
Published in Transactions on Machine Learning Research (10/2023)

A Implementation of Method

A.1 Proof of Theorem 1

Theorem 2. Let the global optimal representation for class c denote g∗
c = [a∗

c,1, ..., a∗
c,d], and zc,t

k denote
the representation of sample x in the class c of the k-th client. Assuming that ∀i, both |a∗

c,i| and |zc,t
k,i| are

upper bounded by G, and all dimensions are disentangled. Then, in round t, the i-th dimension of local
representation zc,t

k satisfies
|zc,t

k,i − a∗
c,i| ≤ 2(1− p̂c

kΓ)G + δΓ,

where p̂c
k is the accumulation regarding the i-th dimension of the class-c prototype, Γ = 1−(pc

k)t

1−pc
k

and δ is the
maximum margin induced by the optimization of the inter-loss term.

Proof. If the global optimum satisfies:

f1(xc; w∗,1) = g∗
c = [a∗

c,1, ..., a∗
c,d],

we could define the local optimum of class c in client k:

f1(xc; w∗
k,1) = zc

k = [a∗
c,1, ..., a∗

c,s, σc
k,s+1, ..., σc

k,s+r],

where {a∗
c,1, ..., a∗

c,s} denotes the dimensions relative to classifying class c with other seen classes in client
k. Since the intra-class loss decorrelates each dimensions of the feature space, {σc

k,s+1, ..., σc
k,s+r} are free

dimensions and irrelevant to the seen class. By minimizing the inter-class loss

Dci,cj
= 1

N c
k

Nc
k∑

n=1
max{||zci

k,n − gt
ci
|| − ||zci

k,n − gt
cj

)||, 0}.

Since all dimensions are irrelevant (achieved by intra-class loss), we can reach the optimum of each dimension
of feature representations in the limit, which has the following property:

||(zci

k)m − gt
ci,m|| ≤ min{||(zci

k)m − gt
cj ,m||}, ∀i ̸= j,

where m denote one of the dimensions. In terms of the representation space of a certain class c, we have the
dimensions {a∗

c,1, ..., a∗
c,s} relevant to the seen classes in the local client reach the optimal. In this case, we

can rewrite the locality of {σc
k,s+1, ..., σc

k,s+r} by introducing a slack variable as follows:

σc,t+1
k,s+j − gt

c,s+j = ξt,

where ξt is the induced slack variable. The s+j -th element of class prototypes of class c can be written as:

gt
c,s+j = p̂c

ka∗
c,s+j + pc

kσt
k,s+j +

∑
k′

pc
k′σt

k′,s+j ,

where p̂c
k denotes the proportions of a subset of clients that can provide the support information of these

dimensions. Note that, such support is related to class c to distinguish unseen classes in client k. pk′ is the
clients can not provide the support information except for client k (p̂c

k + pc
k′ + pc

k = 1). Putting all things
together, we could have the following equation:

σc,t+1
k,s+j = p̂c

ka∗
c,s+j + pc

kσt
k,s+j +

∑
k′

pc
k′σ

c,t
k′,s+j + ξt.

Let σc,t+1
k,s+j be rt+1 for simplicity. We will have

rt+1 = p̂c
ka∗

k,s+j + pc
krt +

∑
k′

pc,t
k′ + ξt.

17

Published in Transactions on Machine Learning Research (10/2023)

With the recursive iteration to r0, we can compute that

rt+1 = 1− (pc
k)t

1− pc
k

p̂c
ka∗

k,s+j + (pc
k)tr0 + A + B,

where A is defined as
A =

∑
k′

pc,t
k′ σc,t

k′,s+j + ... + (pc
k)t

∑
k′

pc,0
k′ σc,0

k′,s+j ,

and B is defined as
B = ξt + pc

kξt−1 + ... + (pc
k)tξ0,

If |ξt| is bounded by δ and σc,t
k′,s+j is bounded by G for all t, we have the inequality:

|A| ≤ Γ(1− p̂c
k − pc

k)G,

and
|B| ≤ Γδ,

where Γ is defined as:

Γ = 1− (pc
k)t

1− pc
k

.

Therefore, we have the following bound

|rt+1 − a∗
c,s+j | =|Γp̂c

ka∗
k,s+j − a∗

c,s+j + (pc
k)tr0 + A + B|

≤(1− p̂c
kΓ)G + (pc

k)tG + |A|+ |B|
≤2(1− p̂c

kΓ)G + Γδ.

In the above first inequality, we use |a + b + c| ≤ |a| + |b| + |c|. And in the above second inequality, we
combine the similar terms in A and B. As zc,t

k,i = g∗
c,i for i=1,2,...,s, we universally have

|zc,t
k,i − a∗

c,i| ≤ 2(1− p̂c
kΓ)G + δΓ,

which completes the proof.

A.2 Proof of Lemma 1

Lemma 2. Assuming a covariance matrix M ∈ Rd×d computed from the feature of each sample with the
standard normalization, and its eigenvalues {λ1, λ2, ..., λd}, we will have the following equality that satisfied

d∑
i=1

(λi −
1
d

d∑
j=1

λj)2 = ||M ||2F − d.

Proof. On the right-hand side, we have

||M ||2F − d =Tr((M)T M − d)

=Tr(U
∑

UT U
∑

UT)− d

=
d∑

i=1
λ2

i − d.

18

Published in Transactions on Machine Learning Research (10/2023)

As we have applied the standard normalization on M , we have the the characteristic of eigenvalues
1
d

∑d
j=1 λj = 1. Then for the right-hand side, we can have the deduction

d∑
i=1

(λi −
1
d

d∑
j=1

λj))2 =
d∑

i=1
(λi − 1)2

=
d∑

i=1
(λ2

i − 2λi + 1) (6)

=
d∑

i=1
λ2

i − d.

This constructs the equality of the left-hand side and the right-hand side, which completes the proof.

B Simulation and Visualization

To show the dimensional collapse and verify our method, we simulate data for four categories, and samples
of each category are generated from a circle with a different center and a radius of 0.5. We set centers (1,1),
(1,-1), (-1,1) and (-1,-1) for class 1 to 4, respectively. The input is the two-dimensional position, and we
adopt a three-layer MLP model with hidden size 128 and 3. We visualize the outputs of the second layer (3
dimensions) and project them onto an unit sphere. In the simulation, we adopt SGD with learning rate
0.1 and generate 5000 samples for each category, and the number of iterations and batch size are set to 50
and 128. In the paper, we train the model and show the visualization of models trained on four classes of
samples, two classes of samples and two classes of samples with FedMR to show the global feature space,
collapsed feature space and reshaped feature space, respectively.

C Implementation of Experiment

C.1 Models and Datasets

C.1.1 Models

For FMNIST, SVHN and CIFAR10, we adopt modified version of ResNet18 as previous studies (Li et al.
(2021b); Zhang et al. (2023b); Ye et al. (2023a); Yao et al. (2022)). For CIFAR100, we adopt wide
ResNet (https://github.com/meliketoy/wide-resnet.pytorch). For ISIC2019 dataset, we adopt EfficientNet
b0 (Tan & Le (2019)) as the same of Flamby benchmark (Terrail et al. (2022)).

C.1.2 Partition Strategies

Dirichlet distribution (Dir(β) is not suitable to split data for pure PCDD problems (some classes are partially
missing). As an exemplar simulation in Figure 6, Dirichlet allocation usually generates diverse imbalance
data coupled with occasionally PCDD. However, we do not focus on the locally-imbalance of each client
but the locally-balance of each client from limited existing categories. This is the intuition difference from a
Dirichlet allocation. Therefore, taking an example of CIFAR100 (P10C30), to simulate pure PCDD situation,
we first divide all 100 classes to the client in order: 1-30 categories for client 1, 31-60 categories for client
2, 61-90 categories for client 3, and 91-100 categories for client 4. Then the remain clients that lacking
categories (less than 30 classes) random choose categories from 1 to 100. After slicing the categories, the
samples of each class are equally divided into clients that have such class. Such partition strategy can ensure
the difference of class distributions among clients, all categories are allocated and the sample numbers are
roughly the same.

C.1.3 ISIC2019 dataset

19

https://github.com/meliketoy/wide-resnet.pytorch

Published in Transactions on Machine Learning Research (10/2023)

Table 9: Best hyper-parameters tuned from 0.000001 to 1 of FedMR and a range of state-of-the-art ap-
proaches on four datasets under PCDD partitions. Datasets are divided into ϱ clients and each client has ς
classes (denoted as PϱCς).

Datasets Split FedProx FedProc MOON FedDyn FedDC FedMR (µ1) FedMR (µ2)

FMNIST

P5C2 0.01 0.00001 0.001 0.0001 0.001 0.01 0.0001
P10C2 0.01 0.00001 0.0001 0.0001 0.001 0.01 0.0001
P10C3 0.01 0.00001 0.001 0.0001 0.0001 0.01 0.0001
P10C5 0.01 0.001 0.001 0.0001 0.001 0.01 0.0001
IID 0.01 0.00001 0.01 0.0001 0.01 0.01 0.0001

SVHN

P5C2 0.001 0.0001 0.001 0.000001 0.0001 0.001 0.0001
P10C2 0.001 0.0001 0.001 0.000001 0.0001 0.001 0.0001
P10C3 0.001 0.0001 0.001 0.000001 0.0001 0.001 0.0001
P10C5 0.001 0.0001 0.1 0.000001 0.0001 0.001 0.0001
IID 0.001 0.0001 0.1 0.00001 0.0001 0.001 0.0001

CIFAR10

P5C2 0.01 0.001 0.01 0.0001 0.0001 0.1 0.001
P10C2 0.01 0.0001 0.0001 0.0001 0.0001 0.1 0.001
P10C3 0.01 0.001 0.0001 0.0001 0.0001 0.1 0.0001
P10C5 0.01 0.001 0.01 0.0001 0.00001 0.1 0.001
IID 0.01 0.001 1 0.0001 0.001 0.1 0.0001

CIFAR100

P10C10 0.01 0.001 0.1 0.0001 0.0001 0.1 0.0001
P10C20 0.01 0.001 0.1 0.0001 0.0001 0.1 0.0001
P10C30 0.01 0.001 0.1 0.0001 0.0001 0.1 0.0001
P10C50 0.01 0.001 0.1 0.0001 0.0001 0.1 0.0001
IID 0.01 0.001 0.1 0.0001 0.0001 0.1 0.00001

Table 10: Best method-specific hyper-parameters (weights of proximal term in FedProx, contrastive loss in
MOON and so forth) tuned from 0.000001 to 1 of FedProx, MOON, FedMR and so forth on CIFAR10 and
CIFAR100 under larger scale and a real-world application: ISIC2019. Datasets are divided into ϱ clients and
each client has ς classes (denoted as PϱCς).

Datasets Split FedProx FedProc MOON FedDyn FedDC FedMR (µ1) FedMR (µ2)

CIFAR10
P10C3 0.01 0.001 0.0001 0.0001 0.0001 0.1 0.0001
P50C3 0.0001 0.0001 0.1 0.0001 0.00001 0.01 0.0001
P100C3 0.0001 0.0001 0.1 0.0001 0.0001 0.01 0.0001

CIFAR100
P10C10 0.01 0.001 0.1 0.0001 0.0001 0.1 0.0001
P50C10 0.0001 0.001 0.1 0.00001 00001 0.01 0.0001
P100C10 0.0001 0.0001 0.1 0.00001 0.0001 0.01 0.0001

ISIC2019 Real 0.001 0.0001 0.1 0.0001 0.0001 0.001 0.001

Table 11: Computation times and performance on P5C2 of FMNIST, SVHN and CIFAR10 and P10C10 of
CIFAR100.

Dataset FedAvg n=0 n=10 n=50 n=128
FMNIST 67.29/15.52s 71.21/17.78s 76.51/21.43s 75.67/31.56s 75.51/54.07s
SVHN 81.85/22.15s 82.74/24.11s 83.51/28.31s 83.48/57.25s 83.10/88.20s
CIFAR10 67.68/15.74s 72.26/17.70s 73.19/24.56s 73.56/47.26s 74.19/60.07s
CIFAR100 54.31/35.12s 55.38/42.14s 55.57/52.18s 56.35/105.34s 57.27/195.12s

20

Published in Transactions on Machine Learning Research (10/2023)

Table 12: Performance of FedAvg, inter-class loss, intra-class loss and both inter-class and inter-class
losses (FedMR).

Datasets Split FedAvg Inter Intra FedMR

FMNIST

P5C2 0.6729 0.6717 0.7121 0.7497
P10C2 0.6733 0.6962 0.7028 0.7552
P10C3 0.8167 0.8241 0.8282 0.8324
P10C5 0.8953 0.8959 0.8899 0.9004
IID 0.9193 0.9210 0.9185 0.9215

SVHN

P5C2 0.8185 0.8257 0.8274 0.8310
P10C2 0.7892 0.8138 0.8148 0.8247
P10C3 0.8770 0.8886 0.8807 0.8913
P10C5 0.9120 0.9164 0.9086 0.9209
IID 0.9274 0.9283 0.9259 0.9304

CIFAR10

P5C2 0.6768 0.6775 0.7226 0.7419
P10C2 0.6727 0.6766 0.7267 0.7332
P10C3 0.7782 0.7784 0.8051 0.8275
P10C5 0.8822 0.8851 0.8766 0.8906
IID 0.9188 0.9253 0.9135 0.9306

CIFAR100

P10C10 0.5431 0.5538 0.5615 0.5727
P10C20 0.6481 0.6486 0.6512 0.6581
P10C30 0.6951 0.6905 0.7021 0.7024
P10C50 0.7128 0.7129 0.7150 0.7217
IID 0.7228 0.7252 0.7259 0.7279

0 1 2 3 4 5 6 7 8 9
Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(a) β = 1.

0 1 2 3 4 5 6 7 8 9
Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(b) β = 0.5.

0 1 2 3 4 5 6 7 8 9
Client ID

0
1

2
3

4
5

6
7

8
9

La
be

l I
D

100

200

300

400

500

(c) β = 0.1.

Figure 6: Heatmaps of data distribution of CIFAR10 generated by Dir(β).

0 1 2 3 4 5 6 7
Client ID

0
1

2
3

4
5

La
be

l I
D

0

100

200

300

400

500

Figure 5: Heat map of the data distribution
on ISIC2019 dataset.

As shown in the Figure 5, we show the heat map of data dis-
tribution of ISIC2019 dataset (Codella et al. (2018); Tschandl
et al. (2018); Combalia et al. (2019)). As can be seen, there are
multiple statistical heterogeneity problems including partially
class-disjoint data (PCDD).

C.2 Parameters

As for model-common parameters like optimizer, lr and batch-
size are all aligned. We have verified lr = 0.01 is stable and
almost the best for all methods in our settings. For method
specific parameters like proximal term of FedProx, reshaping

21

Published in Transactions on Machine Learning Research (10/2023)

Table 13: Performance of FedMR on two real-world datasets named HyperKvasir and ODIR under three
PCDD situations.

Datasets Split FedAvg FedProx MOON FedDyn FedProc FedMR ∆

HyperKvasir
P10C2 69.67 68.43 69.33 70.02 69.54 70.79 +0.75
P10C3 76.44 76.92 77.43 77.01 76.72 78.32 +0.89
P10C5 89.48 89.23 89.13 89.34 89.27 89.54 +0.06

ODIR
P3C3 59.89 60.24 59.85 60.78 60.88 61.79 +0.91
P4C3 56.53 56.42 56.89 57.12 55.78 57.67 +0.55
P5C5 54.51 54.07 54.11 54.17 53.73 54.62 +0.21

Table 14: Results of FedMR on CIFAR10 when tuning µ1 of intra-class loss under the same µ2 of inter-class
loss.

Split µ1 = 1 µ1 = 0.1 µ1 = 0.01 µ1 = 0.001
P5C2 73.72 74.19 73.85 73.19
P10C2 72.99 73.32 73.00 73.12
P10C3 81.65 82.75 82.05 80.64
P10C5 88.76 89.06 88.96 88.64
P10C10 93.02 93.06 93.04 92.16

loss of FedMR, contrastive loss of MOON, dynamic regulazer of FedDyn and so forth are carefully searched
and shown in the following.

C.2.1 Parameters in 4.2

We use grid search from 0.000001 to 1 (interval 10) to find best method-specific parameters of all method
on different datasets as shown in Table 9. The total rounds are 100 for FMNIST, SVHN and CIFAR10 and
200 for CIFAR100.

C.2.2 Parameters in 4.3

We use grid search from 0.000001 to 1 (interval 10) to find best method-specific parameters parameters of
FedProx, MOON, FedMR and so forth on different datasets as shown in Table 10. The total rounds are 100
for CIFAR10 (P10C3), 200 for CIFAR10 (P50C3) and 400 for CIFAR10 (P100C3) and CIFAR100.

C.3 More results on real-world datasets

We additionally test our FedMR on two more datasets, named HyperKvasir (Borgli et al. (2020)) and
ODIR (Li et al. (2021a)) under three partitions. As shown in Table 13, our method achieves the best
average improvement of 1.02 and 1.05 relative to FedAvg and of 0.57 and 0.56 relative to best baseline on
the HyperKvasir and ODIR respectively.

C.4 More about intra-class loss

Since there are two additional loss in our method, it might raise heavy tuning problem. As shown in
Table 14, we record the results when tuning µ1 under the same µ2 on CIFAR10 and empirically observe
that the performance is good and stable for µ1 from a large range, which means we only need to carefully
tune µ2. What’s more, we also demonstrate the value of intra-class loss to verify the effect of deccorelation
during the federated training. As shown in the Figure 7, we could see that intra-class loss converges and
maintains a relatively low value easily, supporting our assumption in the Theorem 1 that the dimensions are
decorrelated well by intra-class loss.

22

Published in Transactions on Machine Learning Research (10/2023)

Table 15: Performance on SVHN under partitions generated by dirichlet distribution.

Dataset
Method Full Participation(10 clients) Partial Participation(50 clients)

#Partition IID β = 0.5 β = 0.1 IID β = 0.5 β = 0.2

SVHN
FedAvg 92.74 91.24 75.24 91.29 89.29 84.70

Best Baseline 93.50 92.46 76.26 91.67 91.27 87.78
FedMR(Ours) 93.04 92.50 78.19 91.77 91.31 89.37

C.5 Performance on General Setting

To verify the effectiveness, we conduct the experiments on SHAKESPEARE (Shakespeare et al. (1989))
and SVHN, whose data distributions follow the non-PCDD setting. Specially, SHAKESPEARE is also
commonly used as real-world data heterogeneity challenge in federated learning. We select 50 clients of the
SHAKESPEARE into federated training and our method outperforms all methods and achieves improvement
of 3.86% to FedAvg and 1.10% to the best baseline. As for SVHN, we split it by Dirichlet distribution as
many previous FL works (Ye et al. (2023b); Li et al. (2020b); Fan et al. (2022)). According to the results in
the Table 15, we can find FedMR still remains applicable and achieves comparable performance.

C.6 Lite Version

0 500 1000 1500
Local Iterations

0.0

0.5

1.0
In

tra
-c

la
ss

 L
os

s

Figure 7: Intra-class loss value of our
FedMR during the federated training.

Here we introduce our light version for FedMR. Since our re-
shaping loss will introduce additional computation times, we
randomly select part of samples in the mini-batch to compute
inter-class loss for a computation friendly version. In Table 11,
we randomly select 0, 10, 50 and 128 samples in the mini-batch
on the four dataset (P10C10 for CIFAR100 and P5C2 for the
others) to calculate the inter-class loss and record the accuracy.
As can be seen, the computation time is reduced significantly
and simultaneously maintains the competing performance.

C.7 Ablation

In this part, we provide detailed results of ablation on FM-
NIST, SVHN, CIFAR10 and CIFAR100. As shown in the Ta-
ble 12, the intra-class loss generally plays a more important
role in the performance improvement of FedMR on four datasets under PCDD. Their combination comple-
ments each other and thus shows a best improvement than any of the single loss, confirming our design from
the joint perspective to prevent the collapse under PCDD.

23

	Introduction
	Related Works
	Federated Learning
	Representation Learning
	Federated Prototype Learning

	The Proposed Method
	Preliminary
	Motivation
	Manifold Reshaping
	Intra-Class Loss
	Inter-Class Loss
	The Total Framework

	Experiment
	Experimental Setup
	Performance under PCDD
	Scalability and Robustness
	Further Analysis

	Conclusion
	Implementation of Method
	Proof of Theorem 1
	Proof of Lemma 1

	Simulation and Visualization
	Implementation of Experiment
	Models and Datasets
	Models
	Partition Strategies
	ISIC2019 dataset

	Parameters
	Parameters in 4.2
	Parameters in 4.3

	More results on real-world datasets
	More about intra-class loss
	Performance on General Setting
	Lite Version
	Ablation

