
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A APPENDIX

A.1 U-NET ARCHITECTURE

In this section, we present our U-Net model configuration in JSON format. We used the following
architecture for from-scratch training on MNIST and CIFAR10:

{
"_class_name": "UNet2DModel",
"_diffusers_version": "0.30.2",
"act_fn": "silu",
"add_attention": true,
"attention_head_dim": 8,
"attn_norm_num_groups": null,
"block_out_channels": [

128,
128,
256,
512

],
"center_input_sample": false,
"class_embed_type": null,
"down_block_types": [

"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D"

],
"downsample_padding": 1,
"downsample_type": "conv",
"dropout": 0.0,
"flip_sin_to_cos": true,
"freq_shift": 0,
"in_channels": 3,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": null,
"num_train_timesteps": null,
"out_channels": 3,
"resnet_time_scale_shift": "default",
"sample_size": 32,
"time_embedding_type": "positional",
"up_block_types": [

"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D"

],
"upsample_type": "conv"

}

We used the following architecture for from-scratch training on STL10:

{
"_class_name": "UNet2DModel",
"_diffusers_version": "0.30.2",
"act_fn": "silu",
"add_attention": true,
"attention_head_dim": 8,
"attn_norm_num_groups": null,
"block_out_channels": [

128,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

128,
256,
512

],
"center_input_sample": false,
"class_embed_type": null,
"down_block_types": [

"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D"

],
"downsample_padding": 1,
"downsample_type": "conv",
"dropout": 0.0,
"flip_sin_to_cos": true,
"freq_shift": 0,
"in_channels": 3,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_class_embeds": null,
"num_train_timesteps": null,
"out_channels": 3,
"resnet_time_scale_shift": "default",
"sample_size": 96,
"time_embedding_type": "positional",
"up_block_types": [

"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D"

],
"upsample_type": "conv"

}

We used the following architecture for fine-tuning on CIFAR10:

{
"_class_name": "UNet2DModel",
"_diffusers_version": "0.0.4",
"act_fn": "silu",
"attention_head_dim": null,
"block_out_channels": [

128,
256,
256,
256

],
"center_input_sample": false,
"down_block_types": [

"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
"DownBlock2D"

],
"downsample_padding": 0,
"flip_sin_to_cos": false,
"freq_shift": 1,
"in_channels": 3,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-06,
"norm_num_groups": 32,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

"out_channels": 3,
"sample_size": 32,
"time_embedding_type": "positional",
"up_block_types": [

"UpBlock2D",
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D"

]
}

We used the following architecture for fine-tuning on CelebA:

{
"_class_name": "UNet2DModel",
"_diffusers_version": "0.0.4",
"act_fn": "silu",
"attention_head_dim": null,
"block_out_channels": [

128,
128,
256,
256,
512,
512

],
"center_input_sample": false,
"down_block_types": [

"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D"

],
"downsample_padding": 0,
"flip_sin_to_cos": false,
"freq_shift": 1,
"in_channels": 3,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-06,
"norm_num_groups": 32,
"out_channels": 3,
"sample_size": 256,
"time_embedding_type": "positional",
"up_block_types": [

"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D"

]
}

A.2 GENERATED SAMPLES

The generated samples for CIFAR10 (animals) and CelebA (female) are shown in Figure 1 and 2,
respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(a) Unsupervised. (b) Supervised. (c) Proposed.

Figure 1: Generated samples from fine-tuned diffusion models on CIFAR10 (animals).

(a) Unsupervised. (b) Supervised. (c) Proposed.

Figure 2: Generated samples from fine-tuned diffusion models on CelebA (female).

A.3 THEORETICAL JUSTIFICATION

In this section, we provide a theoretical explanation of the proposed method from the perspective of
maximizing and minimizing the ELBO LDM(x; θ) ≈ −ℓ(x; θ) defined in Eqs. (7) and (8).

To prevent diffusion models from generating sensitive data, we aim to maximize the ELBO for the
normal data distribution pN (x):

max
θ

(1− β)EpN [−ℓ(x; θ)],

and minimize it for the sensitive data distribution pS(x):

min
θ

βEpS [−ℓ(x; θ)],

where β is the ratio of the sensitive data.

First, we focus on maximizing the ELBO for the normal data. As shown in Eqs. (13) and (14), we
assume that the unlabeled data distribution pU (x) can be written as a linear combination of pN (x)
and pS(x):

pU (x) = βpS(x) + (1− β)pN (x) ⇔ (1− β)pN (x) = pU (x)− βpS(x).

With this assumption, the ELBO for pN (x) can be rewritten as follows:

max
θ

(1− β)EpN [−ℓ(x; θ)] = max
θ

{EpU [−ℓ(x; θ)]− βEpS [−ℓ(x; θ)]} .

This maximization equals the following minimization:

min
θ

(1− β)EpN [ℓ(x; θ)] = min
θ

{EpU [ℓ(x; θ)]− βEpS [ℓ(x; θ)]} .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

This is equivalent to the sum of the second and third terms in Eq. (17) of the proposed method,
where ℓBCE(x, 0; θ) = ℓ(x; θ).

Next, we focus on minimizing the ELBO for the sensitive data. Unfortunately, since −ℓ(x; θ) is
unbounded below, this minimization diverges to negative infinity, leading to meaningless solutions.
To solve this issue, we introduce the following upper bound for −ℓ(x; θ), inspired by the binary
classification as shown in Eq. (11):

−ℓ(x; θ) ≤ − log(1− exp(−ℓ(x; θ))).

This upper bound is proportional to −ℓ(x; θ) and approaches zero when −ℓ(x; θ) tends to negative
infinity. With this upper bound, the ELBO for pS(x) is bounded above as follows:

min
θ

βEpS [−ℓ(x; θ)] ≤ min
θ

βEpS [− log(1− exp(−ℓ(x; θ)))].

This is equivalent to the first term in Eq. (17), where ℓBCE(x, 1; θ) = − log(1− exp(−ℓ(x; θ))).

From the above discussion, the proposed method in Eq. (17) can be interpreted as maximizing the
ELBO for normal data while minimizing the ELBO for sensitive data. For the former, we use PU
learning to approximate the normal data distribution pN (x), and for the latter, we introduce the
upper bound for the ELBO based on the binary classification.

A.4 LIMITATIONS

In this section, we discuss the limitations of the proposed method. Our approach requires that the
labeled sensitive data represent the characteristics of all sensitive data. We will explain this using the
example of MNIST, where even numbers are considered normal and odd numbers are considered
sensitive. If the unlabeled data contain all even and odd numbers, but the labeled sensitive data only
include 1, 3, 5, and 7, then the proposed method would generate the digit 9.

To solve this issue, it is necessary to prepare a sufficient variety of labeled sensitive data. In the
MNIST example, it would be enough to include the digit 9 in the labeled sensitive data. Similarly, if
we want to prevent the generation of a face of a particular person, it would be enough to prepare just
a few photos of that person. However, if the sensitive data are more diverse, such as male or female
faces, or categories like vehicles or animals, then our approach would likely require a larger amount
of labeled sensitive data. In the experiments using STL10 and CelebA, we successfully prevented
the generation of sensitive data with 200 labeled sensitive samples. Since the faces, vehicles, and
animals included in the training and test sets are different, we believe our approach demonstrated a
certain level of generalization ability.

In any case, addressing this issue is an important part of our future work. We plan to explore ways
to prevent the generation of sensitive data not covered by the labeled sensitive data, for example, by
using supplementary information such as text descriptions.

A.5 WHY EXISTING METHODS ARE INEFFECTIVE

Existing methods assume that all unlabeled data are normal, and maximize the ELBO LDM(x; θ)
in Eq. (7) for the unlabeled data. Let pU (x), pN (x), pS(x) represent the unlabeled, normal and
sensitive data distribution, respectively. By using pN (x) and pS(x), pU (x) can be rewritten as
follows:

pU (x) = βpS(x) + (1− β)pN (x),

where β is the ratio of the sensitive data. Hence, the ELBO for the unlabeled data can be rewritten
as:

max
θ

EpU [LDM(x; θ)] = max
θ

{βEpS [LDM(x; θ)] + (1− β)EpN [LDM(x; θ)]} .

Therefore, if all unlabeled data are assumed to be normal, the ELBO will be maximized even for the
sensitive data included in the unlabeled data. This would inadvertently encourage the generation of
sensitive data.

Meanwhile, our approach maximizes the ELBO for the normal data by using the unlabeled and
sensitive data as follows:

max
θ

(1− β)EpN [LDM(x; θ)] = max
θ

{EpU [LDM(x; θ)]− βEpS [LDM(x; θ)]} .

Therefore, our approach can maximize the ELBO for normal data without using labeled normal data.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(a) Unsupervised. (b) Supervised. (c) Proposed.

Figure 3: Generated samples from fine-tuned stable diffusion models (middle aged man).

Unsupervised Supervised Proposed
0.80 0.84 0.99

Table 1: Comparison of non-sensitive rates for fine-tuned stable diffusion models.

A.6 STABLE DIFFUSION EXPERIMENTS

We conducted experiments using Stable Diffusion 1.41 with the following experimental settings.
The objective was to ensure that specific individuals (in this case, Brad Pitt) are excluded when
generating images of middle-aged men using Stable Diffusion. The dataset was prepared as follows:

• Unlabeled data: 64 images of middle-aged men and 16 images of Brad Pitt.
• Labeled sensitive data: 20 images of Brad Pitt.

These images were generated using Stable Diffusion with the prompts “a photo of a middle-aged
man” and “a photo of Brad Pitt”. This experimental setup is an extension of (Heng & Soh, 2024) to
the PU setting.

Using this dataset, we applied standard fine-tuning (unsupervised), supervised diffusion models as
described in Section 3.1 (supervised), and the proposed method to Stable Diffusion 1.4.

As an evaluation metric, we use the non-sensitive rate described in Section 5.2, which represents the
ratio of the generated samples classified as normal (non-sensitive) by a pre-trained classifier. For the
pre-trained classifier, we use a ResNet-34 fine-tuned on 1,000 images each of middle-aged men and
Brad Pitt, generated by Stable Diffusion. The accuracy on the test set for the classification task is
99.75%.

The experimental setup is almost the same as in Section 5.3, with a batch size of 16, a learning
rate of 10−5 for the proposed method and 10−4 for the others, 1,000 epochs, and β = 0.2 for the
proposed method.

We experimentally found that using the max-based loss function described in Section 3.2 for Stable
Diffusion models caused divergence, when attempting to maximize L−

U (θ)−βL−
S (θ) until it became

non-negative. To prevent this, we instead employed the absolute value-based loss function, as also
described in Section 3.2.

The experimental results for generating images of middle-aged men are provided in Figure 3, and
non-sensitive rates are listed in Table 1. With the Unsupervised and Supervised methods, attempts
to generate images of middle-aged men often result in the generation of Brad Pitt. This issue arises
due to the presence of Brad Pitt in the unlabeled data. Meanwhile, the proposed method successfully
suppresses the generation of Brad Pitt.

1https://huggingface.co/CompVis/stable-diffusion-v1-4

6

https://huggingface.co/CompVis/stable-diffusion-v1-4

	Appendix
	U-Net Architecture
	Generated Samples
	Theoretical Justification
	Limitations
	Why Existing Methods Are Ineffective
	Stable Diffusion Experiments


