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APPENDIX

A OPTIMAL PREDICTOR

Consider a random variable X (corresponding to the context in our case. For simplicity assume X
is just the positional embedding of the context) that is used to predict a variable Y (corresponding
to the target in our case). But now instead of predicting from X , we use a noise variable Z that is
independent of both X,Y , and provide the predictor with only the noisy result R = g(X,Z). Here
g is some mixing function (in our case g(x, z) = x+ z). We next derive the optimal predictor f(R)
in this case. Formally we want to minimize:

ER,Y [(f(R)− Y )2] (4)

A classic result in estimation is that this is optimized by the conditional expectation f(r) =
E[Y |R = r].

We simplify this as follows:

E[Y |R = r] =
∑
x,y

yp(Y = y,X = x|R = r)

=
∑
x,y

yp(y|X = x)p(X = x|R = r)

=
∑
x

E[Y |X = x]p(X = x|R = r)

where in the second line we used the fact that:

p(y, x|r) = p(y|x, r)p(x|r) = p(y|x)p(x|r) (5)

To further illustrate, consider the case where z is Gaussian with zero mean and unit variance. Then
p(x|r) is also Gaussian with expectation r, and the expression above amounts to convolution of the
clean expected values with a Gaussian:

E[Y |R = r] =

∫
x

E[Y |X = x]
1√
2π

e−0.5(x−r)2dx (6)

B EXPERIMENTS AND RESULTS

We include the full implementation details, pretraining configs and evaluation protocols for the
Ablations (see Appendix B.1), Downstream Tasks (Appendix B.2), as well as full results and com-
parisons to invariance-based methods.

B.1 ABLATIONS

Here we pretrain all models for 300 epochs using 4 V100 nodes, on a total batch size of 2048. In all
the ablation study experiments, we follow the exact recipe of Assran et al. (2023). We include the
full config in Table 9 for completeness.

To evaluate the pretrained models, we use linear probing evaluation using 1% of IN-1k (Russakovsky
et al., 2015). To obtain the features of an image, we apply the target encoder over the image to
obtain a sequence of tokens corresponding to the image. We then average the tokens to obtain a
single representative vector. The linear classifier is trained over this representation, maintaining the
rest of the target encoder layers fixed.

B.2 DOWNSTREAM TASKS

Here we pretrain I-JEPA with StoP for 600 epochs using 4 V100 nodes, on a total batch size of
2048 using ViT-B (see config in Table 10) and ViT-L (see config in Table 11). For ViT-H we use
float16 and train for 300 epochs and follow the config in Table 12. We follow similar configs
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compared to Assran et al. (2023) except we usually use a lower learning rate. Intuitively, since StoP
is stochastic it is more sensitive to high learning rates.

For evaluation on downstream tasks, we use the features learned by the target-encoder and follow the
protocol of VISSL Goyal et al. (2021) that was utilized by I-JEPA Assran et al. (2023). Specifically,
we report the best linear evaluation number among the average-pooled patch representation of the
last layer and the concatenation of the last 4 layers of the average-pooled patch representations. We
report full results including comparisons to invariance-based methods for IN-1k linear evaluation
Table 14, 1% IN-1k finetuning results in Table 16, and other downstream tasks in Table 13.

For baselines that use Vision Transformers Dosovitskiy et al. (2020) with a [cls] token (e.g,
iBOT Zhou et al. (2021), DINO Caron et al. (2021) or MAE He et al. (2021)), we use the default
configurations of VISSL Goyal et al. (2021) to evaluate the publicly available checkpoints on iNat-
uralist18 Van Horn et al. (2018), CIFAR100 Krizhevsky et al. (2009), Clevr/Count Johnson et al.
(2017); Zhai et al. (2019), Clevr/Dist Johnson et al. (2017); Zhai et al. (2019), and Places205 Zhou
et al. (2014b). Following the evaluation protocol of VISSL Goyal et al. (2021), we freeze the en-
coder and return the best number among the [cls] token representation of the last layer and the
concatenation of the last 4 layers of the [cls] token.

For semi-supervised video object segmentation, we propagate the first labeled frame in a video
using the similarity between adjacent frames features. To label the video using the frozen features,
we follow the code and hyperparams of Caron et al. (2021). To evaluate the segmented videos, we
use the evaluation code of DAVIS 2017 (Pont-Tuset et al., 2017) and include full results in Table 15.

config value
optimizer AdamW
epochs 300
learning rate 1e−3

weight decay (0.04, 0.4)
batch size 2048
learning rate schedule cosine decay
warmup epochs 15
encoder arch. ViT-B
predicted targets 4
predictor depth 6
predictor attention heads 12
predictor embedding dim. 384
σ (noise hyperparam) 0.25

Table 9: Pretraining setting for ablations. Us-
ing ViT-B encoder, trained for 300 epochs, config
strictly follows Assran et al. (2023).

config value
optimizer AdamW
epochs 600
learning rate 8e−4

weight decay (0.04, 0.4)
batch size 2048
learning rate schedule cosine decay
warmup epochs 15
encoder arch. ViT-B
predicted targets 4
predictor depth 6
predictor attention heads 12
predictor embedding dim. 384
σ (noise hyperparam) 0.25

Table 10: Pretraining setting for downstream
tasks (ViT-B). All models trained for 600 epochs.

config value
optimizer AdamW
epochs 600
learning rate 8e−4

weight decay (0.04, 0.4)
batch size 2048
learning rate schedule cosine decay
warmup epochs 15
encoder arch. ViT-L
predicted targets 4
predictor depth 12
predictor attention heads 16
predictor embedding dim. 384
σ (noise hyperparam) 0.25

Table 11: Pretraining setting for downstream
tasks (ViT-L). All models trained for 600 epochs.

config value
optimizer AdamW
epochs 600
learning rate 1e−3

weight decay (0.04, 0.4)
batch size 2048
learning rate schedule cosine decay
warmup epochs 40
encoder arch. ViT-H
predicted targets 4
predictor depth 12
predictor attention heads 16
predictor embedding dim. 384
σ (noise hyperparam) 0.2

Table 12: Pretraining setting for downstream tasks
(ViT-H). Trained for 300 epochs.
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Method Arch. CIFAR100 Places205 iNat18 CLEVR/Count CLEVR/Dist
Invariance-based methods (use extra image augmentations)
DINO ViT-B/16 84.8 55.2 50.1 83.2 53.4

iBOT ViT-B/16 85.5 56.7 50.0 62.1 64.6
ViT-L/16 88.3 60.4 57.3 85.7 62.8

Masked Image Modeling Methods
data2vec ViT-L/16 81.6 54.6 28.1 85.3 71.3

MAE
ViT-B/16 68.1 49.2 26.8 86.6 70.8
ViT-L/16 77.4 54.4 33.0 92.1 73.0
ViT-H/14 77.3 55.0 32.9 90.5 72.4

I-JEPA
ViT-B/16 69.2 53.4 43.4 82.2 70.7
ViT-L/16 83.6 56.5 48.4 85.6 71.2
ViT-H/14 87.5 58.4 47.6 86.7 72.4

+StoP
ViT-B/16 81.2 54.3 44.7 83.7 71.3
ViT-L/16 84.7 57.2 49.2 85.7 70.2
ViT-H/14 87.7 58.4 50.9 88.0 72.5

Table 13: Linear-probe transfer for various downstream tasks. Linear-evaluation on downstream image
classification, object counting, and tracking tasks. StoP significantly outperforms previous MIM methods that
don’t utilize image augmentations like I-JEPA and MAE, and decreases the gap with the best invariance-based
methods that utilize data augmentations during pretraining.

Method Arch. Epochs Top-1
Invariance-based methods (use extra image augmentations)
SimCLR v2 RN152 (2×) 800 79.1

BYOL RN200 (2×) 800 79.6

DINO
ViT-B/16 400 78.1
ViT-B/8 300 80.1

MoCo v3
ViT-B/16 300 76.7
ViT-BN-L/7 300 81.0

MSN ViT-L/7 200 80.7

iBOT
ViT-B/16 250 79.8
ViT-L/16 250 81.0

Masked Image Modeling methods
data2vec ViT-L/16 1600 77.3

MAE
ViT-B/16 1600 68.0
ViT-L/16 1600 76.0
ViT-H/14 1600 77.2

I-JEPA
ViT-B/16 600 72.9
ViT-L/16 600 77.5
ViT-H/14 300 79.3

+StoP (ours) ViT-B/16 600 74.5
ViT-L/16 600 78.5
ViT-H/14 300 79.6

Table 14: Linear-evaluation on IN-1k. Performance
of invariance based and MIM approaches.

Method Arch. J-Mean F-Mean J&F Mean
Invariance-based methods (use extra image augmentations)
DINO ViT-B/16 60.7 63.9 62.3

iBOT ViT-B/16 60.9 63.3 62.1
ViT-L/16 61.7 63.9 62.8

Masked Image Modeling Methods

MAE
ViT-B/16 49.4 52.6 50.9
ViT-L/16 52.5 54.3 53.4
ViT-H/14 54.0 57.0 55.5

I-JEPA ViT-B/16 56.1 56.2 56.1
ViT-L/16 56.1 55.7 55.9
ViT-H/14 58.5 60.9 59.7

+StoP
ViT-B/16 56.6 57.3 57.0
ViT-L/16 58.1 58.7 58.4
ViT-H/14 58.9 61.2 60.1

Table 15: Video objects semi-supervised seg-
mentation. MIM and Invarianced-based meth-
ods. Results reported on DAVIS 2017 dataset.

Method Arch. Epochs Top-1
Invariance-based methods (use extra image augmentations)
DINO ViT-B/8 300 70.0
iBOT ViT-B/16 400 69.7

Masked Image Modeling methods
MAE ViT-L/16 1600 67.0
I-JEPA ViT-L/16 600 69.4
+StoP (ours) ViT-L/16 600 71.7

Table 16: Finetuning results over Ima-
geNet with 1% labels. Comparison of MIM
and invariance-based methods.
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