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1 More Data Details

Our data is publicly available at https://github.com/arijitray1993/COLA. Recall that
our data is built on top of four publicly available datasets. We provide some more details on how we
curated our data.

Cola Single Object Data

GQA GQA has annotations of objects and attributes in images. We use this to construct queries
like “square white plate”. We ignore bounding boxes. For test, we filter the images with at least 2
attributes per object annotation in their test split. We are left with 1952 images and 320 queries on
our test set. To create a challenging set where queries are unseen, we take 150 attribute object tuples
from the 320 queries from the test set that are seen the least in the training set and remove those
images and queries from the training set completely. This way, we end up with 150 unseen queries
with the least impact on the training set size. We report all numbers on this test set of 150 unseen and
170 seen queries. We train on the GQA train split (with the test unseen queries and corresponding
images removed). Hence, we have around 67K training images and 27K queries. The number of
paired examples is 450K image-text pairs.

CLEVR On CLEVR, we test on 96 classes on 22,500 images. We use their compositional splits. We
train on condition A as described in their paper and dataset website and test on condition B. In these
two splits, cubes and cylinders have unseen color and size compositions. However, for spheres, all
colors and shapes are seen. Since MAP is sensitive to the number of classes, we keep the number
of classes for seen and unseen the same. Hence, we leave out the spheres when reporting seen vs
unseen. However, for all MAP, we report including spheres. Hence, we have 32 unseen classes, 32
seen classes and 96 classes for “all”. For training, we have 168 possible queries (with colors swapped
for cubes and cylinders from those in the test set) on 70K images.

PACO The PACO (9) dataset has 55 attributes annotated on 75 object categories on 9443 images on
the test set. Since all combinations of objects and attributes would result in an intractable amount of
possible compositions, we sample the 400 occurring multiple attribute-object compositions in the test
set. The 400 classes are sampled by sampling the top 200 seen attribute-object queries and the top
200 unseen attribute-object queries. An attribute-object query is defined as unseen if the attributes in
conjunction with that object were never a subset of the attributes in conjunction with that object in
the training data. This way, we have 400 classes on 7921 images, on which we report numbers. We
have 37K training images and 18K queries and 55K paired image-text examples.

Cola Multi-Obj Data The multi-obj data was created on the train and test splits according to the
Cola Single-Object GQA data splits. Only the test split is cleaned using human annotations. We
show some qualitative examples of the human-cleaned test set in Figure 3. We also see that some
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cases remain ambiguous even after human cleaning, as shown in Figure 4. These often involve
differences in perception of size (large vs small) and color (blue vs white under different lighting
conditions). However, despite some minimal noise, the human accuracy of 10 independent workers
on our validation set is 84%. This is opposed to our best model with an accuracy of 45%. Hence, we
believe there is significant room for improvement.

Datasheets for Datasets Answers

We believe that the majority of the questions in the datasheets paper (2) have already been answered
in the main paper. Here, we provide some additional answers. We also provide a histogram of the
types of objects and attributes in our data in Figure 2

Dataset funding agency This project was supported by DARPA Semafor awarded to KS and BP.
The findings and results reported in the paper are not the opinions of the US Government or the
Department of Defense.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The dataset is a curated sample from larger datasets specifically aimed
to test attribute-object compositionality of models.

What data does each instance consist of? Raw images, text captions, text-based scene graphs of
objects and attributes in the image. Note that some objects and attribute annotations may be missing.

Is any information missing from individual instances? Yes, since it is very diffiucult to exhaustively
annotate all possible objects and attributes, it is possible that some annotations are missing.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Since the data is built on top of publicly available datasets, some
of the annotations, like scene graphs, are linked to the external dataset.

Does the dataset contain data that might be considered confidential Not that we are aware of
since we use publicly available data from a published dataset.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? Not that we are aware of.

Does the dataset identify any subpopulations (e.g., by age, gender)? No personally identifiable
information is present in the data. We also do not conduct any analyses with sensitive attributes like
race, age, sexual orientation, or religion. Some attributes like sex and hair color may be annotated in
the images, but we don’t explicitly analyze them since that is not the focus of the benchmark or the
paper.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? No personally identifiable
information is present in the data. It may be purely coincidental that a person in real life may be
present in the images of the data.

Does the dataset contain data that might be considered sensitive in any way? Not that we are
aware of.

Over what timeframe was the data collected? Visual Genome (6) was collected in 2016. GQA (3)
in 2018. PACO (9) in 2022-23. CLEVR (4) in 2016.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated? Students ran the data collection and crowdworkers annotated the data.
We do not know how much they were compensated for the datasets we build on top of. However, for
our human cleaned multi-object Cola test set, we paid crowdworkers an average of 15 USD per hour
with bonuses if they annotated examples correctly.

Were any ethical review processes conducted? Yes, we were exempted by IRB since the data didn’t
involve any personal or sensitive information.
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Figure 1: The MAP numbers by the number of attributes in the query on the CLEVR dataset. Note
how MM-Adapter performs well even as the number of attributes is gradually increased.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? No, but this could be interesting future work.

Is the software that was used to preprocess/clean/label the data available? Yes, we shall release
the code used to curate the data.

Will the dataset be distributed under a copyright, what are the IP restrictions, and export
control restrictions? No such restrictions are present. The licenses are the same as the licenses of
the datasets our benchmark is built on.

Will the dataset be updated? We may update the data with more examples or more annotations
periodically.

2 More metrics and analysis

Recall, that our goal is to adapt vision-language features to improve the compositional binding of
attributes to objects. Specifically, we aim to improve the classification of a query involving single
or multiple objects with multiple attributes in an image. Hence, we perform some analysis to see
how our performance is affected by increasing the number of attributes. Recall, that we also report
numbers on our Cola MAP, which evaluates the model’s capability to rank the images with the correct
attachment of attributes to the desired object from hard distractors with incorrect attachments of
attributes to objects. We also show results some other choices of MAP and the standard MAP used
commonly. We show how our choice of MAP in the main paper is harder even though all trends
remain the same with all choices of MAP. Finally, we also show performance from other choices of
doing multimodal fusion for our MM-Adapter and MM-pred approaches, showing that this adaptation
strategy holds for various other choices as well.

Performance by number of attributes We vary the number of attributes in the query for a single
object setting and check performance with increasing attributes. The results are shown in Figure 1.
We see that the baseline CLIP and finetuning has higher performance on single-attribute queries than
multi-attribute queries. We show that our MM-Adapter maintains improved performance on both the
single-attribute and multi-attribute cases.

Other evaluation metrics

QueryAll MAP Recall that in the main paper, we compute MAP among hard distractors for the
Cola single-object setting. The hard distractors are images that have any of the attributes and object
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Figure 2: Overview of the types of attributes and objects in our data. They correspond to practical
objects in daily life.

QueryAll MAP Ò Mean Rank

All Seen Unseen ✓ Ó ˆ Ò

CLIP+linear 49.56 48.21 31.78 21.78 54.17
prompt-tune 31.07 29.34 29.43 31.37 52.72
FT-all 54.58 52.05 21.27 21.06 54.32
FT-late 66.16 70.15 30.99 14.03 55.35
MM-Pred (our) 85.51 77.85 81.18 9.69 55.99
MM-Adapter (our) 90.35 81.95 90.53 8.85 56.12

Table 1: Two other choices for a hard metric computed on the CLEVR (4) dataset.

words in the query. The model needs to rank the images with the correct attachment of the attributes
to the desired object (as opposed to simply existing somewhere) to achieve a higher MAP. Here,
we design another similar hard MAP. Here, we restrict the list of images in the pool to have all the
query attributes and objects. Hence, for a query “cyan metal cylinder”, we rank among images that
have “cylinders” AND “cyan” objects AND “metal” objects. In the main paper, the MAP uses an
OR instead of an AND operation. The results are shown in Table 1 and we observe that all trends
remain the same with this metric as presented in the main paper. However, we observe that that this
metric can only be applied to CLEVR since annotations are exhaustive. In real datasets like GQA,
the number of such annotated hard distractors is limited; hence, we do an OR operation to keep a
high number of images to rank from. When applied to a dataset like GQA, the trends are the same,
but the numbers are spuriously high since there are very few distractor images.

Mean Rank of GT (✓) vs distractors (ˆ) Based on the hard distractors we made for the QueryAll
MAP above, we also report the mean rank of the images with the correct attachment of attributes to
the object versus the mean rank of the images with the wrong attachment of attributes. The results
are also shown in Table 1. We observe that all trends remain the same, so report only one of them in
the main paper.

Standard MAP In contrast to our hard Cola MAP’s, we also compute the MAP on all images in
the validation set regardless of hard or easy distractors. Once again, we see all trends remain the
same as shown in Table 2. However, we note that the MAP numbers on all images are much lower.
This is becuase of two reasons - a) the number of images to rank from is higher, and b) datasets
like GQA have missing annotations, hence there are many images that get denoted as a negative
retrieval becuase of a missing annotation. When we restrict the images to at least have one of the
query words, this noise reduces somewhat. However, note how it is easier to improve on this overall
MAP than on the harder Cola MAP reported in the main paper. This shows models can quickly
improve on distinguishing coarse-grained differences but differentiating between the fine-grained
ones (as evaluated by the Cola MAP) is harder.

F1 Score We also ran a sample of the evaluation using F1 on the GQA split of COLA single-objects,
and we see that all trends remain the same when comparing F1. For instance, F1 of CLIP baseline
is 0.28, whereas FT-all is 0.31, FT-Late is 0.33, and our MM-Adapt is 0.39, MM-Pred is 0.40.
Our conclusion stays the same: adapting the multimodal attention layers is better than tuning the
split-modal attention layers (FT-Late), fine-tuning the entire model, or linear probing.
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Overall MAP
All Unseen Seen

G
Q

A
(3

)
CLIP 0.65 0.35 0.91
+ prompt-tune 8.72 9.63 7.91
+ Linear probe 12.81 13.29 12.52
+ FT all 11.47 10.87 11.96
+ FT late 13.39 13.70 13.10
+ MM-Pred (our) 16.76 17.45 16.15
+ MM-Adapter (our) 17.40 16.79 17.95

FLAVA 7.33 6.43 8.15
+ FT-late 9.71 9.49 9.90
+ MM-Pred (our) 17.68 19.24 16.29
+ MM-Adapter (our) 20.03 20.70 19.42

C
L

E
V

R
(4

)

CLIP 6.42 6.36 6.29
+ prompt-tune 29.42 23.02 27.79
+ Linear probe 47.83 29.33 46.54
+ FT all 51.99 18.40 47.63
+ FT late 63.93 27.20 67.00
+ MM-Pred (our) 83.40 76.82 76.10
+ MM-Adapter (our) 88.15 89.40 76.90

FLAVA + linear 18.76 16.77 17.82
+ FT-late 77.59 71.91 66.25
+ MM-Pred (our) 90.41 85.74 86.05
+ MM-Adapter (our) 91.08 86.60 87.39

PA
C

O
(9

)

CLIP 0.71 0.11 1.31
+ prompt-tune 6.19 2.78 9.61
+ Linear probe 8.22 3.83 12.61
+ FT all 7.19 3.00 11.38
+ FT late 9.29 5.37 13.21
+ MM-Pred (our) 9.63 4.00 15.26
+ MM-Adapter (our) 10.00 6.50 15.22

FLAVA + linear 3.45 1.73 5.17
+ FT-late 6.31 2.00 10.60
+ MM-Pred (our) 10.77 4.77 16.76
+ MM-Adapter (our) 12.02 6.36 17.67

Table 2: Standard MAP on all images with multiple attributes on objects annotated in the test set (not
just hard distractors like our Cola MAP). Note how we can improve significantly (eg, 0.65 to 17.40
on the GQA split - 10x), but by a much lesser fraction on our Cola MAP which is only among hard
distractors.
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Cola Single-Obj MAP

Params All Unseen Seen

G
Q

A
(3

)

Unimodal 13M 42.19 44.61 40.01
FLAVA 9.9M 47.43 48.95 46.05
ALBEF 10.9M 45.2 48.23 42.6
MDETR 7.8M 46.83 48.86 44.99
FIBER 15M 47.08 50.01 44.43
FIBER-MM 12M 46.05 48.91 43.47

C
L

E
V

R
(4

)

Unimodal 13M 64.05 27.53 67.48
FLAVA 9.9M 88.21 89.52 77
ALBEF 10.9M 85.56 85.47 72.97
MDETR 7.8M 89.35 89.4 80.2
FIBER 15M 82.9 76.97 73.5
FIBER-MM 12M 86.6 88.56 72.98

PA
C

O
(9

)

Unimodal 13M 15.66 8.74 22.58
FLAVA 9.9M 18.56 11.47 25.66
ALBEF 10.9M 18.22 10.57 25.8
MDETR 7.8M 19 11.13 26.87
FIBER 15M 12.34 5.34 19.35
FIBER-MM 12M 11.83 4.49 19.17

Table 3: Different choices for multimodal fusion inspired from ways researchers have done mul-
timodal fusion in literature. Note that these are not numbers from the models proposed in their
papers, but the accuracy of using the style of multimodal fusion, which we use on top of frozen CLIP
features. Most multimodal variants perform better than tuning similar or more number of parameters
on unimodal attention layers. The main paper numbers are from the MDETR-style multimodal fusion.

2.1 Other choices of multimodal fusion

In our MM-Adapter and MM-Pred approaches, we use multimodal fusion. There are various ways
to do multimodal fusion. Some of the salient choices are inspired by FLAVA (10), ALBEF (7),
MDETR (5), and FIBER (1). We describe some of the ways we try multimodal fusion:

– FLAVA-inspired - self-attention on a [CLS] token concatenated with image patch and text tokens-
Here, we take the image patch features and text token features and employ self-attention transformer
(11) on the concatenated image, text and [CLS] tokens.

– MDETR-inspired - self-attention over image patch and text tokens and then, a [CLS] token cross
attending to the image and text tokens- In the MDETR (5) paper, they use self-attention over image
and text features and then multiple task tokens that cross attend to the self-attended image-text
features for various tasks. Since, we have only one task here, which is retrieval, we use one [CLS].
We have also experimented with using multiple (100) [CLS] tokens to see if they learn different
things. We observe that all the [CLS] tokens learn the same thing with minimal performance gap.
This is the choice of multimodal fusion that we report in the paper for both our MM-Adapter and
MM-Pred approaches.

– ALBEF-inspired - text cross-attends to image - Here, first we have separate unimodal self-attention
layers on the image patch and text token features. Then, the text token features cross-attend to the
image patch features along with a [CLS] token. The [CLS] output is then used for MM-Pred
(prediction using fully-connected layer) or MM-Adapter (cosine similarity to frozen text features).

– FIBER-inspired - text cross-attends to image and vice versa- Here, first we have separate unimodal
self-attention layers on the image patch and text token features. Then, have text token features
cross-attend to the image patch features along with a [CLS] token. We also have the image patch
features cross-attend to text token features along with another [CLS] token. We finally measure
the cosine similarity of the two [CLS] tokens.

– FIBER-MM - In the above FIBER and ALBEF style fusion, we used separate unimodal self-
attention layers on the image patch and text token features before the cross attention. Here, we
design a modification, we use a multimodal self-attention on the image patch and text tokens first,
like FLAVA. Then, we do cross-attention like FIBER as described above.
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Accuracies on GQA, CLEVR and PACO for Cola single-object case on the above-described mul-
timodal choices are shown in Table 3. We see similar trends as the choice of multimodal attention
reported in the paper. All the methods of doing multimodal fusion work better than unimodal fusion.
Also, while some choices work better than others, note how using the multimodal layers as a feature
adaptor (MM-Adapter) works better than using it as a prediction head (MM-Pred) for all design
choices.

3 Implementation details

Now, we present more implementation details of the models and adaptation strategies used in the
main paper. We also provide more details on the datasets used.

3.1 Model architecture details

Recall that we have use a CLIP (8) image and text encoder to extract image and text region features.
Here are some additional details for each of the choices of adaption we tried:

– Linear: We train a linear probe on the pre-trained representations. We train a separate linear
layer on top of the image and text pooled features for CLIP (8). Each linear layer transforms the
512-dimensional image and text representation to another 512-dimensional embeddings. Finally,
we compute the cosine similarity between the two transformed embeddings.

– Prompt-tune: We tune the embedding layer of the text words used in our training queries while
keeping everything else frozen.

– FT all: We fine-tune the whole model. This involves tuning 151M parameters in the case of CLIP.
– FT Late: We take the second-last layer features from the image and text encoders of CLIP. There

are 49 image patch features and K text token features (K depends on the input query length, but it
is capped to 77). We train a separate transformer encoder layer on the 49 image patch embeddings
and the K text tokens. The transformer encoder has 2 transformer encoder self-attention layers with
4 heads each. We tried variations of 1 layer, 2 layers and 3 layers and report the best performance.
This design is chosen to be the most similar in the number of parameters and approach to our
multimodal adaptation approach to be a strong baseline.

– MM-Pred: Here, we use multimodal attention as a prediction head like common multimodal
models (10; 5), but train it on the frozen CLIP (8) base image and text encoders. Once again,
the multimodal transformer encoder has 2 layers with 4 heads each. We predict a score using
a fully-connected layer on the [CLS] token output of the multimodal attention that maps the
512-dimension embedding to a 1-dimensional score.

– MM-Adapter: This differs from our MM-Adapter approach, where we use multimodal attention
to adapt the image representation and use their cosine similarity to the text features.

For the image-text-matching loss, we get a score for each image-text pair in a batch. For each score,
we compute the binary sigmoidal cross entropy and take the average in the batch. We use a sigmoidal
cross entropy since for each image, there can be multiple text queries that are true and vice versa. We
train using a learning rate of 0.00001 and a weight decay of 0.0001 for the models on top of CLIP.
For adaptations on top of FLAVA, we see that we need a higher learning rate to converge quicker,
hence, we use a learning rate of 0.001 and a weight decay of 0.0001.

4 Qualitative results

Single-object case Figures 5, 6, 7, 8 show examples of top 5 retrievals based on common adaptation
methods and our MM-Adapter method on the Cola single-object setting on the GQA (3) dataset.
Each row in the image is a different adaptation method (based on the methods shown in Table 1
in the main paper). Note how we improve on multiple attributes attached to non-salient and small
objects. Figures 9, 10, 11 show some cases where we see marginal improvements from off-the-shelf
CLIP or simpler adaptation techniques like fine-tuning or linear probing. We observe that marginal
improvements are mostly on queries with large areas of the image like sky and water. The existing
CLIP (8) model is fairly good at such large salient objects, especially when paired with common
attributes like “green” for the object “leaf”.
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Figure 3: Some examples from the Cola multi-obj setting.

Multi-object case Figures 12, 13, 14, and 15 show some results on the Cola multi-object setting.
Similar to the observations in the single-object setting, we improve the attribute-object binding capa-
bility even when the objects are non-salient in the image. In addition to relational compositionality,
as shown in Figures 16 and 17, our method also fails to understand fine differences in the relative
strength of attributes and when objects are occluded to a high degree.

All images we use are from publicly available datasets, and we are unaware of any correspondences
with identifiable humans in real life.
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Figure 5: Qualitative results on multiple attributes attached to an object. Note how we improve on
many attributes attached to small non-salient objects in the cluttered scene. The round white table
in the test images were often small and hence, the original model had trouble finding them. Note
how the original CLIP only find the slaient black metal chair (first row), and in comparison, we find
smaller non-salient ones as well (last row)
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Figure 6: Qualitative results on multiple attributes attached to an object. Note how we improve on
many attributes attached to small non-salient objects in the cluttered scene.
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Figure 7: Qualitative results on multiple attributes attached to an object. Note how we improve on
many attributes attached to small non-salient objects in the cluttered scene.
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Figure 8: Qualitative results on multiple attributes attached to an object. Note how we improve on
many attributes attached to small non-salient objects in the cluttered scene.
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Figure 9: Queries with attributes that cover a wide area with common attributes, like blue sky,
have minimal improvements from off-the-shelf or simple adaptation strategies since existing models
perform well on such queries already.
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Figure 10: Queries with attributes that cover a wide area, like water bodies, have minimal improve-
ments from off-the-shelf or simple adaptation strategies since existing models perform well on such
queries already.
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Figure 11: Queries with attributes that cover a wide area with common attributes, like a green large
leaf, have minimal improvements from off-the-shelf or simple adaptation strategies since existing
models perform well on such queries already.

Figure 12: Qualitative results on multi-object cases. Once again, we see significant improvements on
compositions involving small non-salient objects such as a small sign.
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Figure 13: Qualitative results on multi-object cases.

Figure 14: Qualitative results on multi-object cases. We see significant improvements on compositions
where the images have a lot of clutter and distractor objects - many things are white and brown in the
scenes.
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Figure 15: Qualitative results on multi-object cases.
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Figure 16: Our method performs somewhat poorly on very fine-grained relative differences. In the
example above, a brown chair is underneath a brown desk, but the desk is not empty. In fact, even
the desk in the correct image for that caption is not technically empty, but it is more empty than the
distractor and our model fails to understand the relative difference.
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Figure 17: Our method also performs poorly on occluded objects or when objects have some of the
attributes of the distractor as well. In the example above, the doors are not clearly in view. In addition,
the brown door also has a white stripe, which further confuses the model.
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