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A  EMPIRICAL VALIDATION ASSUMPTION 1

We use ERM to train a ViT on the CelebA dataset. We save the model that achieves the highest
validation accuracy. From the last encoder, we extract qcrs and K, where “CLS” refers to a special
token and K represents the key vector of the 10-th token. We randomly select one dimension from
dcrs and K to generate two conditional distribution plots based on a.
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Figure 3: Histogram of a random selected dimension of qjs and k

B PROOF FOR THEROREM 1

We first consider a 1-D case and next generalize the derivation to dj, dimensions.

For the 1-D derivation, now we focus only on ¢, then
q ~ XN (o, 03) + MN (p1,07) 9

where A\g + A1 = 1. Then the expectation of ¢ is

p=Elg] = Aopo + A1 (10)

and the variance can be written as
o? := Varlg] =E[¢*] — (E[q))*, (1)
:AOEN(yO,ag)[qz} + MEA(4,02) [¢*] = (Moo + A1p1)? (12)
=Xo(ug + 05) + M(ui +0f) = (opto + M) (13)
=(Xo02 + M03) 4+ Mot (po — p1)? (14)
=(Noop + M0?) + MM A% WLOG, let A = g — 1 > 0 (15)

After normalization with "™ = 224 the conditioned variable ¢""™|a = 0 and ¢"°"™|a = 1
y/ Varlg]
ar[q

are still Gaussian, and the conditioned expectations can be written as

- A1A

Ho,norm = E[qnorm‘a = O] :MO K = ! (16)
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(41 morm = ]E[qnorm‘a _ 1] :Nl H I = 0 - 5 (17)
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and the corresponding variances are
Gisorm = &, i=0,1 (18)
o
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After taking the absolute values, that is qde = |¢™°"™|, the conditioned expectations can be written
as

0 (o)
Efg*|a = i] = — / tp(t)dt + / (DAL, p(t) = N (i morem: 0 nop) i = 0,1 (19)
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Recall that f1; norm = £ and 0 norm = 0i/0, we have

) o 9 % 2 i — #ig—#
Bl o = =22 exp(—(Z(?)l )+ et ) @)
Lo/ exp(—(" 5 + (= mert (7)) 23)
:i[ai\/zexp( (/\\?ZAF)+(/\1_Z-A)erf(/\\1/%:f)} (24)

which is because M1 — = 1 — /\1/11 - )\o,uo = )\o(,ul - ,uo) = —/\QA and Mo — = o — )\1/11 -
Aopto = A1(po — 1) = MA. And (—x)erf(—x) = zerf(z).

Note that /\\1[1 > 0, we have exp(— (’\\lflA) ) < 1 and erf (’\\1[‘ ) < 1. As aresult, the expecta-
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Similar results hold for k, too. Now the original statement can be re-written as

27)

|hgo,dettig,de — M1 debbhy de 29)
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<E[¢*|a = O]E [kde\a = 0]+ E[¢*|a = 1JE[k"|a = 1] (31
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Now consider the high-dimensional scenario, we have

dedee dedee
6de = |E q — —E q =1 33
\\[\/@Iao][m\a] (33)
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g\/@{(\/TAOJr \/?;)2+(\/Z+ \/i»?)ﬂ.m (39)

C IMPLEMENTATION DETAILS

We summarize the implementation details as follows:

ERM: We take the transformer with 8 stack encoders as the baseline model. Each encoder
has 8 attention heads. We implement the ERM model using the Huggingface library with-
out pre-trained weights. We resize the image from CelebA and UTK datasets to 64 x 64,
and divide it into 16 patches. For CelebA and UTK, we take the AdamW as the optimizer
with a learning rate of 10~*, and no scheduler is applied for the fair comparison. For NLP
tasks, we take the AdamW as the optimizer with a learning rate of 10~°. We share all
methods with the same configuration as the ERM model.

Distributionally robust optimization (DRO): We adapt the backbone to the same as the
ERM model. We tune the hyper-parameter 7 at the validation set to achieve the highest
accuracy. For CelebA and UTK experiments, we set 7 = 0.15 and n = 0.10 respectively.
For HateXplain and MultiNLI, we set = 0.25.

Adversarially reweighted learning (ARL): We adapt the learner network to the same as the
ERM model. For the adversary network, we apply a 6-layer stack encoder in the trans-
former. This is a smaller configuration compared to the learner network, as recommended
by the authors.

Fairness without demographics through knowledge distillation (KD): We adapt the student
model that is the same as the ERM model. For the teacher network, we follow the sugges-
tion of the authors that use a larger network, hence we adopt the vision transformer with 12
stacked encoder layers. The student network is trained by the output of the teacher model
with softmax activation.

Just train twice (JTT): We adapt the backbone network is the same as the ERM model. For
CelebA, we follow the suggestion in the paper choose the number of epochs of training the
identification model 7' = 1. During the second training, we choose the upsampling factor
Auwp = 950. For UTK, we set T" = 10, Ay, = 50. For HateXplain, we set T' = 20, A, = 50.
For MultiNLI, we set T" = 2, A\, = 20.

Learning from failure (LfF): We take the networks for a biased model and a debiased model
are the same as the ERM model. We set the amplification coefficient in generalized cross
entropy loss ¢ = 0.7 as suggested in the original paper.
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* Qurs: For vision tasks, our method employs a backbone identical to the ERM model, which
comprises an 8-stacked encoder vision transformer. In the final encoder, we normalize and
apply the absolute value to q and k for each head. From this encoder layer, we select the
v vectors associated with the two highest attention weights and execute a local alignment.
For NLP tasks, we extend a pre-trained model with an additional encoder layer, applying
our method specifically to this added layer. Similarly, in the NLP tasks, we choose the v
vectors with the two highest attention weights for alignment.

For all methods, we maintain a consistent batch size. Specifically, for vision tasks, the batch size is
set to 256. For BERT Large, it’s 32, and for BERT Base, we use a batch size of 64.

D EVALUATION METRICS

The group fairness metrics are measurements of the performance of different sensitive groups. We
focus on three specific metrics: Demographic Parity, Equal Opportunity, and Equalized Odds. De-
mographic Parity (DP): DP focuses on the equality of the outcomes across different demographic
groups, regardless of their abilities. It ensures that each group receives positive outcomes at the same
rate. Equal Opportunity (EOp): EOp ensures that samples who should receive a positive outcome
have an equal chance of being correctly identified, regardless of their group. Equalized Odds (EOd):
EOd requires both that samples that should receive a positive outcome have an equal chance of being
correctly identified (like EOp), and also that samples that should receive a negative outcome have
an equal chance of being correctly identified, across all sensitive groups. The computations for the
fairness metrics are as follows:

DP = |PP, — PPj|, EOp=|TPR; - TPR,],

1 40
EOd = Z(ITPR; —TPR;| +|FPR; — FPR)|). i.j €A 0

where PP,TPR, and FPR are the positive prediction rate, the true positive rate, and the false
positive rate.

E ATTENTION WEIGHT VISUALIZATION
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Figure 4: Visualization of attention weight. y =blond hair, a =male in CelebA.

We present a visualization of the average attention weight in the last encoder layer for both the ERM
and our proposed models in Fig[d] We opted for models that demonstrated the highest validation
accuracy. The ERM model achieved an accuracy of 94.27%, our model achieved an accuracy of
94.08%. We observe inconsistencies in attention allocation using the ERM training objective func-
tion. Despite its high accuracy, the ERM model predominantly focuses on facial features, failing to
distribute attention adequately. In contrast, our model provides a more uniform attention allocation,
effectively reducing the focus on facial features or other irrelevant features.
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F ABLATION STUDY

We perform an ablation experiment from three perspectives to understand their importance. w/o
local alignment: We train our model without incorporating the local value alignment technique. The
training process is solely guided by the cross-entropy loss. w/o debias attention: While training
our model, we exclude the normalization and exclude the absolute values in vectors q and k when
calculating the attention weight. w/o absolute value: We train our model using normalized vectors q
and k to compute the attention weight, but we exclude applying the absolute value on these vectors.
We use CelebA dataset with a =male and y =Blond hair. All the methods share the same seed with

the Baseline model.

Method DP| EOp| EOd] ACC?T
Baseline 16.99 43.04 23.05 94.20
w/o local alignment 18.70 39.59 21.72 93.94
w/o debias attention 16.59 43.36 22.92 94.63
w/o absolute value 18.24 37.44 20.59 94.39
Ours 15.81 36.49 19.47 93.96

Table 7: Ablation study on CelebA dataset.

Table [/] demonstrates the efficacy of our design modules. Notably, without the debias attention,
the outcomes are close to those of the Baseline model. This highlights the significance of debias
attention as an essential component for debiasing attention. Concurrently, the local value alignment
technique further improves fairness, with a large impact on EOd. When the network integrates both

techniques, it achieves optimal fairness with a slight drop in accuracy.
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