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ABSTRACT

Image attribution algorithms aim to identify important regions that are highly rel-
evant to model decisions. Although existing attribution solutions can effectively
assign importance to target elements, they still face the following challenges: 1)
existing attribution methods generate inaccurate small regions thus misleading the
direction of correct attribution, and 2) the model cannot produce good attribution
results for samples with wrong predictions. To address the above challenges, this
paper re-models the above image attribution problem as a submodular subset se-
lection problem, aiming to enhance model interpretability using fewer regions.
To address the lack of attention to local regions, we construct a novel submodu-
lar function to discover more accurate small interpretation regions. To enhance
the attribution effect for all samples, we also impose four different constraints
on the selection of sub-regions, i.e., confidence, effectiveness, consistency, and
collaboration scores, to assess the importance of various subsets. Moreover, our
theoretical analysis substantiates that the proposed function is in fact submodu-
lar. Extensive experiments show that the proposed method outperforms SOTA
methods on two face datasets (Celeb-A and VGG-Face2) and one fine-grained
dataset (CUB-200-2011). For correctly predicted samples, the proposed method
improves the Deletion and Insertion scores with an average of 4.9% and 2.5%
gain relative to HSIC-Attribution. For incorrectly predicted samples, our method
achieves gains of 81.0% and 18.4% compared to the HSIC-Attribution algorithm
in the average highest confidence and Insertion score respectively. The code is
released at https://github.com/RuoyuChen10/SMDL-Attribution.

1 INTRODUCTION

Building transparent and explainable artificial intelligence (XAI) models is crucial for humans to
reasonably and effectively exploit artificial intelligence (Dwivedi et al., 2023; Ya et al., 2024; Li
et al., 2021b; Tu et al., 2023; Liang et al., 2022a;b; 2023b). Solving the interpretability and security
problems of AI has become an urgent challenge in the current field of AI research (Arrieta et al.,
2020; Chen et al., 2023; Zhao et al., 2023; Liang et al., 2023a; 2024; Li et al., 2023). Image attribu-
tion algorithms are typical interpretable methods, which produce saliency maps that explain which
image regions are more important to model decisions. It provides a deeper understanding of the op-
erating mechanisms of deep models, aids in identifying sources of prediction errors, and contributes
to model improvement. Image attribution algorithms encompass two primary categories: white-box
methods (Chattopadhay et al., 2018; Wang et al., 2020) chiefly attribute on the basis of the model’s
internal characteristics or decision gradients, and black-box methods (Petsiuk et al., 2018; Novello
et al., 2022), which primarily analyze the significance of input regions via external perturbations.

Although attribution algorithms have been well studied, they still face two following limitations: 1)
Some attribution regions are not small and dense enough which may interfere with the optimization
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Figure 1: For correctly predicted samples, our method can find fewer regions that make the model
predictions more confident. For incorrectly predicted samples, our method can find the reasons that
caused the model to predict incorrectly.

orientation. Most advanced attribution algorithms focus on understanding how the global image
contributes to the prediction results of the deep model while ignoring the impact of local regions on
the results. 2) It is difficult to effectively attribute the latent cause of the error to samples with incor-
rect predictions. For incorrectly predicted samples, although the attribution algorithm can assign the
correct class, it does not limit the response to the incorrect class, so that the attributed region may
still have a high response to the incorrect class.

To solve the above issues, we propose a novel explainable method that reformulates the attribution
problem as a submodular subset selection problem. We hypothesize that local regions can achieve
better interpretability, and hope to achieve higher interpretability with fewer regions. We first di-
vide the image into multiple sub-regions and achieve attribution by selecting a fixed number of
sub-regions to achieve the best interpretability. To alleviate the insufficient dense of the attribution
region, we employ regional search to continuously expand the sub-region set. Furthermore, we
introduce a new attribution mechanism to excavate what regions promote interpretability from four
aspects, i.e., the prediction confidence of the model, the effectiveness of regional semantics, the con-
sistency of semantics, and the collective effect of the region. Based on these useful clues, we design
a submodular function to evaluate the significance of various subsets, which can limit the search for
regions with wrong class responses. As shown in Fig. 1, we find that for correctly predicted samples,
the proposed method can obtain higher prediction confidence with only a few regions as input than
with all regions as input, and for incorrectly predicted samples, our method has the ability to find
the reasons (e.g., the dark background region) that caused its prediction error.

We validate the effectiveness of our method on two face datasets, i.e., Celeb-A (Liu et al., 2015),
VGG-Face2 (Cao et al., 2018), and a fine-grained dataset CUB-200-2011 (Welinder et al., 2010).
For correctly predicted samples, compared with the SOTA method HSIC-Attribution (Novello et al.,
2022), our method improves the Deletion scores by 8.4%, 1.0%, and 5.3%, and the Insertion scores
by 1.1%, 0.2%, and 6.1%, respectively. For incorrectly predicted samples, our method excels in
identifying the reasons behind the model’s decision-making errors. In particular, compared with
the SOTA method HSIC-Attribution, the average highest confidence is increased by 81.0%, and the
Insertion score is increased by 18.4% on the CUB-200-2011 dataset. Furthermore, our analysis at the
theoretical level confirms that the proposed function is indeed submodular. Please see Appendix 5
for a list of important notations employed in this article.

Our contributions can be summarized as follows:

• We reformulate the attribution problem as a submodular subset selection problem that
achieves higher interpretability with fewer dense regions.

• A novel submodular mechanism is constructed to evaluate the significance of various sub-
sets from four different aspects, i.e., the confidence, effectiveness, consistency, and collab-
oration scores. It not only improves the dense of attribution regions for existing attribution
algorithms but also better discovers the causes of image prediction errors.

• The proposed method has good versatility which can improve the interpretability of both
on the face and fine-grained datasets. Experimental results show that it can achieve better
attribution results for the correctly predicted samples and effectively discover the causes of
model prediction errors for incorrectly predicted samples.

2 RELATED WORK

White-Box Attribution Method Image attribution algorithms are designed to ascertain the im-
portance of different input regions within an image with respect to the decision-making process of
the model. White-box attribution algorithms primarily rely on computing gradients with respect to
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the model’s decisions. Early research focused on assessing the importance of individual input pixels
in image-based model decision-making (Baehrens et al., 2010; Simonyan et al., 2014). Some meth-
ods propose gradient integration to address the vanishing gradient problem encountered in earlier
approaches (Sundararajan et al., 2017; Smilkov et al., 2017). Recent popular methods often focus
on feature-level activations in neural networks, such as CAM (Zhou et al., 2016), Grad-CAM (Sel-
varaju et al., 2020), Grad-CAM++ (Chattopadhay et al., 2018), and Score-CAM (Wang et al., 2020).
However, these methods all rely on the selection of network layers in the model, which has a greater
impact on the quality of interpretation (Novello et al., 2022).

Black-Box Attribution Method Black-box attribution methods assume that the internal structure
of the model is agnostic. LIME (Ribeiro et al., 2016) locally approximates the predictions of a black-
box model with a linear model, by only slightly perturbing the input. RISE (Petsiuk et al., 2018)
perturbs the model by inputting multiple random masks and weighting the masks to get the final
saliency map. HSIC-Attribution method (Novello et al., 2022) measures the dependence between
the input image and the model output through Hilbert Schmidt Independence Criterion (HSIC) based
on RISE. Petsiuk et al. (2021) propose D-RISE to explain the object detection model’s decision.

Submodular Optimization Submodular optimization (Fujishige, 2005) has been successfully
studied in multiple application scenarios (Wei et al., 2014; Yang et al., 2019; Kothawade et al.,
2022; Joseph et al., 2019), a small amount of work also uses its theory to do research related to
model interpretability. Elenberg et al. (2017) frame the interpretability of black-box classifiers as
a combinatorial maximization problem, it achieves similar results to LIME and is more efficient.
Chen et al. (2018) introduce instance-wise feature selection to explain the deep model. Pervez et al.
(2023) proposed a simple subset sampling alternative based on conditional Poisson sampling, which
they applied to interpret both image and text recognition tasks. However, these methods only re-
tained the selected important pixels and observed the recognition accuracy (Chen et al., 2018). In
this article, we elucidate our model based on submodular subset selection theory and attain state-of-
the-art results, as assessed using standard metrics for attribution algorithm evaluation. Our method
also effectively highlights factors leading to incorrect model decisions.

3 PRELIMINARIES

In this section, we first establish some definitions. Considering a finite set V , given a set function
F : 2V → R that maps any subset S ⊆ V to a real value. When F is a submodular function, its
definition is as follows:
Definition 3.1 (Submodular function (Edmonds, 1970)). For any set Sa ⊆ Sb ⊆ V . Given an
element α, where α = V \ Sb. The set function F is a submodular function when it satisfies
monotonically non-decreasing (F (Sb ∪ {α})−F (Sb) ≥ 0) and:

F (Sa ∪ {α})−F (Sa) ≥ F (Sb ∪ {α})−F (Sb) . (1)

Problem formulation We divide an image I into a finite number of sub-regions, denoted as
V =

{
IM1 , IM2 , · · · , IMm

}
, where M indicates a sub-region IM formed by masking part of image I.

Giving a monotonically non-decreasing submodular function F : 2V → R, the image recognition
attribution problem can be viewed as maximizing the value F (S) with limited regions. Mathemat-
ically, the goal is to select a set S consisting of a limited number k of sub-regions in the set V that
maximize the submodular function F :

max
S⊆V,|S|≤k

F(S), (2)

we can transform the image attribution problem into a subset selection problem, where the submod-
ular function F relates design to interpretability.

4 PROPOSED METHOD

In this section, we propose a novel method for image attribution based on submodular subset selec-
tion theory. In Sec. 4.1 we introduce how to perform sub-region division, in Sec. 4.2 we introduce
our designed submodular function, and in Sec. 4.3 we introduce attribution algorithm based on
greedy search. Fig. 2 shows the overall framework of our approach.
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Figure 2: The framework of the proposed method.

4.1 SUB-REGION DIVISION

To obtain the interpretable region in an image, we partition the image I ∈ Rw×h×3 into m sub-
regions IM , where M indicates a sub-region IM formed by masking part of image I. Traditional
methods (Noroozi & Favaro, 2016; Redmon & Farhadi, 2018) typically divide images into regu-
lar patch areas, neglecting the semantic information inherent in different regions. In contrast, our
method employs a sub-region division strategy that is informed and guided by an a priori saliency
map. In detail, we initially divide the image into N × N patch regions. Subsequently, an existing
image attribution algorithm is applied to compute the saliency map A ∈ Rw×h for a correspond-
ing class of I. Following this, we resize A to a N × N dimension, where its values denote the
importance of each patch. Based on the determined importance of each patch, d patches are sequen-
tially allocated to each sub-region IM , while the remaining patch regions are masked with 0, where
d = N ×N/m. This process finally forms the element set V =

{
IM1 , IM2 , · · · , IMm

}
, satisfying the

condition I =
∑m

i=1 I
M
i . The detailed calculation process is outlined in Algorithm 1.

4.2 SUBMODULAR FUNCTION DESIGN

Confidence Score We adopt a model trained by evidential deep learning (EDL) to quantify the
uncertainty of a sample (Sensoy et al., 2018), which is developed to overcome the limitation of
softmax-based networks in the open-set environment (Bao et al., 2021). We denote the network
with prediction uncertainty by Fu(·). For K-class classification, assume that the predicted class
probability values follow a Dirichlet distribution. When given a sample x, the network is optimized
by the following loss function:

LEDL =

K∑
kc=1

ykc (logSDir − log (ekc + 1)), (3)

where y is the one-hot label of the sample x, and e ∈ RK is the output and the learned evidence of
the network, denoted as e = exp (Fu (x)). SDir =

∑K
kc=1 (ekc

+ 1) is referred to as the Dirichlet
strength. In the inference, the predictive uncertainty can be calculated as u = K/SDir, where
u ∈ [0, 1]. Thus, the confidence score of the sample x predicted by the network can be expressed as:

sconf. (x) = 1− u = 1− K∑K
kc=1 (ekc + 1)

. (4)

By incorporating the sconf., we can ensure that the selected regions align closely with the In-
Distribution (InD). This score acts as a reliable metric to distinguish regions from out-of-distribution,
ensuring alignment with the InD.

Effectiveness Score We expect to maximize the response of valuable information with fewer re-
gions since some image regions have the same semantic representation. Given an element α, and a
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sub-set S, we measure the distance between the element α and all elements in the set, and calculate
the smallest distance, as the effectiveness score of the judgment element α for the sub-set S:

se (α | S) = min
si∈S

dist (F (α) , F (si)), (5)

where dist(·, ·) denotes the equation to calculate the distance between two elements. Traditional
distance measurement methods (Wang et al., 2018; Deng et al., 2019) are tailored to maximize the
decision margins between classes during model training, involving operations like feature scaling
and increasing angle margins. In contrast, our method focuses solely on calculating the relative
distance between features, for which we utilize the general cosine distance. F (·) denotes a pre-
trained feature extractor. To calculate the element effectiveness score of a set, we can compute the
sum of the effectiveness scores for each element:

seff. (S) =
∑
si∈S

min
sj∈S,si ̸=sj

dist (F (si) , F (sj)). (6)

By incorporating the seff., we aim to limit the selection of regions with similar semantic representa-
tions, thereby increasing the diversity and improving the overall quality of region selection.

Consistency Score As the scores mentioned previously may be maximized by regions that aren’t
target-dependent, we aim to make the representation of the identified image region consistent with
the original semantics. Given a target semantic feature, fs, we make the semantic features of the
searched image region close to the target semantic features. We introduce the consistency score:

scons. (S,fs) =
F
(∑

IM∈S IM
)
· fs∥∥F (∑IM∈S IM

)∥∥ ∥fs∥
, (7)

where F (·) denotes a pre-trained feature extractor. The target semantic feature fs, can either adopt
the features computed from the original image using the pre-trained feature extractor, expressed as
fs = F (I), or directly implement the fully connected layer of the classifier for a specified class.
By incorporating the scons., our method targets regions that reinforce the desired semantic response.
This approach ensures a precise selection that aligns closely with our specific semantic goals.

Collaboration Score Some individual elements may lack significant individual effects in isola-
tion, but when placed within the context of a group or system, they exhibit an indispensable collec-
tive effect. Therefore, we introduce the collaboration score, which is defined as:

scolla. (S, I,fs) = 1−
F
(
I−

∑
IM∈S IM

)
· fs∥∥F (I−∑IM∈S IM

)∥∥ ∥fs∥
, (8)

where F (·) denotes a pre-trained feature extractor, fs is the target semantic feature. By introduc-
ing the collaboration score, we can judge the collective effect of the element. By incorporating the
scolla., our method pinpoints regions whose exclusion markedly affects the model’s predictive confi-
dence. This effect underscores the pivotal role of these regions, indicative of a significant collective
impact. Such a metric is particularly valuable in the initial stages of the search, highlighting regions
essential for sustaining the model’s accuracy and reliability.

Submodular Function We construct our objective function for selecting elements through a com-
bination of the above scores, F(S), as follows:

F(S) = λ1sconf.

( ∑
IM∈S

IM

)
+ λ2seff. (S) + λ3scons. (S,fs) + λ4scolla. (S, I,fs) , (9)

where λ1, λ2, λ3, and λ4 represent the weighting factors used to balance each score. To simplify
parameter adjustment, all weighting coefficients are set to 1 by default.
Lemma 1. Consider two sub-sets Sa and Sb in set V , where Sa ⊆ Sb ⊆ V . Given an element α,
where α ⊆ V \ Sb. Assuming that α is contributing to model interpretation, then, the function F(·)
in Eq. 9 is a submodular function and satisfies Eq. 1.

Proof. Please see Appendix B.1 for the proof.
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Lemma 2. Consider a subset S, given an element α, assuming that α is contributing to model
interpretation. The function F(·) of Eq. 9 is monotonically non-decreasing.

Proof. Please see Appendix B.2 for the proof.

4.3 GREEDY SEARCH ALGORITHM

Algorithm 1: A greedy search based algorithm for interpretable region discovery
Input: Image I ∈ Rw×h×3, number of divided patches N ×N , a prior saliency mapA ∈ Rw×h×3 of I, number of image division

sub-regions m, maximum number of constituent regions k.
Output: A set S ⊆ V , where |S| ≤ k.

1 V ← ∅ ; /* Initiate the operation of sub-region division */
2 A ← resize (A, newRows = N, newCols = N) ;
3 d = N ×N/m ;
4 for l = 1 to m do
5 IMl = I ;
6 for i = 1 to N do
7 for j = 1 to N do
8 Ir = rank (A, i, j) ; /* Index of Ai,j, ordered descendingly */
9 if Ir < (d− 1)× l and Ir > d× l then

10 IMl [(Ir − 1)× h/N + 1 : Ir × h/N, (Ir − 1)× w/N + 1 : Ir × w/N ] = 0 ; /* Mask
non-relevant patch region, fill it with 0 */

11 end
12 end
13 V ← V ∪ {IMl } ;
14 end
15 S ← ∅ ; /* Initiate the operation of submodular subset selection */
16 for i = 1 to k do
17 Sd ← V \S;
18 α← argmaxα∈Sd

F (S ∪ {α}) ; /* Optimize the submodular value */

19 S ← S ∪ {α}
20 end
21 return S

Given a set V =
{
IM1 , IM2 , · · · , IMm

}
, we can follow Eq. 2 to search the interpretable region by

selecting k elements that maximize the value of the submodular function F(·). The above prob-
lem can be effectively addressed by implementing a greedy search algorithm. Referring to related
works (Mirzasoleiman et al., 2015; Wei et al., 2015), we use Algorithm 1 to optimize the value of
the submodular function. Based on Lemma 1 and Lemma 2 we have proved that the function F(·)
is a submodular function. According to the theory of Nemhauser et al. (1978), we have:
Theorem 1 ((Nemhauser et al., 1978)). Let S denotes the solution obtained by the greedy search
approach, and S∗ denotes the optimal solution. If F(·) is a submodular function, then the solution
S has the following approximation guarantee:

F(S) ≥
(
1− 1

e

)
F(S∗), (10)

where e is the base of natural logarithm.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We evaluate the proposed method on two face datasets Celeb-A (Liu et al., 2015) and
VGG-Face2 (Cao et al., 2018), and a fine-grained dataset CUB-200-2011 (Welinder et al., 2010).
Celeb-A dataset includes 10, 177 IDs, we randomly select 2, 000 identities from Celeb-A’s validation
set, and one test face image for each identity is used to evaluate our method; the VGG-Face2 dataset
includes 8, 631 IDs, we randomly select 2, 000 identities from VGG-Face2’s validation set, and one
test face image for each identity is used to evaluate our method; CUB-200-2011 dataset includes
200 bird species, we select 3 samples for each class that is correctly predicted by the model from the
CUB-200-2011 validation set for 200 classes, a total of 600 images are used to evaluate the image
attribution effect. Additionally, 2 incorrectly predicted samples from each class are selected, totaling
400 images, to evaluate our method for identifying the cause of model prediction errors.
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Table 1: Deletion and Insertion AUC scores on the Celeb-A, VGG-Face2, and CUB-200-2011 vali-
dation sets.

Celeb-A VGGFace2 CUB-200-2011
Method Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑)

Saliency (Simonyan et al., 2014) 0.1453 0.4632 0.1907 0.5612 0.0682 0.6585
Saliency (w/ ours) 0.1254 0.5465 0.1589 0.6287 0.0675 0.6927
Grad-CAM (Selvaraju et al., 2020) 0.2865 0.3721 0.3103 0.4733 0.0810 0.7224
Grad-CAM (w/ ours) 0.1549 0.4927 0.1982 0.5867 0.0726 0.7231
LIME (Ribeiro et al., 2016) 0.1484 0.5246 0.2034 0.6185 0.1070 0.6812
LIME (w/ ours) 0.1366 0.5496 0.1653 0.6314 0.0941 0.6994
Kernel Shap (Lundberg & Lee, 2017) 0.1409 0.5246 0.2119 0.6132 0.1016 0.6763
Kernel Shap (w/ ours) 0.1352 0.5504 0.1669 0.6314 0.0951 0.6920
RISE (Petsiuk et al., 2018) 0.1444 0.5703 0.1375 0.6530 0.0665 0.7193
RISE (w/ ours) 0.1264 0.5719 0.1346 0.6548 0.0630 0.7245
HSIC-Attribution (Novello et al., 2022) 0.1151 0.5692 0.1317 0.6694 0.0647 0.6843
HSIC-Attribution (w/ ours) 0.1054 0.5752 0.1304 0.6705 0.0613 0.7262

Evaluation Metric We use Deletion and Insertion AUC scores (Petsiuk et al., 2018) to evaluate the
faithfulness of our method in explaining model predictions. To evaluate the ability of our method to
search for causes of model prediction errors, we use the model’s highest confidence in correct class
predictions over different search ranges as the evaluation metric.

Baselines We select the following popular attribution algorithm for calculating the prior saliency
map in Sec. 4.1, and also for comparison methods, including the white-box-based methods:
Saliency (Simonyan et al., 2014), Grad-CAM (Selvaraju et al., 2020), Grad-CAM++ (Chattopadhay
et al., 2018), Score-CAM (Wang et al., 2020), and the black-box-based methods: LIME (Ribeiro
et al., 2016), Kernel Shap (Lundberg & Lee, 2017), RISE (Petsiuk et al., 2018) and HSIC-
Attribution (Novello et al., 2022).

Implementation Details Please see Appendix C for details.

5.2 FAITHFULNESS ANALYSIS

To highlight the superiority of our method, we evaluate its faithfulness, which gauges the consis-
tency of the generated explanations with the deep model’s decision-making process (Li et al., 2021a).
We use Deletion and Insertion AUC scores to form the evaluation metric, which measures the de-
crease (or increase) in class probability as important pixels (given by the saliency map) are gradually
removed (or increased) from the image. Since our method is based on greedy search, we can de-
termine the importance of the divided regions according to the order in which they are searched.
We can evaluate the faithfulness of the method by comparing the Deletion or Insertion scores under
different image perturbation scales (i.e. different k sizes) with other attribution methods. We set
the search subset size k to be the same as the set size m, and adjust the size of the divided regions
according to the order of the returned elements. The image is perturbed to calculate the value of
Deletion or Insertion of our method.

Table 1 shows the results on the Celeb-A, VGG-Face2, and CUB-200-2011 validation sets. We find
that no matter which attribution method’s saliency map is used as the baseline, our method can im-
prove its Deletion and Insertion scores. The performance of our approach is also directly influenced
by the sophistication of the underlying attribution algorithm, with more advanced algorithms lead-
ing to superior results. The state-of-the-art method, HSIC-Attribution (Novello et al., 2022), shows
improvements when combined with our method. On the Celeb-A dataset, our method reduces its
Deletion score by 8.4% and improves its Insertion score by 1.1%. Similarly, on the CUB-200-
2011 dataset, our method enhances the HSIC-Attribution method by reducing its Deletion score by
5.3% and improving its Insertion score by 6.1%. On the VGG-Face2 dataset, our method enhances
the HSIC-Attribution method by reducing its Deletion score by 1.0% and improving its Insertion
score by 0.2%, this slight improvement may be caused by the large number of noisy images in the
VGG-Face2 dataset. It is precise because we reformulate the image attribution problem into a sub-
set selection problem that we can alleviate the insufficient fine-graininess of the attribution region,
thus improving the faithfulness of existing attribution algorithms. Our method exhibits significant
improvements across a spectrum of vision tasks and attribution algorithms, thereby highlighting its
extensive generalizability. Please see Appendix H for visualizations of our method on these datasets.
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Table 2: Evaluation of discovering the cause of incorrect predictions.

Method Average highest confidence (↑) Insertion (↑)(0-25%) (0-50%) (0-75%) (0-100%)

Grad-CAM++ (Chattopadhay et al., 2018) 0.1988 0.2447 0.2544 0.2647 0.1094
Grad-CAM++ (w/ ours) 0.2424 0.3575 0.3934 0.4193 0.1672
Score-CAM (Wang et al., 2020) 0.1896 0.2323 0.2449 0.2510 0.1073
Score-CAM (w/ ours) 0.2491 0.3395 0.3796 0.4082 0.1622
HSIC-Attribution (Novello et al., 2022) 0.1709 0.2091 0.2250 0.2493 0.1446
HSIC-Attribution (w/ ours) 0.2430 0.3519 0.3984 0.4513 0.1772
Patch 10×10 0.2020 0.4065 0.4908 0.5237 0.1519

Incorrect Prediction: Tree Sparrow
Ground Truth: Chipping Sparrow

Incorrect Prediction: White Crowned Sparrow
Ground Truth: Great Grey Shrike

Incorrect Prediction: Tree Sparrow
Ground Truth: Lazuli Bunting

Incorrect Prediction: Hooded Oriole
Ground Truth: Orchard Oriole

Figure 3: Visualization of the method for discovering what causes model prediction errors. The
Insertion curve shows the correlation between the searched region and ground truth class prediction
confidence. The highlighted region matches the searched region indicated by the red line in the
curve, and the dark region is the error cause identified by the method.

5.3 DISCOVER THE CAUSES OF INCORRECT PREDICTIONS
In this section, we analyze the images that are misclassified in the CUB-200-2011 validation set
and try to discover the causes for their misclassification. We use Grad-CAM++, Score-CAM, and
HSIC-Attribution as baseline. We specify its ground truth class and use our attribution algorithm to
discover regions where the model’s response improves on that class as much as possible. We evaluate
the performance of each method using the highest confidence score found within different search
ranges. For instance, we determine the highest category prediction confidence that the algorithm can
discover by searching up to 25% of the image region (i.e., set k = 0.25m). We also introduce the
Insertion AUC score as an evaluation metric.

Table 2 shows the results for samples that were misclassified in the CUB-200-2011 validation set,
we find that our method achieves significant improvements. The average highest confidence score
searched by our method in any search interval is higher than the baseline. In the global search
interval (0-100%), the average highest confidence level searched by our method is improved by
58.4% on Grad-CAM++, 62.6% on Score-CAM, and 81.0% on HSIC-Attribution. Its Insertion
score has also been significantly improved, increasing by 52.8% on Grad-CAM++, 51.2% on Score-
CAM, and 18.4% on HSIC-Attribution. In another scenario, our method does not rely on the saliency
map of the attribution algorithm as a priori. Instead, it divides the image into N ×N patches, where
each element in the set contains only one patch. In this case, our method achieves a higher average
highest confidence score, in the global search interval (0-100%), our method (divide the image into
10 × 10 patches) is 97.8% better than Grad-CAM++, 108.6% better than Score-CAM, and 110.1%
better than HSIC-Attribution. Fig. 3 shows some visualization results, we compare our method with
the SOTA method HSIC-Attribution. The Insertion curve represents the relationship between the
region searched by the methods and the ground truth class prediction confidence. We find that our
method can search for regions with higher confidence scores predicted by the model than the HSIC-
Attribution method with a small percentage of the searched image region. The highlighted region
shown in the figure can be considered as the cause of the correct prediction of the model, while the
dark region is the cause of the incorrect prediction of the model. This also demonstrates that our
method can achieve higher interpretability with fewer fine-grained regions. For further experiments
and analysis of this method across various network backbones, please refer to Appendix D.
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Table 3: Ablation study on components of different score functions of submodular function on the
Celeb-A, and CUB-200-2011 validation sets.

Submodular Function Celeb-A CUB-200-2011

Conf. Score Eff. Score Cons. Score Colla. Score Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑)(Equation 4) (Equation 6) (Equation 7) (Equation 8)

! % % % 0.3161 0.1795 0.3850 0.3455
% ! % % 0.1211 0.5615 0.0835 0.6383
% % ! % 0.2849 0.2291 0.1019 0.6905
% % % ! 0.1591 0.3053 0.0771 0.5409

! ! % % 0.1075 0.5714 0.0865 0.6624
% ! ! % 0.1082 0.5692 0.0750 0.7111
% % ! ! 0.1558 0.3617 0.0641 0.7181

% ! ! ! 0.1074 0.5735 0.0632 0.7169
! % ! ! 0.1993 0.2616 0.0623 0.7227
! ! % ! 0.1067 0.5712 0.0651 0.6753
! ! ! % 0.1088 0.5750 0.0811 0.7090
! ! ! ! 0.1054 0.5752 0.0613 0.7262

Table 4: Impact on whether to use a priori attribution map.

Method Divided set size m
Celeb-A CUB-200-2011

Deletion (↓) Insertion (↑) Deletion (↓) Insertion (↑)

Patch 7×7 49 0.1493 0.5642 0.1061 0.6903
Patch 10×10 100 0.1365 0.5459 0.1024 0.6159
Patch 14×14 196 0.1284 0.5562 0.0853 0.5805

+HSIC-Attribution 25 0.1054 0.5752 0.0613 0.7262

5.4 ABLATION STUDY

Components of Submodular Function We analyze the impact of various submodular function-
based score functions on the results for both the Celeb-A and CUB-200-2011 datasets, the saliency
map generated by the HSIC-Attribution method is used as a prior. As shown in Table 3, we ob-
served that using a single score function within the submodular function limits attribution faithful-
ness. When these score functions are combined in pairs, the faithfulness of our method will be
further improved. We demonstrate that removing any of the four score functions leads to deterio-
rated Deletion and Insertion scores, confirming the validity of these score functions. We find that the
effectiveness score is key for the Celeb-A dataset, while the collaboration score is more important
for the CUB-200-2011 dataset.

Whether to Use a Priori Attribution Map Our method uses existing attribution algorithms as
priors when dividing the image into sub-regions. Table 4 shows the results, we directly divide the
image into N × N patches without using a priori attribution map. Each element in the set only
retains the pixel value of one patch area, and other areas are filled with values 0. We can observe
that, whether on the Celeb-A dataset or the CUB-200-2011 dataset, the more patches are divided, the
Deletion AUC score increases, and the fewer patches are divided, the Insertion AUC score increases.
However, no matter how the number of patches is changed, we find that introducing a prior saliency
map generated by the HSIC attribution method works best, in terms of Insertion or Deletion scores.
Therefore, we believe that introducing a prior saliency map to assist in dividing image areas is
effective and can improve the computational efficiency of the algorithm.

6 CONCLUSION

In this paper, we propose a new method that reformulates the attribution problem as a submodular
subset selection problem. To address the lack of attention to local regions, we construct a novel
submodular function to discover more accurate fine-grained interpretation regions. Specifically,
four different constraints implemented on sub-regions are formulated together to evaluate the sig-
nificance of various subsets, i.e., confidence, effectiveness, consistency, and collaboration scores.
The proposed method has outperformed state-of-the-art methods on two face datasets (Celeb-A and
VGG-Face2) and a fine-grained dataset (CUB-200-2011). Experimental results show that the pro-
posed method can improve the Deletion and Insertion scores for the correctly predicted samples.
While for incorrectly predicted samples, our method excels in identifying the reasons behind the
model’s decision-making errors.
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A NOTATIONS

The notations used throughout this article are summarized in Table 5.

Table 5: Some important notations used in this paper.

Notation Description

I an input image
IM a sub-region into which I is divided
V a finite set of divided sub-regions
S a subset of V
α an element from V \ S
k the size of the S
F(·) a function that maps a set to a value
A saliency map calculated by attribution algorithms
N ×N the number of divided patches of I
m the number of sub-regions into which the image I is divided
d the number of patches in IM

x an input sample
y the one-hot label
u the predictive uncertainty ranges from 0 to 1
Fu(·) a deep evidential network for calculating the u of x
F (·) a traditional network encoder
K the number of classes
dist(·, ·) a function to calculate the distance between two feature vectors
fs the target semantic feature vector

B THEORY PROOF

B.1 PROOF OF LEMMA 1

Proof. Consider two sub-sets Sa and Sb in set V , where Sa ⊆ Sb ⊆ V . Given an element α, where
α = V \Sb. The necessary and sufficient conditions for the function F(·) to satisfy the submodular
property are:

F (Sa ∪ {α})−F (Sa) ≥ F (Sb ∪ {α})−F (Sb) . (11)

For Eq. 4, assuming that the individual element α of the collection division is relatively small,
according to the Taylor decomposition (Montavon et al., 2017), we can locally approximate Fu(Sa+
α) = Fu(Sa) +∇Fu(Sa) · α. Thus:

sconf. (Sa + α)− sconf. (Sa) =
K

exp (Fu (Sa)) +K
− K

exp (Fu (Sa + α)) +K

=
K

exp (Fu (Sa)) +K
− K

exp (Fu (Sa)) exp (∇Fu(Sa) · α) +K
,

(12)
since Sa ∩ α = ∅, Sa and α do not overlap in the image space, and α is small. Therefore, we can
regard ∇Fu(Sa) · α ≃ 0. Follow up:

sconf. (Sa + α)− sconf. (Sa) ≃
K

exp (Fu (Sa)) +K
− K

exp (Fu (Sa)) exp (0) +K

= 0+,

(13)

and in the same way, sconf. (Sb + α)− sconf. (Sb) ≃ 0+. We have:

sconf. (Sa + α)− sconf. (Sa)− (sconf. (Sb + α)− sconf. (Sb)) ≈ 0. (14)
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For Eq. 6, when a new element α is added to the set Sa, the minimum distance between ele-
ments in Sa and other elements may be further reduced, i.e., for any element si ∈ Sa, we have
minsj∈Sa∪{α},sj ̸=si dist (F (si) , F (sj)) ≤ minsj∈Sa,sj ̸=si dist (F (si) , F (sj)). Thus:

seff. (Sa ∪ {α}) = min
si∈Sa

dist (F (α) , F (si)) +
∑

si∈Sa

min
sj∈Sa∪{α},sj ̸=si

dist (F (si) , F (sj))

= min
si∈Sa

dist (F (α) , F (si)) +
∑

si∈Sa

min
sj∈Sa,sj ̸=si

dist (F (si) , F (sj))− εa,
(15)

where εa is a constant, which is the sum of the minimum distance reductions of the elements in the
original Sa after α is added. Then, we have:

seff. (Sa ∪ {α})− seff. (Sa) = min
si∈Sa

dist (F (α) , F (si))− εa, (16)

and in the same way,

seff. (Sb ∪ {α})− seff. (Sb) = min
si∈Sb

dist (F (α) , F (si))− εb, (17)

since Sa ⊆ Sb, the minimum distance between alpha and elements in Sb \ Sa may be smaller than
the minimum distance between alpha and elements in Sa, thus,

min
si∈Sa

dist (F (α) , F (si)) ≥ min
si∈Sb

dist (F (α) , F (si)),

since there are more elements in Sb than in Sa, more elements in Sb have the shortest distance from
α, that, εb ≥ εa. Therefore, we have:

seff. (Sa ∪ {α})− seff. (Sa) ≥ seff. (Sb ∪ {α})− seff. (Sb) . (18)

For Eq. 7, let G (Sa) = F (Sa) · fs. Assuming that the individual element α of the collection
division is relatively small, according to the Taylor decomposition, we can locally approximate
G (Sa + α) = G (Sa) + ∇G (Sa) · α. Assuming that the searched α is valid, i.e., ∇G (Sa) > 0.
Thus:

scons. (Sa + α,fs)− scons. (Sa,fs) =
G(Sa) +∇G (Sa) · α

∥F (Sa) +∇F (Sa) · α∥∥fs∥
− G(Sa)

∥F (Sa)∥∥fs∥

≃ ∇G (Sa) · α
∥F (Sa)∥∥fs∥

,

(19)

since Sa∩α = ∅, Sa and α do not overlap in the image space, and α is small, ∇G (Sa) ·α is small.
Then, we have:

scons. (Sa + α,fs)− scons. (Sa,fs)− (scons. (Sb + α,fs)− scons. (Sb,fs)) ≈ 0. (20)

For Eq. 8, let G (I− Sa) = F (I− Sa)·fs. Assuming that the individual element α of the collection
division is relatively small, according to the Taylor decomposition, we can locally approximate
G (I− Sa − α) = G (I− Sa) − ∇G (I− Sa) · α. Assuming that the searched alpha is valid, i.e.,
∇G (I− Sa) > 0. Thus:

scolla. (Sa + α, I,fs)− scolla. (Sa, I,fs) =
G (I− Sa)

∥F (I− Sa) ∥∥fs∥
− G (I− Sa)−∇G (I− Sa) · α

∥F (I− Sa − α) ∥∥fs∥

≃ ∇G (I− Sa) · α
∥F (I− Sa) ∥∥fs∥

,

(21)
since α is small, ∇G (I− Sa) · α is small. Then, we have:

scolla. (Sa + α, I,fs)− scolla. (Sa, I,fs)− (scolla. (Sb + α, I,fs)− scolla. (Sb, I,fs)) ≈ 0. (22)

Combining Eq. 14, 18, 20, and 22 we can get:

F (Sa ∪ {α})−F (Sa) ≥ F (Sb ∪ {α})−F (Sb) , (23)

hence, we can prove that Eq. 9 is a submodular function.
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B.2 PROOF OF LEMMA 2

Proof. Consider a subset S, given an element α, assuming that α is contributing to interpretation.
The necessary and sufficient conditions for the function F(·) to satisfy the property of monotonically
non-decreasing is:

F (S ∪ {α})−F (S) > 0, (24)

where, for Eq. 4:

sconf. (S + α)− sconf. (S) =
K

exp (Fu (S)) +K
− K

exp (Fu (S)) exp (∇Fu(S) · α) +K
, (25)

since α is contributing to interpretation, ∇Fu(S) > 0, and exp (∇Fu(S) · α) > 1, thus:

sconf. (S + α)− sconf. (S) > 0. (26)

For Eq. 6,
seff. (S ∪ {α})− seff. (S) = min

si∈S
dist (F (α) , F (si))− ε,

since effective element α are selected as much as possible, the value ε will be small,

seff. (S ∪ {α})− seff. (S) ≃ min
si∈S

dist (F (α) , F (si)) > 0. (27)

For Eq. 7, assuming that the searched α is valid,

scons. (S + α,fs)− scons. (S,fs) ≃
∇G (S) · α
∥F (S)∥∥fs∥

> 0, (28)

likewise, for Eq. 8,

scolla. (S + α, I,fs)− scolla. (S, I,fs) ≃
∇G (I− S) · α
∥F (I− S) ∥∥fs∥

> 0. (29)

Combining Eq. 26, 27, 28, and 29 we can get:

F (S ∪ {α})−F (S) > 0, (30)

hence, we can prove that Eq. 9 is monotonically non-decreasing.

C IMPLEMENTATION DETAILS

We primarily employed CNN-based architectures to explain our models. For the face datasets, we
evaluated recognition models that were trained using the ResNet-101 (He et al., 2016) architecture
and the ArcFace (Deng et al., 2019) loss function, with an input size of 112 × 112 pixels. For the
CUB-200-2011 dataset, we evaluated a recognition model trained on the ResNet-101 architecture
with a cross-entropy loss function and an input size of 224 × 224 pixels. It’s worth noting that all
the uncertainty models denoted as Fu(·) in Sec. 4.2 were trained using the ResNet101 architecture.
Given that the face recognition task primarily involves face verification, we use the target seman-
tic feature fs in functions scons. (S,fs) and scolla. (S, I,fs) to adopt features computed from the
original image using a pre-trained feature extractor. For the CUB-200-2011 dataset, we directly im-
plement the fully connected layer of the classifier for a specified class. For the two face datasets, we
set N = 28 and m = 98. For the CUB-200-2011 dataset, we set N = 10 and m = 25. We conduct
our experiments using the Xplique 1 repository, which offers baseline methods and evaluation tools.
To evaluate the Deletion and Insertion AUC scores, we set k to be the same as the set size m to
evaluate the importance ranking of different sub-regions. These experiments were performed on an
NVIDIA 3090 GPU.

1Xplique: https://github.com/deel-ai/xplique
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Table 6: Evaluation on discovering the cause of incorrect predictions for different network back-
bones.

Average highest confidence (↑)Backbone Method (0-25%) (0-50%) (0-75%) (0-100%) Insertion (↑)

Grad-CAM++ (Chattopadhay et al., 2018) 0.1323 0.2130 0.2427 0.2925 0.1211
Grad-CAM++ (w/ ours) 0.1595 0.2615 0.3521 0.4263 0.1304
Score-CAM (Wang et al., 2020) 0.1349 0.2125 0.2583 0.3058 0.1057
Score-CAM (w/ ours) 0.1649 0.2624 0.3452 0.4224 0.1186
HSIC-Attribution (Novello et al., 2022) 0.1456 0.1743 0.1906 0.2483 0.1297

VGGNet-19
(Simonyan & Zisserman, 2015)

HSIC-Attribution (w/ ours) 0.1745 0.2716 0.3477 0.4226 0.1365
Grad-CAM++ (Chattopadhay et al., 2018) 0.1988 0.2447 0.2544 0.2647 0.1094
Grad-CAM++ (w/ ours) 0.2424 0.3575 0.3934 0.4193 0.1672
Score-CAM (Wang et al., 2020) 0.1896 0.2323 0.2449 0.2510 0.1073
Score-CAM (w/ ours) 0.2491 0.3395 0.3796 0.4082 0.1622
HSIC-Attribution (Novello et al., 2022) 0.1709 0.2091 0.2250 0.2493 0.1446

ResNet-101
(He et al., 2016)

HSIC-Attribution (w/ ours) 0.2430 0.3519 0.3984 0.4513 0.1772
Grad-CAM++ (Chattopadhay et al., 2018) 0.1584 0.2820 0.3223 0.3462 0.1284
Grad-CAM++ (w/ ours) 0.1680 0.3565 0.4615 0.5076 0.1759
Score-CAM (Wang et al., 2020) 0.1574 0.2456 0.2948 0.3141 0.1195
Score-CAM (w/ ours) 0.1631 0.3403 0.4283 0.4893 0.1667
HSIC-Attribution (Novello et al., 2022) 0.1648 0.2190 0.2415 0.2914 0.1635

MobileNetV2
(Sandler et al., 2018)

HSIC-Attribution (w/ ours) 0.2460 0.4142 0.4913 0.5367 0.1922
Grad-CAM++ (Chattopadhay et al., 2018) 0.2338 0.2549 0.2598 0.2659 0.1605
Grad-CAM++ (w/ ours) 0.2502 0.3038 0.3146 0.3214 0.1795
Score-CAM (Wang et al., 2020) 0.2126 0.2327 0.2375 0.2403 0.1572
Score-CAM (w/ ours) 0.2442 0.2900 0.3029 0.3115 0.1745
HSIC-Attribution (Novello et al., 2022) 0.2418 0.2561 0.2615 0.2679 0.1611

EfficientNetV2-M
(Tan & Le, 2021)

HSIC-Attribution (w/ ours) 0.2616 0.3117 0.3235 0.3306 0.1748

D DIFFERENT NETWORK BACKBONE

We verified the effect of our method on more CNN network architectures, including VGGNet-19 (Si-
monyan & Zisserman, 2015), MobileNetV2 (Sandler et al., 2018), and EfficientNetV2-M (Tan & Le,
2021). We adopted the same settings as the original network, with an input size of 224 × 224 for
VGGNet-19, 224 × 224 for MobileNetV2, and 384 × 384 for EfficientNetV2-M. We conduct the
experiment under the same setting as those employed for ResNet-101. When employing VGGNet-
19, our method outperforms the SOTA method HSIC-Attribution, achieving a 70.2% increase in the
average highest confidence and a 5.2% improvement in the Insertion AUC score. While utilizing
MobileNetV2, our method outperforms the SOTA method HSIC-Attribution, achieving an 84.2%
increase in the average highest confidence and a 17.6% improvement in the Insertion AUC score.
Similarly, with EfficientNetV2-M, our method surpasses HSIC-Attribution, achieving a 23.4% in-
crease in the average highest confidence and an 8.5% improvement in the Insertion AUC score. This
indicates the versatility and effectiveness of our method across various backbones. Note that the 400
incorrectly predicted samples used by these networks in the experiment are not exactly the same,
given the differences across the networks.

E HYPERPARAMETER SENSITIVITY ANALYSIS

We explored the effects of different score function weighting on the CUB-200-2011 dataset. As
shown in Table 7, we find that only when increasing the weight of Eq. 7, the Insertion AUC score
will be slightly improved, and other indicators have no obvious effect. If the weight is set too high,
it may cause other score functions to fail, resulting in a significant decline in indicator performance.
Therefore, we do not need to pay too much attention to how to weigh these score functions. The
default weight is set to 1.

F ABLATION ON MORE DETAILS

Ablation on division sub-region number N ×N and set size m In this section, we explore the
impact of the size of the divided sub-region number N ×N and the size of the set m on attribution
performance. The experimental settings are set by default unless otherwise specified. We conducted
experiments on the Celeb-A dataset and the CUB-200-2011 dataset. For the Celeb-A dataset, as
shown in Table 8, we found that the more granular the division on the face dataset, the better the
attribution results can be achieved, however, the attribution effect at the pixel level will be relatively
poor. For the face dataset, a better choice is set N = 28 and m = 98. On the CUB-200-2011
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Table 7: Ablation study on the effects of different score functions on the CUB-200-2011 validation
set.

Conf. Score Eff. Score Cons. Score Colla. Score Deletion (↓) Insertion (↑)(Equation 4) (Equation 6) (Equation 7) (Equation 8)

1 1 1 1 0.0613 0.7262

20 1 1 1 0.1333 0.5979
50 1 1 1 0.2529 0.4681

100 1 1 1 0.3198 0.4059
1 20 1 1 0.0753 0.6725
1 50 1 1 0.0781 0.6614
1 100 1 1 0.0793 0.6537
1 1 20 1 0.0645 0.7276
1 1 50 1 0.0664 0.7276
1 1 100 1 0.0689 0.7221
1 1 1 20 0.0597 0.7174
1 1 1 50 0.0615 0.7001
1 1 1 100 0.0657 0.7010

Table 8: Ablation study on division sub-region number N×N and set size m on the Celeb-A valida-
tion set. The input image size is 112×112, the base attribution method is HSIC-Attribution (Novello
et al., 2022).

Division method Number of divided
areas for a element Collection size Deletion (↓) Insertion (↑)

Patch 28×28 8 98 0.1054 0.5752
Patch 14×14 2 98 0.1158 0.5703
Patch 14×14 4 49 0.1133 0.5757
Patch 10×10 2 50 0.1288 0.5621
Patch 10×10 4 25 0.1235 0.5645
Patch 8×8 2 32 0.1276 0.5542

Pixel 112×112 128 98 0.1258 0.5404
Pixel 112×112 256 49 0.1148 0.5615
Pixel 112×112 392 32 0.1136 0.5664

dataset, as shown in Table 9, the attribution effect at the pixel level is still relatively poor. Since
the positions of birds in the CUB-200-2011 dataset vary greatly and the background is complex, the
images are not suitable for too fine-grained division. For the CUB-200-2011 dataset, a better choice
is to set N = 10 and m = 4.

Ablation of score function on the attribution of incorrectly predicted samples Since the at-
tribution of mispredicted samples requires specifying the correct category, we mainly discuss the
impact of Eq. 7 and Eq. 8 on the attribution of mispredicted samples because these equations in-

Table 9: Ablation study on division sub-region number N × N and set size m on the CUB-200-
2011 validation set. The input image size is 224 × 224, and the base attribution method is HSIC-
Attribution (Novello et al., 2022).

Division method Number of divided
areas for a element Collection size Deletion (↓) Insertion (↑)

Patch 14×14 2 98 0.0769 0.6343
Patch 14×14 4 49 0.0652 0.6661
Patch 10×10 2 50 0.0689 0.6917
Patch 10×10 4 25 0.0613 0.7262
Patch 8×8 2 32 0.0686 0.7079

Pixel 224×224 256 49 0.0859 0.5818
Pixel 224×224 392 32 0.0768 0.6398
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Table 10: Ablation study on submodular function score components for incorrectly predicted sam-
ples in the CUB-200-2011 dataset.

Method Cons. Score Colla. Score Average highest confidence (↑) Insertion (↑)(Equation 7) (Equation 8) (0-25%) (0-50%) (0-75%) (0-100%)

Grad-CAM++ (w/ ours) % ! 0.0821 0.1547 0.1923 0.2303 0.1122
Grad-CAM++ (w/ ours) ! % 0.1654 0.2888 0.3338 0.3611 0.1452
Grad-CAM++ (w/ ours) ! ! 0.2424 0.3575 0.3934 0.4193 0.1672

Score-CAM (w/ ours) % ! 0.0742 0.1348 0.1835 0.2237 0.1072
Score-CAM (w/ ours) ! % 0.1383 0.2547 0.3131 0.3402 0.1306
Score-CAM (w/ ours) ! ! 0.2491 0.3395 0.3796 0.4082 0.1622

HSIC-Attribution (w/ ours) % ! 0.1054 0.1803 0.2177 0.2600 0.1288
HSIC-Attribution (w/ ours) ! % 0.2394 0.3479 0.3940 0.4220 0.1645
HSIC-Attribution (w/ ours) ! ! 0.2430 0.3519 0.3984 0.4513 0.1772

Table 11: Ablation study on the effect of sub-region division size N ×N in incorrect sample attri-
bution.

Method Average highest confidence (↑) Insertion (↑)(0-25%) (0-50%) (0-75%) (0-100%)

HSIC-Attribution (Novello et al., 2022) 0.1709 0.2091 0.2250 0.2493 0.1446

Patch 5×5 0.2597 0.3933 0.4389 0.4514 0.1708
Patch 6×6 0.2372 0.4025 0.4555 0.4720 0.1538
Patch 7×7 0.2430 0.4289 0.4819 0.4985 0.1621
Patch 8×8 0.1903 0.4005 0.4740 0.5043 0.1584
Patch 10×10 0.2020 0.4065 0.4908 0.5237 0.1519
Patch 12×12 0.1667 0.3816 0.4987 0.5468 0.1247

volve specifying categories. The network backbone we studied is ResNet-101, and 400 samples in
the CUB-200-2011 test set that were misclassified by this network were used as research objects. As
shown in Table 10, when any score function is removed, regardless of the imputation algorithm it is
based on, the average highest confidence and Insertion AUC score will decrease, with Eq. 7 having
the greatest impact.

Ablation of division sub-region number N ×N of incorrect sample attribution Without using
a priori saliency map, we study the impact of different patch division numbers on the error sample
attribution effect, where the number of patches m = N ×N . We explore the impact of six different
division sizes on the results. As depicted in Table 11, our results indicate that dividing the image
into more patches yields higher average highest confidence scores (0-100%). However, excessive di-
vision can introduce instability in the early search area (0-25%). In summary, without incorporating
a priori saliency maps for division, opting for a 10x10 patch division followed by subset selection
appears to be the optimal choice.
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Figure 4: Processing time of our method.

In this section, we discuss the processing time
effectiveness of the proposed algorithm. The
size m of the divided set we are testing is 98, we
sequentially test the processing time required
by our algorithm under different settings of the
number of search elements k.

As shown in Fig. 4, the more elements are
searched, the longer times it takes, and the re-
lationship is almost linear. To use the proposed
method efficiently, it is better to control the di-
vided set size m, the size of the search set can
be controlled by controlling the number of di-
vided patches N , or by controlling the parame-
ter d that controls the number of patches assigned to each element.
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H VISUALIZING ATTRIBUTION OF CORRECTLY PREDICTED CLASSES

H.1 CELEB-A

The visualization results compared with the HSIC-Attribution method are shown in Fig. 5. Our
method has a higher Insertion AUC curve area and searches for the highest confidence with higher
attribution results than the HSIC-Attribution method.

Figure 5: Visualization of the methods on the Celeb-A dataset.
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H.2 CUB-200-2011

The visualization results compared with the HSIC-Attribution method are shown in Fig. 6. Our
method has a higher Insertion AUC curve area and searches for the highest confidence with higher
attribution results than the HSIC-Attribution method.

Figure 6: Visualization of the methods on the CUB-200-2011 dataset.
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I VISUALIZING ATTRIBUTION OF MISCLASSIFIED PREDICTION

Visualization of our method searches for causes of model prediction errors compared with the HSIC-
Attribution method, as shown in Fig. 7. Our method has a higher Insertion AUC curve area and
searches for the highest confidence with higher attribution results than the HSIC-Attribution method.

Figure 7: Visualization of the methods on CUB-200-2011 misclassified dataset.
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J LIMITATION

The main limitation of our method is the computation time depending on the sub-region division
approach. Specifically, we first divide the image into different subregions, and then we use the greed
algorithm to search for the important subset regions. To accelerate the search process, we introduce
the prior maps, which are computed based on the existing attribution methods. However, we observe
that the performance of our attribution method is based on the scale of subregions, where the smaller
regions would achieve much better accuracy as shown in the experiments. There exists a trade-off
between the accuracy and the computation time. In the future, we will explore a better optimization
strategy to solve this limitation.
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