

Eyioni [HV(97 log m (al[s) |]

boplimal _

C.2 Remarks about the surrogate optimal baseline

In the paper, we discussed the impracticality of the above baseline. To handle this, we noticed that the
policy 75 (a’|s), at state s, is determined by the output layer, 1} (s), of an actor neural network. With
this representation, in order to handle the impracticality of the above optimal baseline, we considered
a minimisation objective, the surrogate local variance, given by

Vi 9 s (4150) (@00

As a corollarly to the proof, the surrogate version of the optimal baseline (which we refer to as OB)
was proposed, and it is given by

dmﬂ [Q(i(s) log 7! a|¢e H]

b*(s,a”’) =

By [HV%(S) log 7 (|1 (s) H]

22

Remark 6. The x:/ﬂ measure, for which b*(s,a™") = Byt [Q(s, a ai)], is generally given by
e

l,:bé (ai|s) — 7T0 (HVQ logﬂ-Q ()H (24)
Eyinni [||V91 log mj (a’ls)|| }

Let us introduce the definition of the softmax function, which is the subject of the next definition.

For a vector z € R%, we have softmax(z) = (ezl e e;) where n = Z?Zl e*. We write

n
. i i exp(vh(s)(ah))
softmax (1%(5)) (Cl) = m.

Remark 7. When the action space is discrete, and the actor’s policy is T}, (ai|s) =
softmax (v} (s)) (a), then the x! y, Measure is given by

e (a |)(1+H7T9 H2_27T3<ai|s))

zt, (a'ls) =
g (YT

Proof. As we do not vary states s and parameters 6 in this proof, let us drop them from the notation
for), and 1 (s), hence writing 7 (al) = softmax (1/)’) (al). Let us compute the partial derivatives:

Olog 7’ (ai) _ Ologsoftmax (W) (ai) B 0 [10 exp (z/fi (ai))]

ovi (@) v (@) T o (@) |8, exp (v (a7))

- az/ﬂ'a(ai) [wi (@) - IOg;eXP (v* (&i))]

i_ iy e (¥ (@)
=1 (a =aq) — e
> ai exp (¥ (@)
where I is the indicator function, taking value 1 if the stetement input to it is true, and 0 otherwise.
Taking e, to be the standard normal vector with 1 in k™ entry, we have the gradient

Vyilogn' (a') = €qi — 7' (25)

=1 (ai = &i) — 7t (&i)

which has the squared norm

9 tog (@) = flew = [[* = (1= 7 @)*+ 3 (-
aial
— 1 3 (= @) =20 (o) = 1+) -2).

The expected value of this norm is
Egieort |1+ [[']]* = 27 (@) | = 14 ||| * = Bgtrome [27° (a')]
i |2 i i\\2 i||2
=[] =2 (x' (a)" = 1= ||«
which combined with Equation 24 finishes the proof. O

C.3 Proof of Theorem 4

Theorem 4. The excess surrogate local variance for baseline b satisfies
. 2 . . 2
AVar() = (b (s.a7)) By | [V lown (w00 |

In particular, the excess variance of the vanilla MAPG and COMA estimators satisfy

AVarype < D? (Vara o [Ag(- ’)] +Qp" (Z)2) < D? <e?+ {i} 2)

1—7~
AVarcous < D? Var,; [Ag(s a ' a Z)] < (eiDi)z

AN‘Ir

where D; = sup,:

Vi log g (a’|1g(s H and €; = SUpg g—i ,i |Ag(s,a™" a")|.

23

Proof. The first part of the theorem (the formula for excess variance) follows from Equation 23. For
the rest of the statements, it suffices to show the first of each inequalities, as the later ones follow di-

rectly from the fact that |Qe(s, a)| < % Var .. [Aj(s,a",a")] =E [Aj(s,a™ a")?],
and the definition of ¢;. Let us first derive the bounds for AVaryapg. Let us, for short-hand, define

at

' R NIL
cp = Eyior [vaé log Ty (a7|1/)Z;)H :|
We have

AVarypg = AVar(0) = ¢ b*(s,a™)% = ¢, E,:

. 2
Q(s,a™*a’ HVW log) (a'[g)

Co

IN
o
.
&=

« i o
alea? | [Q(Saa’ Zval> } = CGEdLNTK‘

= By {Q(s, a',a)? ||V, log mh (ai|¢g(s))H2]
[Qs,a7",a)2 D]
(000] ~ g [0l] 4 oy [0
D? (Varyry [Qs.a7a")] + Q7'(s,a7)?)
= D} (Var, .y [A'(s,07a")] + Q7'(s,a7)?)
which finishes the proof for MAPG. For COMA, we have

I
)
%o
RS
&
2
14
3
oe
w
Q

AVarcoma = AVar (Q‘i(s, a_i)) = cp (b* (s,a™") — Q_i(sva_i))Q
- (B, [0 - @7
- CéEamx;i [Q(s, a~i,al) — O0~i(s, aw‘)r

2]

ppellvestosm g [

Ch
= Eai’\/ﬂ'g |:AZ(S7 ai HVW log 7T9 Z"l/]e H :|
< By |[DIA'(s,07 2] < (@D)’
which finishes the proof. O

24

)

(S)

W -

ST o R C- s

[

D Pytorch Implementations of the Optimal Baseline

First, we import necessary packages, which are PyTorch [20], and its nn.functional sub-package.
These are standard Deep Learning packages used in RL [1].

import torch, torch.nn.functional as F

We then implement a simple method that normalises a row vector, so that its (non-negative) entries
sum up to 1, making the vector a probability distribution.

x: batch of row vectors to normalise to probability mass
normalize = lambda x: F.normalize(x, p=1, dim=-1)

The discrete OB is an exact dot product between the measure x:bé, and available values of Q.
gq: Q values of actions of agent i

pi: policy of agent i

3 def optimal_baseline(q, pi):

M = torch.norm(pi, dim=-1, keepdim = True) ** 2 + 1

xweight = normalize((M - 2 * pi) * pi)

return (xweight * q).sum(-1)

In the continuos case, the measure % and -values can only be sampled at finitely many points.
2]

a: sampled actions of agent i

q: Q values of the sampled actions

3 # mu, std: parameters of the Gaussian policy of agent i

def optimal_baseline(a, q, mu, std):

mu_term = torch.norm((a - mu)/std**2, dim=-1)
std_term = torch.norm(((a - mu)**2 - std**x2)/std**3, dim=-1)
xweight = normalize(mu_term**2 + std_termx*x2)

return (xweight * q).sum(-1)

We can incorporate it into our MAPG algorith by simply replacing the values of advantage with the
values of X, in the buffer. Below, we present a discrete example

compute the policy and sample an action from it
a, pi = actor (obs)
3 q = critic(obs)

5 #compute OB
ob = optimal_baseline(q, pi)

use 0B to construct the loss

q = q.gather (-1, a)

pi = pi.gather(-1, a)

X = q - ob

> loss = -(X * torch.log(pi)) .mean()

and a continous one

normal sampling step, where log_pi is the log probability of a
a, log_pi = actor(obs, deterministic=False)
q = critic(obs, a)

resample m (e.g., m=1000) actions for the observation
obs_m = obs.unsqueeze (0) .repeat(m, 1)
a_m, mu_m, std_m = actor(obs, deterministic=False)

approximate 0B
gq_m = critic(obs, a_m)
ob = optimal_baseline(a_m, q_m, mu_m, std_m)

use 0B to construct the loss

X = q - ob
loss = -(X * log_pi).mean()

25

E Computations for the Numerical Toy Example

Here we prove that the quantities in table are filled properly.

p(a’) mp(a’) i, (a’) Q(a~ia") Ai(a™?a’) Xi(a_i,ai)‘Method Variance
6

1 log 8 0.8 0.14 2 -9.7 —41.71 MAPG 1321
2 0 0.1 0.43 1 —10.7 —42.71 COMA 1015
3 0 0.1 0.43 100 88.3 56.29 OB 673

Proof. In this proof, for convenience, the multiplication and exponentiation of vectors is element-
wise. Firstly, we trivially obtain the column 7} (a*), by taking softmax over ¢} (a"). This allows us
to compute the counterfactual baseline of COMA, which is

Qﬂ'(a*i) =E,i i [Q (aii,ai)] = 23: Wé(ai)Q (af%ai)

=08%x24+01x14+01x100=16+4+0.1+10=117

By subtracting this value from the column Q) (a "%, a’), we obtain the column A?(a =", a?).

Let us now compute the column of z? i For this, we use Remark 7. We have
]

||7|” = 0.8% +0.1% +0.12 = 0.66

and 1+ ||7rf‘9H2 — 27§ (a’) = 1.66 — 2} (a’), which is 0.06 for a’ = 1, and 1.46 when a’ = 2, 3. For
a’ = 1, we have that

i (a) (1 + [|ma||* - 27rg(ai)) = 0.8 x 0.06 = 0.048
and for a’ = 2, 3, we have
7 (a) (1 + [P - 27r}’,(ai)> = 0.1 x 1.46 = 0.146

We obtain the column 4 (a’) by normalising the vector (0.048, O 146,0.146). Now, we can compute
OB, which is the dot product of the columns x? v (a’) and Q(a ", a’)

b*(a=") = 0.14 x 2+ 0.43 x 1 + 0.43 x 100 = 0.28 + 0.43 + 43 = 43.71
We obtain the column X(a =", a’) after subtracting b*(a~*) from the column Q(a ™%, a%).

Now, we can compute and compare the variances of vanilla MAPG, COMA, and OB. The surrogate
local variance of an MAPG estimator g*(b) is

Varaww [g (b)] VaralwT [(Ql (aii,ai) - b(aﬂ‘)) VW logwé(ai)]
= sum (Bry | (@ (a7) = 0a™)] T tommi(a))| = By sy (€ (a7') = 00a™)) Vi lowmita)])
sum (Eamﬂg {([Ql (a) } 7 log 74 (a)1) — sum (EaiNﬁé [Ql (a_i,ai) Vs log Wé(ai)]2)

where “sum" is taken element-wise. The last equality follows be linearity of element-wise summing,
and the fact that b is a baseline. We compute the variance of vanilla MAPG (gy2pg), COMA (8¢apma)s

26

and OB (gfx). Let us derive the first moment, which is the same for all methods

3
Eyiry [@ (a77,0") Vg logmo(a')]| = D mh(a')Q (@™, a') ¥ log mh(a)

recalling Equation 25
3

= 3) (o) (e =)

at=1
0.2 —0.8 —0.8
= 0.8 x2x [—0.1 +0.1x1x lO.Q + 0.1 x 100 x [—O.l}
—-0.1 —-0.1 0.9
0.32 —0.08 -8 —7.76
= [—0.16 0.09 1| = l—l.O?
—0.16 —0.01 9 8.83

Now, let’s compute the second moment for each of the methods, starting from vanilla MAPG

Eyions [Q (@~ ai)’ (V% log Wfé(ai))z}

3 2
= T(a ’)2 (V% log Wé(al))
at=1
3
. A . . 2
Z Q) (€ai — 7rZB)
—0.812 0.8
= 0.8x22x [0.1 +01x1%x | 0.9 | +0.1x100%x [—0.1}
-0.1 0.9
0.04 0.64 0.64
=0.8%x4x l0.0l +0.1 % [0.81 + 0.1 x 10000 x l0.0l}
0.01 0.01 0.81
0.128 0.064 640 640.192
[0.032 0.081 10] = 10.113]
0.032 0.001 810 810.033

‘We have

Vara’“NTr [gMAPG}
A —i i) 2 i v
= Eai’\/ﬂ'é |:Q (a ,a) (Vwé 10g 779(01)) :|
A (=i i i (oin]?
— Eaioni [Q (a™,a") Vy; log mp(a)}
640.192 —7.761> 640.192 60.2176 579.9744
= (10113 | — |—-1.07| = |10.113 | — | 1.1449 | = 8.968
810.033 8.83 810.033 77.9689 732.064

So the variance of vanilla MAPG in this case is

Var, i [8uapg] = 1321.007

27

Let’s now deal with COMA
i (=i ai)2 i (i)
Eqyirori [A (e a") (V% log g (a))]

Y o S\ 2
mg(a’)A" (a™", a’)2 (V% log ﬂg(az))

.Mw

a*=1
3
i AN R a—i i)\2 i\2
= Z mg(a)A (@™, a")” (€4 — mp)
at=1
0.27° -0.8]° -0.81°
= 0.8 x (9.7 x |-0.1| +0.1x(=10.7)*x | 0.9 | +0.1 x 88.3% x |—0.1
—0.1 —0.1 0.9
0.04 0.64 0.64
=0.8%x94.09 x |0.01| +0.1 x 114.49 x |0.81| +0.1 x 7796.89 x |0.01
0.01 0.01 0.81
3.011 2.327 499.001 504.339
= |0.753| + |9.274| + | 7.797 | = | 17.824
0.753 0.114 631.548 632.415
We have

Eamwg [géOMA]
A (o —i i)2 i (i) 2 Ai (o —i i i v]
=Eyioni [A (a™*,a")" (Vyilogmg(a")) } —Byior [A (a™*,a") Vi log my(a)]
504.339 —-7.7612 504.339 60.2176 444.1214
=[17824 | — |—-1.07| = | 17.824 | — [1.1449 | = | 16.6791
632.415 8.83 632.415 77.9689 554.4461
and we have

Var, i [8toma] = 1015.2466

Lastly, we figure out OB

ai=1
0217 —0.817 —0.877
= 0.8 x (—41.71)* x [0.1 +0.1 x (—42.71)% x [0.9 | +0.1x56.29% x [0.1]
~0.1 -0.1 0.9
0.04 0.64 0.64
= 0.8 x 1739.724 x [0.01 4 0.1 x 1824.144 x [0.81 + 0.1 x 3168.564 x [0.01]
0.01 0.01 0.81
55.6712 116.7452 202.788 375.2044
= | 13.92 | + | 147.756 | + | 3.169 | = | 164.845
13.92 1.824 256.654 272.398

28

We have
Eaf’NTré [gé(jl
i (=i a1)2 i (i) i (=i i TENE
=Eyinmy | X' (@7",0") (V% log 7 (a)) — Eginrs [X (a™,a") Vy; logmy(a)]
375.2044 —7.761° 375.2044 60.2176 314.987
= |164.845 | — |-1.07| = |164.845 | — | 1.1449 | = 163.7
272.398 8.83 272.398 77.9689 194.429

and we have

Var, . [g%] = 673.116

F Detailed Hyper-parameter Settings for Experiments

In this section, we include the details of our experiments. Their implementations can be found in the
following codebase:

https://github.com/morning9393/
Optimal-Baseline-for-Multi-agent-Policy-Gradients.

In COMA experiments, we use the official implementation in their codebase [7]. The only difference
between COMA with and without OB is the baseline introduced, that is, the OB or the counterfactual
baseline of COMA [7].

Hyper-parameters used for COMA in the SMAC domain.

Hyper-parameters | 3m 8m 253z
actor Ir Se-3 le-2 le-2
critic Ir Se-4 Se-4 Se-4
gamma 0.99 0.99 0.99

epsilon start 0.5 0.5 0.5
epsilon finish 0.01 0.01 0.01
epsilon anneal time 50000 50000 50000
batch size 8 8 8
buffer size 8 8 8
target update interval 200 200 200
optimizer RMSProp RMSProp RMSProp
optim alpha 0.99 0.99 0.99
optim eps le-5 le-5 le-5
grad norm clip 10 10 10
actor network rnn rnn rnn
rnn hidden dim 64 64 64
critic hidden layer 1 1 1
critic hiddem dim 128 128 128
activation ReLU ReLU ReLU
eval episodes 32 32 32

29

https://github.com/morning9393/Optimal-Baseline-for-Multi-agent-Policy-Gradients
https://github.com/morning9393/Optimal-Baseline-for-Multi-agent-Policy-Gradients

As for Multi-agent PPO, based on the official implementation [45], the original V-based critic is
replaced by Q-based critic for OB calculation. Simultaneously, we have not used V-based tricks like
the GAE estimator, when either using OB or state value as baselines, for fair comparisons.

We provide the pseudocode of our implementation of Multi-agent PPO with OB. We highlight the
novel components of it (those unpresent, for example, in [45]) in colour.

Algorithm 1 Multi-agent PPO with Q-critic and OB

1: Initialize 6 and ¢, the parameters for actor 7 and critic ()
2: episodeay — StePmaq/batch_size
3. while episode < episode,q. do

4: Set data buffer D = {}
5: Get initial states sg and observations og
6: fort =0 to batch_size do
7: for all agents ¢ do
8: if discrete action space then
9: ap, pk ; < m(of;0) // where p. , is the probability distribution of available actions
10: else if continuous action space then
11: ay, ph ;< m(0}; 0) // where p}, , is the probability density of action aj
12: end if
13: qi < Q(st,i,al;)
14: end for
15: Si+1, 001, 1t < execute {aj...a}'}
16: if discrete action space then
17: Append [s;, 0¢, at, T, St41, Ot+1, Gty Pr,t] 0 D
18: else if continuous action space then
19: Append [s;, 0¢, G, Tt, Si41, Ot+1, Qts Pa,t) to D
20: end if
21: end for

// from now all agents are processed in parallel in D
22: if discrete action space then

23: ob «+ optimal_baseline(q, p,) // use data from D

24: else if continuous action space then

25: Resample a¢ 1...m, G¢,1...m ~ [, Ot for each sy, ot

26: ob « optimal_baseline(a, q, i, o) // use resampled data
27: endif

28: X < q—ob

29: Loss(f) < —mean(X - logp,)

30: Update 6 with Adam/RMSProp to minimise Loss(6)
31: end while

The critic parameter ¢ is trained with TD-learning [34].

30

Hyper-parameters used for Multi-agent PPO in the SMAC domain.

Hyper-parameters | 3s vs 5z /5m vs 6m / 6h vs 8z / 27m vs 30m

actor Ir le-3
critic Ir Se-4
gamma 0.99
batch size 3200
num mini batch 1
ppo epoch 10
ppo clip param 0.2
entropy coef 0.01
optimizer Adam
opti eps le-5
max grad norm 10
actor network mlp
hidden layper 1
hidden layer dim 64
activation ReLU
gain 0.01
eval episodes 32
use huber loss True
rollout threads 32
episode length 100

Hyper-parameters used for Multi-agent PPO in the Multi-Agent MuJoCo domain.

Hyper-parameters \ Hopper(3x1) Swimmer(2x1) HalfCheetah(6x1) Walker(2x3)

actor Ir Se-6 5e-5 Se-6 le-5
critic Ir 5e-3 5e-3 Se-3 5e-3
Ir decay 1 1 0.99 1
episode limit 1000 1000 1000 1000
std x coef 1 10 5 5
std y coef 0.5 0.45 0.5 0.5
ob n actions 1000 1000 1000 1000
gamma 0.99 0.99 0.99 0.99
batch size 4000 4000 4000 4000
num mini batch 40 40 40 40
ppo epoch 5 5 5 5
ppo clip param 0.2 0.2 0.2 0.2
entropy coef 0.001 0.001 0.001 0.001
optimizer RMSProp RMSProp RMSProp RMSProp
momentum 0.9 0.9 0.9 0.9
opti eps le-5 le-5 le-5 le-5
max grad norm 0.5 0.5 0.5 0.5
actor network mlp mlp mlp mlp
hidden layper 2 2 2 2
hidden layer dim 32 32 32 32
activation ReLU ReLU ReLU ReLU
gain 0.01 0.01 0.01 0.01
eval episodes 10 10 10 10
use huber loss True True True True
rollout threads 4 4 4 4
episode length 1000 1000 1000 1000

For QMIX and COMIX baseline algorithms, we use implementation from their official codebases and
keep the performance consistent with the results reported in their original papers [21, 24]. MADDPG
is provided along with COMIX, which is derived from its official implementation as well [15].

31

Hyper-parameters used for QMIX baseline in the SMAC domain.

| 3s vs 52/5m vs 6m / 6h vs 8z /27m vs 30m

Hyper-parameters

critic Ir
gamma
epsilon start
epsilon finish
epsilon anneal time
batch size
buffer size
target update interval
double q
optimizer
optim alpha
optim eps
grad norm clip
mixing embed dim
hypernet layers
hypernet embed
critic hidden layer
critic hiddem dim
activation

eval episodes

Se-4
0.99
1
0.05
50000
32
5000
200
True
RMSProp
0.99
le-5
10
32
2
64
1
128
RelLU
32

Hyper-parameters used for COMIX baseline in the Multi-Agent MuJoCo domain.

Hyper-parameters \ Hopper(3x1) / Swimmer(2x1) / HalfCheetah(6x1) / Walker(2x3)

0.001

critic Ir
gamma
episode limit
exploration mode
start steps
act noise
batch size
buffer size
soft target update
target update tau
optimizer
optim eps
grad norm clip
mixing embed dim
hypernet layers
hypernet embed
critic hidden layer
critic hiddem dim
activation

0.99
1000
Gaussian
10000
0.1
100
1e6
True
0.001
Adam
0.01
0.5
64
2
64
2
[400, 300]
RelLU
10

eval episodes

32

Hyper-parameters used for MADDPG baseline in the Multi-Agent MuJoCo domain.

Hyper-parameters \ Hopper(3x1) / Swimmer(2x1) / HalfCheetah(6x1) / Walker(2x3)

actor Ir
critic Ir
gamma
episode limit
exploration mode
start steps
act noise
batch size
buffer size
soft target update
target update tau
optimizer
optim eps
grad norm clip
mixing embed dim
hypernet layers
hypernet embed
actor network
hidden layer
hiddem dim
activation
eval episodes

0.001
0.001
0.99
1000
Gaussian
10000
0.1
100
le6
True
0.001
Adam
0.01
0.5
64
2
64
mlp
2
[400, 300]
RelLU
10

33

	Preliminary Remarks
	Proofs of the Theoretical Results
	Proofs of Lemmas 1, 2, and 3
	Proofs of Theorems 1 and 2

	Proofs of the Results about Optimal Baselines
	Proof of Theorem 3
	Remarks about the surrogate optimal baseline
	Proof of Theorem 4

	Pytorch Implementations of the Optimal Baseline
	Computations for the Numerical Toy Example
	Detailed Hyper-parameter Settings for Experiments

