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ABSTRACT

Diffusion models are powerful generative models but often generate sensitive data
that are unwanted by users, mainly because the unlabeled training data frequently
contain such sensitive data. Since labeling all sensitive data in the large-scale
unlabeled training data is impractical, we address this problem by using a small
amount of labeled sensitive data. In this paper, we propose positive-unlabeled
diffusion models, which prevent the generation of sensitive data using unlabeled
and sensitive data. Our approach can approximate the evidence lower bound
(ELBO) for normal (negative) data using only unlabeled and sensitive (positive)
data. Therefore, even without labeled normal data, we can maximize the ELBO
for normal data and minimize it for labeled sensitive data, ensuring the generation
of only normal data. Through experiments across various datasets and settings,
we demonstrated that our approach can prevent the generation of sensitive images
without compromising image quality.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al.,
2020b) are powerful generative models that have become the de facto standard, and are applied to
various fields such as images (Dhariwal & Nichol, 2021; Rombach et al., 2022), audio (Chen et al.,
2020; Kong et al., 2020; Popov et al., 2021), and text (Austin et al., 2021; Li et al., 2022; Gong et al.,
2022). The training of diffusion models can be regarded as the maximization of the evidence lower
bound (ELBO), which is the tractable lower bound of the log-likelihood, on the training data (Ho
et al., 2020). Users collect these training data from sources like the internet to generate the contents
they want, and then perform either training from scratch or fine-tuning.

Unfortunately, diffusion models have the potential to generate inappropriate, discriminatory, or
harmful contents that are unwanted by users (Brack et al., 2022). For example, they might generate
sexual images of real individuals (Mirsky & Lee, 2021; Verdoliva, 2020). We refer to such contents
as sensitive data. The primary cause of this problem is that such sensitive data are included in the
training data. To handle this problem, existing approaches have applied data forgetting (Gandikota
et al., 2023; Zhang et al., 2024) and continual learning (Heng & Soh, 2024) to pre-trained diffusion
models. For example, to forget sensitive data, Heng & Soh (2024) first prepare normal and sensitive
data, then attempt to maximize the ELBO for the normal data while minimizing it for the sensitive
data. This approach requires a lot of normal data that do not include any sensitive data. However,
it is difficult to prepare such normal data. When using training data collected from the internet,
it is difficult to manually remove all sensitive data. In addition, when using pre-trained models to
generate training data, unintended sensitive data may be produced. That is, what we can actually
use is not clean normal data, but unlabeled data that contain both normal and sensitive data. On the
other hand, it is easy to prepare a small amount of sensitive data that users may not want. Hence,
we need to train diffusion models in positive-unlabeled (PU) setting (Du Plessis et al., 2014; 2015;
Kiryo et al., 2017), where we have access only to unlabeled and sensitive (positive) data, but not to
normal (negative) data.

In this paper, we propose positive-unlabeled diffusion models, which prevent diffusion models from
generating sensitive data for this PU setting. We model an unlabeled data distribution with a mixture
of normal and sensitive data distributions. Accordingly, the normal data distribution can be rewritten
as a mixture of unlabeled and sensitive data distributions. With this trick, we approximate the ELBO
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(a) Unlabeled training data. (b) Sensitive training data. (c) Unsupervised samples. (d) Proposed samples.

Figure 1: MNIST examples by the proposed method, where even numbers are considered normal
data and odd numbers are considered sensitive data. (a) The unlabeled training data contain 10%
sensitive data (odd numbers). (b) The sensitive training data contain only odd numbers. (c) When
the diffusion model is trained in the standard way using the unlabeled training data, the generated
samples include sensitive data (odd numbers). (d) When the proposed method is applied to the
diffusion model, it generates only normal data (even numbers).

for normal data only using unlabeled and sensitive data. Therefore, even without labeled normal
data, we can maximize the ELBO for normal data and minimize it for labeled sensitive data. Note
that our approach requires a small amount of labeled sensitive data because such data are less diverse
than normal data.

Figure 1 shows MNIST examples by unsupervised and proposed methods. In these examples, even
numbers are considered normal data, while odd numbers are considered sensitive data. Our approach
can maximize the ELBO for normal data (even numbers) and minimize it for sensitive data (odd
numbers), using only unlabeled and sensitive data. As a result, the diffusion model trained with our
approach generates only normal data (even numbers).

Our approach can be applied to training from scratch as well as to fine-tuning by using the parameters
of a pre-trained model as initial values. Through experiments across various datasets and settings,
we demonstrated that our approach effectively prevents the generation of sensitive images without
compromising image quality.

Our approach can also be easily extended to positive-negative-unlabeled setting, where we can use
a small amount of normal data. Our approach is well-suited for privacy-preserving applications,
ensuring that sensitive samples are not inadvertently generated while maintaining sample quality.

Our contributions can be summarized as follows:

• We propose positive-unlabeled diffusion models, designed to prevent diffusion models
from generating sensitive data when only unlabeled and sensitive data are available.

• Our approach supports both training from scratch or fine-tuning pre-trained models.
• Experiments on various datasets show that our approach effectively prevents the generation

of sensitive images without compromising image quality.

2 PRELIMINARIES

2.1 PROBLEM SETUP

First, we describe our problem setup. Given unlabeled dataset U = {x(1), . . . ,x(N)} and labeled
sensitive dataset S = {x̃(1), . . . , x̃(M)} for training, U contains both normal and sensitive data
points. Our goal is to train diffusion models so that they generate only normal data using U and S.

2.2 DIFFUSION MODELS

Next, we review diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Song et al., 2020b). They consist of two processes: diffusion and denoising.
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The diffusion process gradually adds Gaussian noise to the original data point x0 over T steps,
eventually converting it into standard Gaussian noise xT . The denoising process gradually removes
the noise from xT , converting it back to the original data point x0. The noisy data points x1, . . . ,xT

can be viewed as latent variables of the same dimension as the original data point x0.

They model the probability of a data point x0 using latent variables x1, . . . ,xT as follows:

pθ(x0) =

∫
pθ(x0:T )dx1:T , (1)

where pθ represents the denoising process:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt). (2)

These distributions are modeled by Gaussian distributions:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), p(xT ) = N (xT ;0, I). (3)

Here, µθ(xt, t) and Σθ(xt, t) are neural networks with parameter θ, which estimate the mean and
covariance matrix of the Gaussian distribution, respectively. N (xT ;0, I) is the standard Gaussian,
where 0 denotes the zero vector and I denotes the identity matrix.

On the other hand, the diffusion process is modeled by Gaussian distributions as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (4)

where αt ∈ (0, 1) is a monotonically decreasing hyperparameter. A notable property of the diffusion
process is that xt at an arbitrary step t can be sampled in closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), ᾱt =

t∏
t′=1

αt′ . (5)

By applying the reparameterization trick (Kingma, 2013), xt can be rewritten as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (6)

where ϵ is a sample drawn from a standard Gaussian N (ϵ;0, I).

With these distributions, the ELBO for each data point x0, LDM(x0; θ), can be derived as follows:

log pθ(x0) = logEq(x1:T |x0)

[
pθ(x0:T )

q(x1:T |x0)

]
≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
≡ LDM(x0; θ), (7)

where E[·] is the expectation. This ELBO can be simplified to the following objective function:

−LDM(x0; θ) ∝ Eu(t),p(ϵ)

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] ≡ ℓ(x0; θ), (8)

where u(t) is a uniform distribution over 1 to T , p(ϵ) is a standard Gaussian N (ϵ;0, I), and ϵθ is a
neural network that estimates the noise ϵ from xt =

√
ᾱtx0 +

√
1− ᾱtϵ at step t. That is, we can

train diffusion models by minimizing the squared error between the noise ϵ and the estimated noise
ϵθ(xt, t). Note that the ELBO is maximized by minimizing ℓ(x0; θ), and conversely, the ELBO is
minimized by maximizing it.

In standard diffusion model training, all unlabeled data points in U are assumed to be normal, and
the following objective function is minimized:

1

N

N∑
n=1

ℓ(x(n); θ). (9)

However, since the unlabeled data often contain sensitive data, the model trained with the above
objective may generate sensitive data.
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3 PROPOSED METHOD

In this section, we propose positive-unlabeled diffusion models, preventing diffusion models from
learning sensitive data using U and S. Our approach is based on PU learning that aims to train
a binary classifier to distinguish between positive and negative data using positive and unlabeled
data (Du Plessis et al., 2014; 2015; Kiryo et al., 2017). Hereafter, we will also refer to normal data
points as negative (-) samples and sensitive data points as positive (+) samples.

3.1 SUPERVISED DIFFUSION MODELS

First, assuming that both normal and sensitive data are given, we discuss a supervised approach
for training a diffusion model. For example, as described in (Heng & Soh, 2024), we can simply
minimize ℓ(x; θ) for the normal data and maximize it for the sensitive data. However, since ℓ(x; θ)
is bounded below but unbounded above, maximizing ℓ(x; θ) will cause it to diverge to infinity,
resulting in meaningless parameters. Although 1/ℓ(x; θ) can be minimized as an alternative, this
requires an additional hyperparameter that balances ℓ(x; θ) and 1/ℓ(x; θ), as described in (Ruff
et al., 2019).

As a reasonable supervised approach, following (Yamanaka et al., 2019), we introduce a binary
classification framework into diffusion model training. Let y = 0 represent normal data and y = 1
represent sensitive data. We model the conditional probability pθ(y|x) using ℓ(x; θ) as follows:

pθ(y|x) =
{
exp(−ℓ(x; θ)) (y = 0)

1− exp(−ℓ(x; θ)) (y = 1).
(10)

A small ℓ(x; θ) leads to a higher pθ(y = 0|x), while a large ℓ(x; θ) results in a higher pθ(y = 1|x).
With this conditional probability, we introduce the binary cross entropy as the loss function for each
data point as follows:

ℓBCE(x, y; θ) = − log pθ(y|x) = (1− y)ℓ(x; θ)− y log(1− exp(−ℓ(x; θ))). (11)

This loss function minimizes ℓ(x; θ) for y = 0, and maximizes it for y = 1 thorough minimizing
− log(1− exp(−ℓ(x; θ))). Since these two terms are bounded below, there is no risk of divergence.
In addition, as described in (Yamanaka et al., 2019), they are well-balanced, eliminating the need
for additional hyperparameters.

In a supervised approach, we assume that all unlabeled data points in U are normal, and minimize
the following objective function:

1

N

N∑
n=1

ℓBCE(x
(n), 0; θ) +

1

M

M∑
m=1

ℓBCE(x̃
(m), 1; θ). (12)

This supervised approach is expected to perform better than the unsupervised approach (Eq. (9))
because it can handle sensitive data S. However, the presence of sensitive data in the unlabeled data
U weakens the effect of maximizing ℓ(x; θ) for sensitive data.

3.2 POSITIVE-UNLABELED DIFFUSION MODELS

To handle the unlabeled data U that contain sensitive data, we introduce a PU learning framework
into the supervised diffusion model. Let pU (x) represent the unlabeled data distribution, pS(x)
represent the sensitive data distribution, and pN (x) represent the normal data distribution. The
datasets U and S are assumed to be drawn from pU (x) and pS(x), respectively. We model pU (x)
with a mixture of pS(x) and pN (x):

pU (x) = βpS(x) + (1− β)pN (x), (13)

where β ∈ [0, 1] represents the ratio of the sensitive data in the unlabeled data U . Accordingly,
pN (x) can be rewritten as follows:

(1− β)pN (x) = pU (x)− βpS(x). (14)

Note that we can estimate the hyperparameter β by PU learning approaches (Menon et al., 2015;
Ramaswamy et al., 2016; Jain et al., 2016; Christoffel et al., 2016; Nakajima & Sugiyama, 2023).
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Algorithm 1 Positive-Unlabeled Diffusion Model with Stochastic Gradient Descent

Require: unlabeled and sensitive datasets (U ,S), hyperparameter β ∈ [0, 1]
Ensure: parameter of diffusion model θ

1: while not converged do
2: Sample mini-batch B from datasets (U ,S)
3: Compute L+

S (θ), L
−
U (θ), and L−

S (θ) in Eq. (18) with B
4: if L−

U (θ)− βL−
S (θ) ≥ 0 then

5: Compute gradient ∇θ(βL+
S (θ) + L−

U (θ)− βL−
S (θ))

6: else
7: Compute gradient ∇θ − (L−

U (θ)− βL−
S (θ))

8: end if
9: Update θ with the above gradient

10: end while

If we have access to pN (x), we can train the diffusion model by minimizing the following supervised
objective function:

LPN(θ) = βEpS [ℓBCE(x, 1; θ)] + (1− β)EpN [ℓBCE(x, 0; θ)]. (15)

Since we do not have access to pN (x) in practice, we compute the second term in Eq. (15) using
Eq. (14) as follows:

(1− β)EpN [ℓBCE(x, 0; θ)] = EpU [ℓBCE(x, 0; θ)]− βEpS [ℓBCE(x, 0; θ)]. (16)

Hence, only using pU (x) and pS(x), we can compute LPN(θ) as follows:

LPN(θ) = βEpS [ℓBCE(x, 1; θ)] + EpU [ℓBCE(x, 0; θ)]− βEpS [ℓBCE(x, 0; θ)]. (17)

We approximate LPN(θ) using the datasets U and S as follows:

LPN(θ) ≃ β
1

M

M∑
m=1

ℓBCE(x̃
(m), 1; θ)︸ ︷︷ ︸

L+
S (θ)

+
1

N

N∑
n=1

ℓBCE(x
(n), 0; θ)︸ ︷︷ ︸

L−
U (θ)

−β
1

M

M∑
m=1

ℓBCE(x̃
(m), 0; θ)︸ ︷︷ ︸

L−
S (θ)

.

(18)

In Eq. (18), L−
U (θ)−βL−

S (θ) is the approximation of (1−β)EpN [ℓBCE(x, 0; θ)] ≥ 0. Unfortunately,
L−
U (θ) − βL−

S (θ) ≥ 0 does not always hold, which can lead to over-fitting (Kiryo et al., 2017). To
avoid this, our training objective function ensures L−

U (θ)− βL−
S (θ) ≥ 0 according to (Kiryo et al.,

2017) as follows:

LPU(θ) = βL+
S (θ) + max

{
0,L−

U (θ)− βL−
S (θ)

}
. (19)

We optimize this objective using the stochastic optimization method such as AdamW (Loshchilov,
2017). In practice, when L−

U (θ) − βL−
S (θ) < 0, we maximize it until L−

U (θ) − βL−
S (θ) ≥ 0,

according to (Kiryo et al., 2017). Algorithm 1 provides the pseudocode for our approach.

3.3 EXTENSION TO CONDITIONAL DIFFUSION MODELS

While the above discussion has focused on unconditional diffusion models, our approach can be
easily extended to conditional diffusion models. Given a condition c such as text, it is sufficient to
replace the ELBO in Eq. (8) with the following ELBO:

ℓ(x0, c; θ) ≡ Eu(t),p(ϵ)

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, c, t

)∥∥2] , (20)

where ϵθ is a neural network that estimates the noise ϵ from xt =
√
ᾱtx0 +

√
1− ᾱtϵ, condition

c and step t. We can efficiently draw samples from this conditional model by using classifier-free
guidance (Ho & Salimans, 2022).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 RELATED WORK

4.1 ERASING SENSITIVE CONCEPTS IN DIFFUSION MODELS

Several approaches have tried to prevent conditional diffusion models from generating sensitive
images (Brack et al., 2022; Gandikota et al., 2023; Zhang et al., 2024; Heng & Soh, 2024). For
example, Heng & Soh (2024) aim to maximize the ELBO for normal data and minimize it for
sensitive data within the continual learning framework (Kirkpatrick et al., 2017; Shin et al., 2017).
However, this has been experimentally shown to compromise image quality (Heng & Soh, 2024).
One reason is that the ELBO is unbounded below and can easily diverge to negative infinity 1, as
discussed in Section 3.1. To address this issue, for the sensitive data point x̃ and its condition c̃,
Heng & Soh (2024) replace x̃ with completely different data z̃, such as noise following a uniform
distribution, and maximize the ELBO for z̃ and c̃. As a result, When the condition c̃ is input, the
fine-tuned model generates z̃ instead of the sensitive data x̃. Although this approach is effective,
it can only be applied to conditional models. Moreover, it cannot work well in PU setting because
it assumes all unlabeled data are normal. The same limitation applies to other approaches (Brack
et al., 2022; Gandikota et al., 2023; Zhang et al., 2024) as well.

Compared to existing approaches, our objective function reasonably minimizes the ELBO for the
sensitive data while preventing divergence to negative infinity, as described in Section 3.1. This
enables us to avoid compromising image quality. Furthermore, our approach can be applied to both
unconditional and conditional models, as well as PU setting we desire.

4.2 POSITIVE-UNLABELED LEARNING AND ANOMALY DETECTION

Our approach is closely related to PU learning, which trains a binary classifier to distinguish between
positive and negative data using positive and unlabeled data. Our approach is based on the unbiased
PU learning (Du Plessis et al., 2014; 2015; Kiryo et al., 2017), and has the ideal property that Eq. (18)
converges to Eq. (15) as the dataset sizes N,M → ∞.

However, since PU learning is designed for binary classification, it cannot be directly extended to
diffusion models. To address this limitation, our approach first incorporates a binary classification
framework into diffusion model training according to (Yamanaka et al., 2019), and then applies
PU learning to this framework. A similar approach has been employed in the context of semi-
supervised anomaly detection (Takahashi et al., 2024), which aims to train the anomaly detector
using the unlabeled and anomaly data. Although this approach has a similar problem setting to ours,
it lacks generative capabilities because it is based on autoencoders (Hinton & Salakhutdinov, 2006).
To the best of our knowledge, our approach is the first to train diffusion models in PU setting.

5 EXPERIMENTS

5.1 DATA

We used the following image datasets: MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al.,
2009), STL10 (Coates et al., 2011), and CelebA (Liu et al., 2015). MNIST is handwritten digits,
CIFAR10 and STL10 contain images of animals and vehicles, and CelebA is celebrity faces. We
converted MNIST to 32×32 three-channel images, and CelebA to 256×256 images.

Each dataset was divided into two categories: MNIST into even and odd numbers, CIFAR10 and
STL10 into animals and vehicles, and CelebA into male and female. We treated one category as
normal, and the other as sensitive. From these datasets, we prepared training and test data as follows.
The training data consist of unlabeled data U and labeled sensitive data S, where U include both
normal and sensitive data. Meanwhile, the test data contain only normal data. For example, in
MNIST, if we treat even numbers as normal, the unlabeled training data U include both even and
odd numbers, the sensitive training data S include only odd numbers, and the test data include only
even numbers. The number of data points in each dataset is shown in Table 1.

1Note that the ELBO is unbounded below, and the negative ELBO ℓ(x0; θ) in Eq. (8) is unbounded above.
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Table 1: Number of data points in each dataset. The parentheses next to the dataset names indicate
the normal class.

Image size U (normal) U (sensitive) S Test

MNIST (even) 32 × 32 25,000 2,500 2,500 4,926
MNIST (odd) 32 × 32 25,000 2,500 2,500 5,074
CIFAR10 (vehicles) 32 × 32 20,000 2,000 2,000 4,000
CIFAR10 (animals) 32 × 32 20,000 2,000 2,000 6,000
STL10 (vehicles) 96 × 96 2,000 200 200 3,200
STL10 (animals) 96 × 96 2,000 200 200 4,800
CelebA (male) 256 × 256 2,000 200 200 7,715
CelebA (female) 256 × 256 2,000 200 200 12,247

5.2 METRIC

We used a custom-defined metric called non-sensitive rate and the Fréchet Inception Distance (FID)
score (Heusel et al., 2017) as evaluation metrics. The non-sensitive rate is the ratio of the generated
samples classified as normal (non-sensitive) by a pre-trained classifier. It equals one if all generated
samples belong to the normal class and zero if they all belong to the sensitive class. We use this
metric to evaluate the frequency with which the diffusion model generates sensitive data. As the
classifier, we used a convolutional neural network (LeCun et al., 1998) for MNIST, and used a pre-
trained ResNet-34 (He et al., 2016) for the other datasets. We trained or fine-tuned these classifiers
on each dataset by solving a classification task. The accuracies on the test set for the classification
task are as follows: MNIST: 98.46%, CIFAR10: 95.8%, STL10: 99.5%, and CelebA: 98.45%. The
FID is used to evaluate the generated samples, with a lower score indicating a better generative
model. We calculated the FID between the samples generated by the diffusion model and the test
data. The number of generated samples was set to be the same as the number of test data points.

5.3 SETUP

We compared our approach with the following methods: the unsupervised method, which minimizes
the diffusion model objective ℓ(x0; θ) in Eq. (8) for unlabeled data U as in Eq. (9), and the supervised
method, which minimizes ℓ(x0; θ) for U and maximizes it for sensitive data S as in Eq. (12).

We used the U-Net (Ronneberger et al., 2015) as the noise estimator ϵθ. We performed from-scratch
training using MNIST, CIFAR10, and STL10, and fine-tuned pre-trained models using CIFAR10
and CelebA. Our implementations are based on Diffusers (von Platen et al., 2022). For the pre-
trained models, we used the available models on Diffusers for CIFAR102 and CelebA3. The details
of architecture are provided in Appendix.

We optimized these models using AdamW (Loshchilov, 2017) and a cosine scheduler with warmup.
We set the learning rate to 10−4, and set the warmup steps to 500. The batch size was 128 for
MNIST and CIFAR10, 32 for STL10, and 16 for CelebA. The number of epochs was set to 100 for
from-scratch training and 20 for fine-tuning. We set the number of steps T during training to 1, 000.
For sampling, we used the denoising diffusion probabilistic model (DDPM) scheduler (Ho et al.,
2020) in the from-scratch training, while we used the denoising diffusion implicit model (DDIM)
scheduler (Song et al., 2020a) in the fine-tuning the pre-trained models, as the pre-trained models
are large and time-consuming to sample. We set the sampling steps to 1, 000 in the DDPM, and to
50 in the DDIM. For the proposed method, we set β = 0.1.

We used two machines for the experiments: one with Intel Xeon Platinum 8360Y CPU, 512GB of
memory, and NVIDIA A100 SXM4 GPU, and the other with Intel Xeon Gold 6148 CPU, 384GB
of memory, and NVIDIA V100 SXM2 GPU. We ran all experiments five times while changing the
random seeds.

2https://huggingface.co/google/ddpm-cifar10-32
3https://huggingface.co/google/ddpm-celebahq-256
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Table 2: Comparison of non-sensitive rates for diffusion models with from-scratch training. The
parentheses next to the dataset names indicate the normal class.

Unsupervised Supervised Proposed

MNIST (even) 0.904±0.003 0.908±0.003 0.978±0.003
MNIST (odd) 0.900±0.006 0.901±0.006 0.975±0.004
CIFAR10 (vehicles) 0.762±0.006 0.760±0.004 0.842±0.006
CIFAR10 (animals) 0.917±0.004 0.918±0.004 0.967±0.001
STL10 (vehicles) 0.824±0.011 0.822±0.008 0.944±0.010
STL10 (animals) 0.858±0.003 0.863±0.014 0.947±0.007

Table 3: Comparison of FID scores for diffusion models with from-scratch training. The parentheses
next to the dataset names indicate the normal class.

Unsupervised Supervised Proposed

MNIST (even) 3.530±0.137 3.469±0.130 4.969±0.537
MNIST (odd) 3.379±0.034 3.366±0.058 5.718±0.652
CIFAR10 (vehicles) 34.400±0.622 34.310±0.424 32.463±0.970
CIFAR10 (animals) 34.448±0.504 34.613±0.530 39.586±0.573
STL10 (vehicles) 122.797±3.539 122.267±2.114 120.633±4.256
STL10 (animals) 135.999±2.203 135.324±1.309 149.775±1.522

Table 4: Comparison of non-sensitive rates for fine-tuned diffusion models. The parentheses next to
the dataset names indicate the normal class.

Pre-trained Unsupervised Supervised Proposed

CIFAR10 (vehicles) 0.318±0.004 0.741±0.006 0.763±0.006 0.858±0.009
CIFAR10 (animals) 0.681±0.003 0.876±0.006 0.892±0.005 0.954±0.005
CelebA (male) 0.249±0.003 0.866±0.023 0.868±0.020 0.973±0.010
CelebA (female) 0.751±0.004 0.905±0.012 0.907±0.007 0.942±0.011

Table 5: Comparison of FID scores for fine-tuned diffusion models. The parentheses next to the
dataset names indicate the normal class.

Pre-trained Unsupervised Supervised Proposed

CIFAR10 (vehicles) 84.066±0.403 26.710±0.367 24.458±0.387 18.977±0.381
CIFAR10 (animals) 35.055±0.391 20.313±0.338 19.528±0.277 19.415±0.915
CelebA (male) 100.256±0.261 43.772±2.447 43.465±2.509 46.877±5.239
CelebA (female) 43.721±0.217 30.520±1.333 30.569±1.166 39.131±1.961

5.4 RESULTS

5.4.1 COMPARISON OF FID AND NON-SENSITIVE RATE

Tables 2 and 3 show the non-sensitive rate and FID for diffusion models with from-scratch training,
respectively. Similarly, Tables 4 and 5 show the non-sensitive rate and FID for fine-tuned diffusion
models. The parentheses next to the dataset names indicate the normal class. The values before
± represent the mean, and the values after ± represent the standard deviation. We used bold to
highlight the best results and statistically non-different results according to a pair-wise t-test. We
used 5% as the p-value. Note that a higher non-sensitive rate is better, while a smaller FID is better.
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(a) Unsupervised. (b) Supervised. (c) Proposed.

Figure 2: Generated samples from fine-tuned diffusion models on CIFAR10 (vehicles).

(a) Unsupervised. (b) Supervised. (c) Proposed.

Figure 3: Generated samples from fine-tuned diffusion models on CelebA (male).

First, we focus on Table 2. Since the ratio of normal data to sensitive data in the unlabeled data U is
10 : 1, it is expected that the unsupervised method would generate normal data with approximately
91% probability and sensitive data with 9% probability. As shown in Table 2, the probability of
generating normal data ranges from a maximum of 91.7% to a minimum of 76.2% across all datasets.
In other words, assuming the classifier is perfect, at least approximately 8.3% of the generated
samples are sensitive. While we would expect that supervised method improves the non-sensitive
rate, unfortunately, the results remain similar to those of the unsupervised method. This indicates
that supervised methods do not work well when sensitive data are included in the unlabeled data
U . On the other hand, the proposed method shows an improvement in non-sensitive rate across
all datasets. This demonstrates that the proposed method can reduce the probability of generating
sensitive data.

Next, we focus on Table 3. The FID is calculated between the generated samples and the test data,
which contain only normal data. It is expected that if the diffusion model generates only normal
data, the FID would be improved. On the other hand, learning sensitive data could improve the
generation quality simply due to the increased amount of data, which might result in a better FID.
As shown in Table 3, there is almost no significant difference in FID between the unsupervised and
supervised methods, while the proposed method shows a comparable or slight deterioration in FID.
The reason for this will be discussed later. What is important is that the deterioration in FID is
extremely small. This indicates that the proposed method can prevent the generation of sensitive
data without compromising the image quality.

Finally, we focus on Tables 4 and 5. Note that in the fine-tuning experiments, we also show the non-
sensitive rate and FID of the pre-trained models. CIFAR10 and CelebA datasets are imbalanced;
CIFAR10 has more animal images, and CelebA has more female images. As a result, the pre-trained
models show a large difference in the probability of generating one class over the other. By applying
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Figure 4: Non-sensitive rates and FID scores on CIFAR10 vehicles and animals with various β.

the unsupervised method, we observed an improvement in non-sensitive rate compared to the pre-
trained model. As with the from-scratch training, the results of the unsupervised and supervised
methods are nearly identical. On the other hand, the proposed method significantly improves non-
sensitive rate. In terms of the FID, using the unsupervised, supervised, and proposed methods, we
observed an improvement compared to the pre-trained model. Compared to from-scratch training,
fine-tuning tends to result in better FID values with the proposed method. This indicates that the
proposed method is well-suited for fine-tuning.

Figures 2 and 3 show the samples by fine-tuned models using the unsupervised, supervised, and
proposed methods for CIFAR10 (vehicles) and CelebA (male). Since the same random seed was
used for both training and generation, the generated images are largely similar. Notably, the images
that were sensitive in the unsupervised and supervised methods are replaced by normal images in the
proposed method. For example, in Figure 2, images of animals are replaced by images of vehicles,
and in Figure 3, images of females are replaced by images of males. While the quality of these
images is slightly lower, which may explain why the FID of the proposed method is slightly worse
than that of other approaches, the overall image quality of the proposed method remains comparable
to other methods. The generated samples for other datasets are provided in Appendix.

5.4.2 SENSITIVITY OF HYPERPARAMETER β

The proposed method has the hyperparameter β defined in Eq. (13), which represents the ratio
of sensitive data in the unlabeled data U . Although this can be estimated by using PU learning
approaches (Menon et al., 2015; Ramaswamy et al., 2016; Jain et al., 2016; Christoffel et al., 2016;
Nakajima & Sugiyama, 2023), increasing β amplifies the loss for sensitive data in Eq. (19), which
is expected to improve the non-sensitive rate. In this section, we experimentally investigate how
adjusting β affects the non-sensitive rate and FID.

Figure 4 shows the non-sensitive rate and FID for CIFAR10 animals and vehicles when β is set to
various values. For CIFAR10 (vehicles), the best non-sensitive rate and FID are achieved when β
is between 0.15 and 0.20. Note that good performance is achieved with a β value greater than the
true value of 1/11 ≈ 0.091. For CIFAR10 (animals), the best non-sensitive rate is achieved when
β = 0.2, while the best FID is achieved for β ≤ 0.091. These results indicate that adjusting β can
further improve the performance of the proposed method. Analyzing the optimal value of β in the
proposed method is our important future work.

6 CONCLUSION

In this paper, we propose positive-unlabeled diffusion models, which prevent diffusion models from
generating sensitive data by using unlabeled and sensitive data. With the proposed method, we first
incorporate a binary classification framework into diffusion models, and then apply PU learning
to this framework. As a result, even without labeled normal data, we can maximize the ELBO
for normal data and minimize it for labeled sensitive data, ensuring the generation of only normal
data. We performed either from-scratch training or fine-tuning of diffusion models on eight different
dataset patterns, and confirmed that the proposed method can improve the non-sensitive rate of
generated samples without compromising the FID. We also found that adjusting the hyperparameters
can further improve both the non-sensitive rate and FID. In the future, we will focus on analyzing
hyperparameters and further improving generation quality.
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