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Abstract
Multistep returns, such as n-step returns and
λ-returns, are commonly used to improve the
sample efficiency of reinforcement learning
(RL) methods. The variance of the multistep
returns becomes the limiting factor in their
length; looking too far into the future increases
variance and reverses the benefits of multistep
learning. In our work, we demonstrate the ability
of compound returns—weighted averages of
n-step returns—to reduce variance. We prove
for the first time that any compound return
with the same contraction modulus as a given
n-step return has strictly lower variance. We
additionally prove that this variance-reduction
property improves the finite-sample complexity
of temporal-difference learning under linear
function approximation. Because general com-
pound returns can be expensive to implement,
we introduce two-bootstrap returns which re-
duce variance while remaining efficient, even
when using minibatched experience replay. We
conduct experiments showing that compound
returns often increase the sample efficiency of
n-step deep RL agents like DQN and PPO.

1. Introduction
Efficiently learning value functions is critical for reinforce-
ment learning (RL) algorithms. Value-based RL methods
(e.g., Watkins, 1989; Rummery & Niranjan, 1994; Mnih
et al., 2015) encode policies implicitly in a value function,
and policy evaluation is the principal mechanism of learn-
ing. Even when RL methods instead learn parametric poli-
cies, accurate value functions are needed to guide policy
improvement (e.g., Silver et al., 2014; Lillicrap et al., 2016;
Fujimoto et al., 2018; Haarnoja et al., 2018) or to serve as
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a baseline (e.g., Barto et al., 1983; Sutton, 1984; Williams,
1992; Schulman et al., 2015a). Quicker policy evaluation
is therefore useful to many RL algorithms.

One way to achieve faster value-function learning is
through multistep returns, in which more than one reward
following an action is used to construct a prediction
target. Multistep returns are used extensively in deep RL
(e.g. Schulman et al., 2015b; Mnih et al., 2016; Munos
et al., 2016; Schulman et al., 2017; Hessel et al., 2018;
Schrittwieser et al., 2020; Wurman et al., 2022; Chebotar
et al., 2023; Schwarzer et al., 2023), where the value
function is approximated by a neural network. In theory,
multistep returns incorporate more information regarding
future outcomes, leading to faster credit assignment and, in
turn, faster learning. However, faster learning is not guar-
anteed in practice because looking farther into the future
increases variance and can end up requiring more samples
to estimate the mean. These two opposing factors must
be balanced to achieve fast and stable learning. The most
common multistep returns are n-step returns and λ-returns,
both of which span between standard temporal-difference
(TD; Sutton, 1988) learning (n = 1 or λ = 0) and Monte
Carlo learning (n→∞ or λ = 1).

Implementation has generally been the main consideration
in choosing which of these return estimators to use. When
the value function is a lookup table or a linear paramet-
ric function, the λ-return is preferred for its efficient im-
plementation using TD(λ) with eligibility traces (Sutton,
1988). However, in off-policy deep RL, the value func-
tion is a neural network trained with an experience replay
buffer (Lin, 1992), so the extra bootstrapping performed by
the λ-return becomes costly and n-step returns are more
common. Although recent work has explored ways to effi-
ciently train neural networks using replayed λ-returns (e.g.,
Munos et al., 2016; Harb & Precup, 2016; Daley & Amato,
2019), λ-returns generally remain more expensive or com-
plex to implement than n-step returns.

Despite its more complicated implementation in deep RL,
the λ-return is interesting because it averages many n-
step returns together. In this paper, we show that this av-
eraging reduces variance compared to n-step returns and
that the variance reduction leads to faster learning. More
generally, the λ-return is an example of a compound re-
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turn, or a weighted average of two or more n-step re-
turns (Sutton & Barto, 2018, Sec. 12.1). The λ-return
is the most prevalent compound return, but others such
as the γ-return (Konidaris et al., 2011) and the Ω-return
(Thomas et al., 2015) have also been shown to be effec-
tive. While compound returns are known to be theoretically
sound (Watkins, 1989, Sec. 7.2), they have not been exten-
sively analyzed. Compound returns are ideally suited for
deep RL because experiences are already stored in a replay
memory, making it easy to compute several n-step returns
cheaply and then average them together in any desired way.

In this paper, we formally investigate the variance of
compound returns, deriving a variance model for arbitrary
compound returns. Additionally, we prove that compound
returns have a variance-reduction property: any compound
return with the same contraction modulus as an n-step re-
turn has strictly lower variance if the TD errors are not per-
fectly correlated. As a corollary, there exists a λ-return for
every n-step return with the same contraction modulus but
lower variance, implying a better bias-variance trade-off.

Our theoretical results suggest one should prefer λ-returns
over n-step returns, but these are expensive to imple-
ment for deep RL. Thus, we also introduce an efficient
approximation called Piecewise λ-Return (PiLaR or
Pilar). Pilar is computed by averaging just two n-step
returns together—the most efficient compound return
possible. The lengths of the n-step returns are chosen
to put weights on the TD errors that are close to those
assigned by TD(λ), thereby achieving similar variance
reduction as the λ-return. We show that Pilars improve
sample efficiency compared to n-step returns when used to
train Deep Q-Network (DQN; Mnih et al., 2015), which is
the foundation of many other off-policy deep RL methods.
In on-policy methods like PPO (Schulman et al., 2017)
where such an approximation is not necessary, we also
show similar improvements for λ-returns, also known
as Generalized Advantage Estimation in this context
(Schulman et al., 2015b), over n-step returns.

2. Background
Value-based RL agents interact with their environments to
iteratively improve estimates of their expected cumulative
reward. By convention, the agent-environment interaction
is modeled as a Markov decision process (MDP) described
by the tuple (S,A, p, r). At time t, the agent observes the
environment state, St ∈ S, and selects an action, At ∈ A,
accordingly. The environment then transitions to a new
state, St+1 ∈ S, with probability p(St+1 | St, At), and re-
turns a scalar reward, Rt+1

def
= r(St, At, St+1). We assume

the agent samples each action with probability π(At | St),
where π is a stochastic policy.

In the standard prediction problem, the agent’s goal is
to learn a value function v : S → R that estimates
the expected discounted return vπ(s) attainable in each
state s. Letting Gt

def
=
∑∞

i=0 γ
iRt+1+i be the observed

Monte Carlo return at time t, where γ ∈ [0, 1] is a dis-
count factor and actions are implicitly sampled from π,
then vπ(s)

def
= E[Gt | St = s].

The basic learning operation of value-based RL is a backup,
which has the general form

v(St)← v(St) + αt

(
Ĝt − v(St)

)
, (1)

where Ĝt is a return estimate (the target) and αt ∈ (0, 1] is
the step size. Substituting various estimators for Ĝt leads to
different learning properties. For instance, the Monte Carlo
return could be used, but it suffers from high variance, and
delays learning until the end of an episode. To reduce the
variance and delay, return estimates can bootstrap from the
value function. Bootstrapping is the fundamental mecha-
nism underlying TD learning (Sutton, 1988), and the extent
to which the chosen estimator, Ĝt, bootstraps is a major
factor in learning performance.

The most basic multistep version of TD learning uses the
n-step return as its target in Eq. (1):

G
(n)
t

def
=

n−1∑
i=0

γiRt+1+i + γnv(St+n) . (2)

Bootstrapping introduces bias in the update, since generally
E [v(St+n) | St] ̸= vπ(St+n) before convergence, but it
greatly reduces variance. The case of n = 1 corresponds to
the classic TD(0) algorithm, v(St)← v(St) + αtδt, where
δt

def
= Rt+1 + γv(St+1)− v(St) is the TD error. However,

bootstrapping after just one time step is slow because long-
term reward information must propagate indirectly through
the value function, requiring many behavioral repetitions
before v approximates vπ well. Larger values of n con-
sider more rewards per update and assign credit faster, but
at the price of increased variance, with n→∞ reverting to
the Monte Carlo return. The choice of n thus faces a bias-
variance trade-off (Kearns & Singh, 2000), with intermedi-
ate values typically performing best in practice (Sutton &
Barto, 2018, Sec. 7.1).

Another type of multistep return is the λ-return, used by
TD(λ) algorithms (Sutton, 1988), which is equivalent to an
exponentially weighted average of n-step returns:

Gλ
t

def
= (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1]. The λ-return is just one way to average n-
step returns together, but any weighted average is possible.
Such averages are known as compound returns (Sutton &
Barto, 2018, Sec. 12.1), formally expressed as
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Gc
t

def
=

∞∑
n=1

cnG
(n)
t , (3)

where c is an infinite sequence of nonnegative weights with
the constraint

∑∞
n=1 cn = 1. Eq. (3) is a strict generaliza-

tion of all of the aforementioned return estimators; how-
ever, it technically constitutes a compound return if and
only if at least two of the weights are nonzero—otherwise,
it reduces to an n-step return. All choices of weights that
sum to 1 are equally valid in the sense that using their com-
pound returns as the target in Eq. (1) will converge to vπ
under the standard step-size criteria of Robbins & Monro
(1951). However, in practice, the choice of weights greatly
affects the bias and variance of the estimator and, as a con-
sequence, the empirical rate of convergence to vπ . Further-
more, different choices of weights will vary in the amount
of computation needed; sparse weights require less boot-
strapping and therefore less computation. A principal con-
tribution of this paper is to shed light on the trade-offs be-
tween these factors and to develop new compound returns
that favorably balance these considerations (see Section 4).

Many RL agents are control agents, meaning they do not
just predict vπ for a fixed policy, but also use these esti-
mates to update the behavior policy during training. One
way to do this is Q-learning (Watkins, 1989). Rather than
learning a state-value function v, the agent learns an action-
value function q : S × A → R that estimates the expected
return q∗(s, a) earned by following an optimal policy after
taking action a in state s. The estimated value of a state is
therefore v(s) = maxa∈A q(s, a), and all of the previously
discussed return estimators apply after making this substi-
tution. Backups are conducted as before, but now operate
on q(St, At) instead of v(St).

Learning is off-policy in this setting, since the agent now
predicts returns for a greedy policy that differs from the
agent’s behavior. Any multistep return is therefore biased
unless the expectation is explicitly corrected, e.g., by im-
portance sampling (Kahn & Harris, 1951). However, it is
common practice to ignore this bias in deep RL, and re-
cent research has even suggested that doing so is more ef-
fective with both n-step returns (Hernandez-Garcia & Sut-
ton, 2019) and λ-returns (Daley & Amato, 2019; Kozuno
et al., 2021), the latter of which become Peng’s Q(λ) (Peng
& Williams, 1996). For these reasons, we also forgo off-
policy corrections in our work.

3. Variance Analysis
Our main goal in this section is to derive conditions for
when a compound return reduces variance compared to a
given n-step return. We call this the variance-reduction
property (see Theorem 3.7). An important consequence of
this property is that when these conditions are met and both

returns are chosen to have the same contraction modulus,
the compound return needs fewer samples than the n-step
return to converge (see Theorem 3.9).

The outline of this section is as follows. We first derive
variance models for n-step returns and compound returns
under generalized assumptions extending prior work (Sec-
tion 3.1) and then develop a way to pair different return
families by equating their worst-case bias (Section 3.2).
This sets up our principal theoretical result, the variance-
reduction property of compound returns (Section 3.3). We
also conduct a finite-time analysis of TD learning with
compound returns to show that this variance reduction does
improve theoretical sample complexity (Section 3.4). Fi-
nally, we experimentally demonstrate that λ-returns—an
instance of compound returns—outperform n-step returns
in a prediction task as indicated by our theory (Section 3.5).

3.1. Characterizing Compound-Return Variance
We start by developing reasonable models for the variance
of n-step returns and compound returns, building on the
work of Konidaris et al. (2011). We note that our real
quantity of interest in this section is the conditional vari-
ance of the backup error Ĝt − v(St). The degree of this
quantity’s deviation from its expected value is what ulti-
mately impacts the performance of value-based RL meth-
ods in Eq. (1). Nevertheless, this turns out to be the
same as the conditional variance of the return Ĝt, since
v(St) contributes no randomness: Var[Ĝt − v(St) | St] =
Var[Ĝt | St]. This equivalence allows us to interchange the
variances of a return and its error, depending on which is
more computationally convenient.

Modeling a compound return’s variance is challenging be-
cause it typically requires making assumptions about how
the variance of n-step returns increase as a function of n,
as well as how strongly correlated different n-step returns
are. If these assumptions are too strong, the derived vari-
ances fail to reflect reality and lead to poorly informed
algorithmic choices. For instance, consider the following
compound return, which we call a two-bootstrap return:

(1− c)G
(n1)
t + cG

(n2)
t , c ∈ (0, 1), n1 < n2 . (4)

Let σ2
n

def
= Var[G

(n)
t | St]. The variance of the above is

(1− c)2σ2
1 + c2σ2

2 + 2c(1− c)σ1σ2ρ ,

where ρ = Corr[G
(n1)
t , G

(n2)
t | St]. To evaluate this ex-

pression, it is tempting to assume either ρ = 0 to remove
the covariance term, or ρ = 1 because both returns are
generated from the same trajectory. However, neither as-
sumption is fully correct. We can see this more clearly by
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decomposing the returns into their constituent TD errors:

G
(n1)
t = v(St) +

n1−1∑
i=0

γiδt+i ,

G
(n2)
t = v(St) +

n1−1∑
i=0

γiδt+i +

n2−1∑
i=n1

γiδt+i .

Because the returns share the first n1 TD errors, averag-
ing them as in Eq. (4) can only reduce the variance from
the last n2 − n1 TD errors. Two different n-step returns
are therefore neither uncorrelated nor perfectly correlated;
they consist of various random elements, some of which
are shared and cannot be averaged, and others which are
not shared and can be averaged. Models that fail to account
for this partial averaging lead to poor variance predictions.

To be accurate, our variance analysis should therefore start
with the TD error as the fundamental unit of randomness
within a return. In the following analysis, we generalize
the n-step return variance assumptions made by Konidaris
et al. (2011, Sec. 3) to obtain an expression for the covari-
ance between two TD errors. We assume that there exist
κ ≥ 0 and ρ ∈ [0, 1] such that the following hold:

Assumption 3.1. Each TD error has uniform variance:
Var[δt+i | St] = κ, ∀ i ≥ 0.

Assumption 3.2. TD errors are uniformly correlated:
Corr[δt+i, δt+j | St] = ρ, ∀ i ≥ 0, ∀ j ̸= i.

We must make some assumptions about the TD errors be-
cause not much can be said otherwise about the variance of
a return estimate for an arbitrary MDP. For example, it is
possible to contrive problems in which 1-step TD learning
actually has much higher variance than Monte Carlo esti-
mation. Consider an MDP with reward zero everywhere
and a value function initialized with random numbers; the
Monte Carlo return would not have variance but TD boot-
strapping would. However, it is generally expected that 1-
step TD has much lower variance than Monte Carlo, be-
cause summing more TD errors (i.e., random variables)
together will very likely increase practical variance. This
intuition motivates our assumptions, as we want a variance
model that captures this behavior while remaining tractable
for analysis. We further discuss the justification and histor-
ical context of these assumptions in Appendix A.

Now, we can unify Assumptions 3.1 and 3.2 as

Cov[δt+i, δt+j | St] = ((1− ρ)1i=j + ρ)κ , (5)

where 1i=j = 1 if i = j, and is 0 otherwise. In the proposi-
tion below, we derive a variance model for the n-step return
by decomposing the return into a sum of discounted TD er-
rors and then adding up the pairwise covariances given by
Eq. (5). For brevity, we define a function Γk(n) to represent

partial sums of a geometric series with common ratio γk.
That is, Γk(n) = (1 − γkn) / (1 − γk) for γ < 1 , and
Γk(n) = n for γ = 1 .

Proposition 3.3. The variance of an n-step return is

Var[G
(n)
t | St] = (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ .

Proof. See Appendix C.1.

Our n-step variance model linearly interpolates between an
optimistic case where TD errors are uncorrelated (ρ = 0)
and a pessimistic case where TD errors are maximally cor-
related (ρ = 1). In the maximum-variance scenario of
γ = 1, we have Γ1(n) = Γ2(n) = n, so the model becomes
(1 − ρ)nκ + ρn2κ , i.e., it interpolates between linear and
quadratic functions. In Appendix B, we demonstrate that
these bounds are consistent with empirical data in real en-
vironments, even when our assumptions do not fully hold.

Eq. (5) enables us to go beyond n-step returns and calculate
variances for arbitrary compound returns. We accomplish
this by again decomposing the return into a weighted sum
of TD errors (see the next lemma) and then applying our
assumptions to derive a compound variance model in the
following proposition.

Lemma 3.4. A compound error can be written as a
weighted summation of TD errors:

Gc
t − v(St) =

∞∑
i=0

γihiδt+i , where hi
def
=

∞∑
n=i+1

cn .

Proposition 3.5. The variance of a compound return is

Var[Gc
t | St] = (1−ρ)

∞∑
i=0

γ2ih2
iκ+ρ

∞∑
i=0

∞∑
j=0

γi+jhihjκ .

Proofs. See Appendices C.2 and C.3.

The cumulative weights (hi)
∞
i=0 fully specify the variance

of a compound return. For instance, the λ-return assigns
a cumulative weight of hi =

∑∞
n=i+1(1− λ)λn−1 = λi

to the TD error δt+i, which matches the TD(λ) algo-
rithm (Sutton, 1988). Substituting this weight into Proposi-
tion 3.5 and solving the geometric series yields the variance
for the λ-return, which we show in Appendix C.4.

3.2. Error-Reduction Property and Effective n-step
Proposition 3.5 provides a method for calculating variance,
but we would still like to show that compound returns re-
duce variance relative to n-step returns. To do this, we first
need a way to relate two returns in terms of their expected
performance. This is because low variance by itself is not
sufficient for fast learning; for example, the 1-step return
has very low variance, but learns slowly.
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In the discounted setting, a good candidate for expected
learning speed is the return’s contraction modulus. The
contraction modulus is the constant factor by which the
maximum value-function error between v and vπ is guar-
anteed to be reduced. When the contraction modulus is
less than 1, the return estimator exhibits an error-reduction
property: i.e., the maximum error decreases on average
with every backup iteration of Eq. (1). This property is
commonly used in conjunction with the Banach fixed-point
theorem to prove that v eventually converges to vπ (see,
e.g., Bertsekas & Tsitsiklis, 1996, Sec. 4.3). The error-
reduction property of compound returns was first identified
by Watkins (1989, Sec. 7.2) and is expressed formally as

max
s∈S
|E [Gc

t | St = s]− v(s)|

≤

( ∞∑
k=1

ckγ
k

)
max
s∈S
|v(s)− vπ(s)| . (6)

The contraction modulus is the coefficient on the right-
hand side:

∑∞
k=1 ckγ

k , a weighted average of each indi-
vidual n-step return’s contraction modulus, γn. We can
compare compound returns to n-step returns that have
equivalent error-reduction properties by solving the equa-
tion γn =

∑∞
k=1 ckγ

k for n. We call this the effective n-
step of the compound return, since the compound return
reduces the worst-case error as though it were an n-step re-
turn whose length is the solution to the previous equation
(see Proposition 3.6 below). In undiscounted settings, we
cannot directly equate contraction moduli like this because
they all become

∑∞
k=1 ck = 1, but we can still solve the

limit as γ → 1 to define the effective n-step.

Proposition 3.6 (Effective n-step of compound return).
Let Gc

t be any compound return and let

n =

{
logγ

(∑∞
k=1 ckγ

k
)
, if 0 < γ < 1 ,∑∞

k=1 ckk , if γ = 1 .
(7)

When n is an integer, Gc
t shares the same bound in Eq. (6)

as the n-step return G
(n)
t .

Proof. See Appendix C.5.
With or without discounting, an n-step return and a com-
pound return that satisfy Eq. (7) have the same error-
reduction property. We refer to the quantity

∑∞
k=1 ckk as

the center of mass (COM) of a return, since it is the first
moment of the weight distribution over n-step returns. In-
tuitively, this represents the average length into the future
considered by the return, and is the undiscounted analog of
the log contraction modulus.

3.3. The Variance-Reduction Property
With the previous definitions, we are now ready to formal-
ize the variance-reduction property of compound returns.

Theorem 3.7 (Variance-reduction property of compound
returns). Let G

(n)
t be any n-step return and let Gc

t

be any compound return with the same effective n-
step: i.e., c satisfies Proposition 3.6. The inequality
Var[Gc

t | St] ≤ Var[G
(n)
t | St] always holds, and is strict

whenever TD errors are not perfectly correlated (ρ < 1).

Proof. See Appendix C.6.
Theorem 3.7 shows that whenever a compound return has
the same contraction modulus (γ < 1) or COM (γ = 1)
as an n-step return, it has lower variance as long as the
TD errors are not perfectly correlated. Perfect correlation
between all TD errors would be unlikely to occur except
in contrived, maximum-variance MDPs; thus, compound
returns reduce variance in most cases. Crucially, variance
reduction is achieved for any type of weighted average—
although the magnitude of reduction does depend on the
specific choice of weights. The exact amount, in terms of
κ, can be calculated by subtracting the compound variance
from the n-step variance for a given contraction modulus
or COM. As an example, we bound the variance reduction
of a λ-return in the following corollary.
Corollary 3.8 (Variance reduction of λ-return). The mag-
nitude of variance reduction for a λ-return is bounded by

0 ≤ Var[Gn
t | St]−Var[Gλ

t | St] ≤ (1− ρ)
λ

1− λ2
κ .

This magnitude is monotonic in γ and maximized at γ = 1.

Proof. See Appendix C.7.
The magnitude of this variance reduction also increases
monotonically as λ → 1, showing that the potential for
variance reduction improves as the effective n-step of the
return increases. Interestingly, this is reflected in our later
random-walk experiments in Section 3.5 (observe the per-
formance gaps in Figure 1 when α ≈ 1). Future work can
derive the weights that maximize the variance reduction in
Theorem 3.7, but this will likely require more advanced
techniques such as functional analysis and is beyond the
scope of this paper.

3.4. Finite-Time Analysis
It might not be obvious that reducing variance leads to
faster learning; indeed, in other settings such as direct pol-
icy optimization, this is not always the case (see Chung
et al., 2021). We conduct a finite-time analysis of com-
pound TD learning to prove that lower variance does lead
to faster learning in this setting. We consider linear func-
tion approximation, where vθ(s) = ϕ(s)⊤θ for features
ϕ(s) ∈ Rd and parameters θ ∈ Rd; note that tabular meth-
ods can be recovered using one-hot features. The parame-
ters are iteratively updated according to

θt+1 = θt + αgct (θt) , (8)

where gct (θ)
def
=
(
Gc

t − ϕ(St)
⊤θt
)
ϕ(St) .
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Our theorem below generalizes recent analysis of 1-step
TD learning (Bhandari et al., 2018, Theorem 2).

Theorem 3.9 (Finite-Time Analysis). Suppose TD learn-
ing with linear function approximation is applied under
an i.i.d. state model with stationary distribution d ∈ R|S|

(see Assumption C.1 in Appendix C.8) using the compound
return estimator Gc

t as its target. Let β ∈ [0, 1) be the
contraction modulus of the estimator and let σ2 ≥ 0 be
the variance of the estimator. Assume that the features
are normalized such that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. Define
C

def
= (∥r∥∞ + (1 + γ)∥θ∗∥∞) / (1− γ), where θ∗ is the

minimizer of the projected Bellman error for Gc
t . For any

T ≥ (4 / (1− β))2 and a constant step size α = 1 /
√
T ,

E
[∥∥vθ∗ − vθ̄T

∥∥2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

,

where D
def
= diag(d) and θ̄T

def
=

1

T

T−1∑
t=0

θt .

Proof. See Appendix C.8.

With a constant step size, compound TD learning (and
hence n-step TD learning as a special case) reduces
the value-function error at the same asymptotic rate of
O(1/

√
T ) for any return estimator. However, both the con-

traction modulus β and the return variance σ2 greatly in-
fluence the magnitude of the constant that multiplies this
rate. Given an n-step return and a compound return with
the same contraction modulus, the compound return has
lower variance by Theorem 3.7 and therefore converges
faster to its respective TD fixed point. Although these two
fixed points may generally be different, we can show that
the bound on their solution quality is the same by gener-
alizing Lemma 6 of Tsitsiklis & Van Roy (1997) for an
arbitrary return.

Proposition 3.10 (TD Solution Quality). Let θ∗ be the min-
imizer of the projected Bellman error under linear func-
tion approximation for any n-step or compound return with
contraction modulus β. The following bound always holds:

∥Φθ∗ − vπ∥D ≤
1

1− β
∥Πvπ − vπ∥D .

Proof. See Appendix C.9.

This shows that the fixed-point error for an arbitrary re-
turn is always within 1 / (1 − β) times the optimal error.
Since β is equalized for the two returns in Theorem 3.9, the
compound return converges to its fixed point faster than the
n-step return converges to its fixed point, and the quality
bound of these two fixed points is the same.

3.5. Case Study: λ-returns
Although the λ-return is often motivated by its efficient im-
plementation using TD(λ) and eligibility traces, our theory
indicates that λ-returns can also promote faster learning via
variance reduction. We provide empirical support for this
by demonstrating faster learning in the random-walk exper-
iment from Sutton & Barto (2018, Sec. 12.1). In this envi-
ronment, the agent begins in the center of a linear chain of
19 connected states and can move either left or right. The
agent receives a reward only if it reaches one of the far ends
of the chain (−1 for the left, +1 for the right), in which
case the episode terminates. The agent’s policy randomly
moves in either direction with equal probability. We train
the agents for 10 episodes, updating the value functions af-
ter each episode with offline backups like Eq. (1). To pair
the n-step returns and λ-returns together, we derive the ef-
fective λ for an n-step return in the following proposition.

Proposition 3.11 (Effective λ of n-step return). For any
n ≥ 1, when γ < 1, the λ-return with λ = (1 − γn−1) /
(1 − γn) has the same contraction modulus as the n-step
return. When γ = 1, the λ-return with λ = (n− 1) / n has
the same COM as the n-step return.

Proof. See Appendix C.10.

Because this is an undiscounted task, we use the relation-
ship1 λ = (n− 1) / n to generate several (n, λ)-pairs with
equal COMs in Table 1. For our experiment, we choose
four commonly used n-step values, {2, 3, 5, 10}, which
correspond to λ ∈ {0.5, 0.67, 0.8, 0.9}. In Figure 1, we
plot the average root-mean-square (RMS) value error (with
respect to vπ) as a function of the step size α over 100
trials. We also indicate 95% confidence intervals by the
shaded regions. For all of the tested (n, λ)-pairs, an in-
teresting trend emerges. In the left half of each plot, vari-
ance is not an issue because the step size is small and has
plenty of time to average out the randomness in the esti-
mates. Learning therefore progresses at a nearly identical
rate for both the n-step return and the λ-return since they
have the same COM (although there is a small discrepancy
due to the truncation of the episodic task). However, as
α → 1 in the right half of each plot, variance becomes
a significant factor as the step size becomes too large to
mitigate the noise in the updates. This causes the n-step re-
turn’s error to diverge sharply compared to the λ-return’s as
the λ-return manages variance more effectively. The lowest
error attained by each λ-return is also better than that of its
corresponding n-step return in all cases. Notably, neither
of our variance assumptions hold perfectly in this environ-
ment, demonstrating that our variance model’s predictions
are useful in practical settings.

1Another way to write this relationship is n = 1 / (1 − λ),
which makes it clear how the effective n-step is affected by λ.
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Figure 1. Comparing n-step returns and λ-returns, paired by COM, in a random walk. Dashed lines indicate the lowest errors attained.

Table 1. Common n-step returns and λ-returns with equal COMs.

n 2 3 4 5 10 20 50 100

λ 0.5 0.67 0.75 0.8 0.9 0.95 0.98 0.99

4. Piecewise λ-Returns
Although the previous experiment shows that λ-returns can
achieve faster learning, they remain expensive for deep
RL. This is because the λ-return at time t theoretically
bootstraps on every time step after t (until the end of an
episode), with each bootstrap requiring a forward pass
through the neural network. Even when truncating the
λ-return to a reasonable length, this is still several times
more expensive than the single bootstrap of an n-step re-
turn. Previous work has amortized the cost of λ-returns
over long trajectories by exploiting their recursive struc-
ture (e.g., Munos et al., 2016; Harb & Precup, 2016; Daley
& Amato, 2019), but the price to pay for this efficiency is
the requirement that experiences must be temporally ad-
jacent, which can hurt performance. Our preliminary ex-
periments confirmed this, indicating that the correlations
within replayed trajectories counteract the benefits of λ-
returns when compared to minibatches of n-step returns
(with the batch size chosen to equalize computation).

We instead seek a compound return that approximates the
variance-reduction property of the λ-return while being
computationally efficient for minibatch replay. There are
many ways we could average n-step returns together, and
so we constrain our search by considering compound re-
turns that 1) comprise an average of only two n-step re-
turns to minimize cost, 2) preserve the contraction modu-
lus or COM of the λ-return, and 3) place weights on the TD
errors that are close to those assigned by the λ-return.

The first property constrains our estimator to have the two-
bootstrap form of Eq. (4): (1− c)G

(n1)
t + cG

(n2)
t . Let n

be our targeted effective n-step; the effective λ can be ob-
tained from Proposition 3.11. Let us also assume γ < 1,
although we include the case where γ = 1 in Appendix D.
To preserve the contraction modulus as in the second prop-
erty, we must satisfy (1 − c)γn1 + cγn2 = γn. Assuming

that we have freedom in the choice of n1 and n2, it follows
that c = (γn − γn1) / (γn2 − γn1) .
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Figure 2. TD-error weights
for Pilar and a λ-return
(λ = 0.904). Both returns have
the same contraction modu-
lus as a 10-step return when
γ = 0.99.

We would thus like to
find n1 and n2 such that
the weights given to the
TD errors optimize some
notion of closeness to the
TD(λ) weights, in order
to fulfill the third and fi-
nal property. Although
there are many ways we
could define the error,
we propose to minimize
the maximum absolute
difference between the
weights, since this en-
sures that no individual
weight deviates too far
from the TD(λ) weight.
Recall that the weight
given to TD error δt+i by
n-step return G

(n)
t is γi if i < n, and is 0 otherwise. It

follows that the two-bootstrap average assigns a weight of
hi = γi if i < n1; a weight of hi = cγi if n1 ≤ i < n2,
since (1− c) · 0+ c · γi = cγi; and a weight of hi = 0 oth-
erwise. We then minimize the error maxi≥0

∣∣hi − (γλ)i
∣∣.

We call our approximation Piecewise λ-Return because
each weight hi is a piecewise function whose value de-
pends on where i lies in relation to the interval [n1, n2).
Figure 2 illustrates how Pilar roughly approximates the
TD(λ) decay using a step-like shape. Although a Pilar’s
TD-error weights do not form a smooth curve, they re-
tain important properties like contraction modulus, mono-
tonicity, and variance reduction. Crucially, a Pilar is much
cheaper to compute than a λ-return, making it more suit-
able for minibatch experience replay. In Appendix D, we
describe a basic search algorithm for finding the lowest-
error (n1, n2)-pair, along with a reference table of precom-
puted Pilars for γ = 0.99.
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5. Deep RL Experiments
We consider a multistep generalization of Deep Q-Network
(DQN; Mnih et al., 2015). The action-value function
q(s, a; θ) is implemented as a neural network to enable gen-
eralization over high-dimensional states, where θ ∈ Rd

is the learnable parameters. A stale copy θ− of the pa-
rameters is used only for bootstrapping and is infrequently
updated from θ in order to stabilize learning. The agent
interacts with its environment and stores each transition
(s, a, r, s′)—where s is the state, a is the action, r is the
reward, and s′ is the next state—in a replay memory D.
The network’s loss function is defined as

L(θ, θ−) def
= E

[
1

2

(
Ĝ(r, s′, . . . ; θ−)− q(s, a; θ)

)2]
,

where Ĝ(r, s′, . . . ; θ−) is a return estimator for q∗(s, a)
and the expectation is taken over a uniform distribution
on D. The network is trained by minimizing this loss via
stochastic gradient descent on sampled minibatches.

Table 2. Pilars used for MinAtar.

n-step n1 n2 c

3 1 6 0.406
5 2 9 0.437

We test our agents in
all five MinAtar games
(Young & Tian, 2019):
Asterix, Breakout,
Freeway, Seaquest, and
Space Invaders. The
states are 10 × 10 multi-channel images depicting object
locations and velocity trails. Each agent’s network is a
two-layer convolutional architecture with rectified linear
units (ReLUs). The agents execute an ϵ-greedy policy for
5M time steps (where ϵ is linearly annealed from 1 to 0.1
over the first 100k steps) and conduct a minibatch update
of 32 samples on every step. We provide more details in
Appendix E. Code is available online.2

For n = 3 and n = 5, we compare the n-step return against
the corresponding Pilar of the same contraction modulus
with the given discount factor, γ = 0.99 (see Table 2 for
specific values of n1, n2, and c). We chose five Adam step
sizes over a logarithmic grid search and generated learn-
ing curves by plotting the 100-episode moving average of
undiscounted return (game score) versus time steps. We
then chose the step size for each game-estimator pair that
maximized the area under the curve over the last 1M steps,
or 20% of training. We showcase the best results for each
game in Figure 3 but include all of the learning curves in
Appendix E. Out of the five games, Seaquest was the only
one in which Pilar did not outperform n-step returns in a
statistically significant way. The results are averaged over
32 trials, with shading to indicate 95% confidence intervals.

In several cases, Pilars are able to significantly improve the
agent’s best performance compared to n-step returns. This

2
https://github.com/brett-daley/averaging-nstep-returns

is in spite of the fact that each pair of n-step return and
Pilar have the same contraction modulus, suggesting that
the performance increase is partially due to variance reduc-
tion. Overall, Pilars outperform n-step returns for 1 in 5
games (20%) when n = 3, and 3 in 5 games (60%) when
n = 5. In the remaining cases, the performance is not
significantly different; thus, Pilars improve average perfor-
mance in these games. Because the average performance
gap between the estimators also widens as n increases,
Pilar’s benefits appears to become more pronounced for
longer—and, hence, higher-variance—n-step returns.

These results corroborate our theory by showing that av-
eraging n-step returns can accelerate learning, even with a
nontrivial network architecture. We do not claim that Pi-
lars are necessarily the best average to achieve variance re-
duction, but our experiments still demonstrate the practical
relevance of such compound returns.

PPO To demonstrate that our theory also applies to
on-policy methods such as Proximal Policy Optimization
(PPO; Schulman et al., 2017), we conduct additional ex-
periments in three MuJoCo environments (Todorov et al.,
2012): Half Cheetah, Hopper, and Walker 2D. Because on-
policy agents like PPO are trained on relatively short trajec-
tories of recent experiences, it is feasible to compute exact
λ-returns for every experience, often referred to as General-
ized Advantage Estimation (GAE; Schulman et al., 2015b)
in this context. This means that an approximation like Pilar
is not necessary in this setting and we can directly compare
λ-returns with n-step returns.

We use the CleanRL implementation of PPO (Huang et al.,
2022). We compare different returns with the values
(n, λ) ∈ (5, 0.804), (10, 0.905), (20, 0.955). These pairs
were chosen because the respective λ-returns and n-step
returns have the same contraction moduli when γ = 0.99.
We specifically include n = 20 because λ = 0.95 is a
common default value for PPO. We showcase the best re-
sults in Figure 4 but include all of the learning curves in
Appendix E. The results are averaged over 100 trials, with
shading to indicate 95% confidence intervals. In seven
out of nine of the cases, λ-returns significantly improve
sample efficiency over n-step returns with respect to the
100-episode moving average of undiscounted return, again
demonstrating the benefits of compound returns.

6. Conclusion
We have shown that compound returns, including λ-
returns, have a variance-reduction property. This is the first
evidence, to our knowledge, that λ-returns have a theoret-
ical learning advantage over n-step returns in the absence
of function approximation; it was previously believed that
both were different yet equivalent ways of interpolating be-
tween TD and Monte Carlo learning. Our random-walk
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Figure 3. Learning curves for DQN with n-step returns and Pilars in five MinAtar games.
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Figure 4. Learning curves for PPO with n-step returns and λ-returns in three MuJoCo environments.

experiments confirm that an appropriately chosen λ-return
performs better than a given n-step return across a range
of step sizes. In replay-based deep RL methods like DQN,
where λ-returns are difficult to implement efficiently, we
demonstrated with Pilar that a simpler average is still able
to train neural networks with fewer samples. Since the av-
erage is formed from only two n-step returns, the additional
computational cost is negligible—less expensive than
adding a second target network, as is often done in recent
methods (e.g., Fujimoto et al., 2018; Haarnoja et al., 2018).

Although we are able to establish strong theoretical guaran-
tees regarding the convergence rate of multistep TD learn-
ing with linear function approximation, we note that this re-
sult does not automatically extend to nonlinear approxima-
tors. This is not a limitation of our analysis, but rather of the
class of TD algorithms commonly used in deep RL. Indeed,
even 1-step TD does not converge with certain nonlinear
function approximators (see, e.g., Tsitsiklis & Van Roy,
1997, Sec. 10). Although our experiments have shown that
compound returns often do improve performance for DQN
and PPO, it is not guaranteed that these results will general-
ize to other methods. Additionally, we did not show that the
improved performance for these algorithms is due solely to
variance reduction; it is possible that other favorable prop-
erties of the compound returns also contributed to this im-
provement, such as convergence to a different fixed point
(despite the bound that we proved in Proposition 3.10)
or, as we show in concurrent work, the long-tailed credit-
assignment characteristic of certain compound returns (Da-
ley et al., 2024). The added complexities of nonconvex op-
timization likely explain why the performance trends for
DQN and PPO are not always as clear as our random-walk
results. Nevertheless, we note that the variance-reduction

property is a general phenomenon, since the TD-error as-
sumptions are agnostic to the choice of function approxi-
mator. This property, coupled with our empirical results,
indicates potential for using compound returns in other
deep RL methods to improve sample efficiency.

A number of interesting extensions to our work are pos-
sible. For instance, we derived Pilar under the assump-
tion that the λ-return is a good estimator to approximate.
However, the exponential decay of the λ-return originally
arose from the need for an efficient online update rule us-
ing eligibility traces, and is not necessarily optimal in terms
of the bias-variance trade-off. With experience replay, we
are free to average n-step returns in any way we want,
even if the average would not be easily implemented on-
line. This opens up exciting possibilities for new families
of return estimators: e.g., those that minimize variance for
a given contraction modulus or COM. Based on our com-
pound variance model (Proposition 3.5), a promising direc-
tion in this regard appears to be weights that initially decay
faster than the exponential function, but then slower after-
wards. Minimizing variance becomes even more important
for off-policy learning, where the inclusion of importance-
sampling ratios greatly exacerbates variance. Recent works
(Munos et al., 2016; Daley et al., 2023) have expressed ar-
bitrary off-policy corrections in terms of weighted sums of
TD errors, and so our theory could be extended to this set-
ting with only minor modifications.
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A. Variance Assumptions
Our variance assumptions are a significant relaxation and generalization of the assumptions made by the n-step variance
model of Konidaris et al. (2011, Sec. 3). We show this by starting from their original assumptions and then describing the
steps taken to obtain our new assumptions.

Konidaris et al. begin by expanding the variance of an n-step return in the following way:

Var[G
(n)
t | St] = Var[G

(n−1)
t + γn−1δt+n−1 | St]

= Var[G
(n−1)
t | St] + γ2(n−1)Var[δt+n−1 | St] + 2 Cov[G

(n−1)
t , γn−1δt+n−1 | St] . (9)

The covariance term is equivalent to

Cov[G
(n−1)
t , γn−1δt+n−1 | St] = Cov[G

(n−1)
t , G

(n)
t −G

(n−1)
t | St]

= Cov[G
(n−1)
t , G

(n)
t | St]− Cov[G

(n−1)
t , G

(n−1)
t | St]

= Cov[G
(n−1)
t , G

(n)
t | St]−Var[G

(n−1)
t | St] . (10)

With the rationale that G(n−1)
t and G

(n)
t are generated from the same trajectory and therefore highly correlated, the authors

assume that
Cov[G

(n−1)
t , G

(n)
t | St] ≈ Var[G

(n−1)
t | St] , (11)

which makes Eq. (10) approximately zero. Consequently, Eq. (9) becomes

Var[G
(n)
t | St] ≈ Var[G

(n−1)
t | St] + γ2(n−1)Var[δt+n−1 | St] . (12)

The authors additionally assume that the variance of each TD error is the same:

Assumption 3.1. Each TD error has uniform variance: Var[δt+i | St] = κ, ∀ i ≥ 0.

Hence, Eq. (12) becomes Var[G
(n)
t | St] ≈ Var[G

(n−1)
t | St] + γ2(n−1)κ . Since κ = Var[δt | St] = Var[G

(1)
t | St],

unrolling the recursion gives the final n-step variance model:

Var[G
(n)
t | St] ≈

n−1∑
i=0

γ2iκ . (13)

This completes the derivation from Konidaris et al. (2011, Sec. 3), where the two major assumptions are Eq. (11) and As-
sumption 3.1. Notice, however, that Eq. (13) could be obtained more simply by assuming that TD errors are uncorrelated—
in fact, this is equivalent to assuming Eq. (11) holds. One way to see this is by decomposing the n-step return into a sum
of TD errors and applying standard variance rules, assuming no correlations between the random variables:

Var[G
(n)
t | St] = Var[G

(n)
t − v(St) | St] = Var

[
n−1∑
i=0

γiδt+i

∣∣∣∣∣ St

]
=

n−1∑
i=0

γ2iVar[δt+i | St] =

n−1∑
i=0

γ2iκ ,

which is identical to Eq. (13). In our work, we directly make this uniform-correlation assumption, while also generalizing
it with an arbitrary correlation coefficient ρ ∈ [0, 1]. Note that we must have ρ ≥ 0 because an infinite number of TD errors
cannot be negatively correlated simultaneously.

Assumption 3.2. TD errors are uniformly correlated: Corr[δt+i, δt+j | St] = ρ, ∀ i ≥ 0, ∀ j ̸= i.

To summarize, our variance model makes Assumptions 3.1 and 3.2, which are equivalent to the assumptions made by
Konidaris et al. (2011) when ρ = 0. Since Var[δt+i | St] = Cov[δt+i, δt+i | St], we are able to combine Assumptions 3.1
and 3.2 into a single, concise expression—see Eq. (5) in Section 3.

Although the assumptions here may not always hold in practice, they would be difficult to improve without invoking
information about the MDP’s transition function or reward function. We show in Appendix B that our derived variances
based on these assumptions are nevertheless consistent with empirical data in real environments.

12
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B. How Realistic Is the Proposed Variance Model?
Our assumptions state that all TD errors have uniform variance and are equally correlated to one another. Since these
assumptions may be violated in practice, it is informative to test how well our n-step variance model (Proposition 3.3)
compares to the true n-step variances in several examples.

We consider three environments: the 19-state random walk (see Section 3), a 4 × 3 gridworld (Russell & Norvig, 2009,
Fig. 17.1), and a 10 × 8 gridworld (Sutton & Barto, 2018, Fig. 7.4). We choose these environments because they have
known dynamics and are small enough to exactly calculate vπ with dynamic programming. The two gridworlds are
stochastic because each of the four moves (up, down, left, right) succeeds with only probability 80%; otherwise, the move
is rotated by 90 degrees in either direction with probability 10% each. We let the agent execute a uniform-random behavior
policy for all environments.

To make the results agnostic to any particular learning algorithm, we use vπ to compute the TD errors. We apply a discount
factor of γ = 0.99 to the 10× 8 gridworld (otherwise vπ(s) would be constant for all s due to the single nonzero reward)
and leave the other two environments undiscounted. We then measure the variance of the n-step returns originating from
the initial state of each environment, for n ∈ {1, . . . , 21}. Figure 5 shows these variances plotted as a function of n and
averaged over 10k episodes. The best-case (optimistic, ρ = 0) and worst-case (pessimistic, ρ = 1) variances predicted by
the n-step model, assuming that κ = Var[δ0 | S0], are also indicated by dashed lines.

For all of the environments, the measured n-step variances always remain within the lower and upper bounds predicted by
Proposition 3.3. These results show that our n-step variance model can still make useful variance predictions even when
our assumptions do not hold. The variances also grow roughly linearly as a function of n, corresponding more closely to
the linear behavior of the optimistic, uncorrelated case than the quadratic behavior of the pessimistic, maximally correlated
case. This further suggests that the majority of TD-error pairs are weakly correlated in practice, which makes sense because
temporally distant pairs are unlikely to be strongly related.

1 6 11 16 21
n-step

0.00
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0.10
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e

19-State Random Walk

1 6 11 16 21
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4 × 3 Gridworld
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10 × 8 Gridworld

Figure 5. Variances of the n-step returns originating from the initial state in three environments. The solid green line indicates the true
variance while the dashed black lines indicate the lower and upper bounds predicted by our n-step variance model (Proposition 3.3).
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C. Proofs
In this section, we include all proofs that were omitted from the main paper due to space constraints.

C.1. Proof of Proposition 3.3

Proposition 3.3. The variance of an n-step return is

Var[G
(n)
t | St] = (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ .

Proof. The n-step error can be expressed as a finite summation of TD errors:

G
(n)
t − v(St) =

n−1∑
i=0

γiδt+i . (14)

Using this, we calculate the covariance between two n-step returns with lengths n1, n2:

Cov[G
(n1)
t , G

(n2)
t | St] = Cov

[
n1−1∑
i=0

γiδt+i,

n2−1∑
j=0

γjδt+j

∣∣∣∣∣ St

]

=

n1−1∑
i=0

n2−1∑
j=0

Cov[γiδt+i, γ
jδt+j | St]

=

n1−1∑
i=0

n2−1∑
j=0

γi+jCov[δt+i, δt+j | St]

=

n1−1∑
i=0

n2−1∑
j=0

γi+j((1− ρ)1i=j + ρ)κ

= (1− ρ)

min(n1,n2)−1∑
i=0

γ2iκ+ ρ

n1−1∑
i=0

n2−1∑
j=0

γi+jκ

= (1− ρ)

min(n1,n2)−1∑
i=0

γ2iκ+ ρ

n1−1∑
i=0

γi
n2−1∑
j=0

γjκ

= (1− ρ) Γ2(min(n1, n2))κ+ ρΓ1(n1) Γ1(n2)κ . (15)

Because Var[G
(n)
t | St] = Cov[G

(n)
t , G

(n)
t | St], then by letting n1 = n2 = n, we obtain the n-step variance formula and

the proof is complete.

C.2. Proof of Lemma 3.4

Lemma 3.4. A compound error can be written as a weighted summation of TD errors:

Gc
t − v(St) =

∞∑
i=0

γihiδt+i , where hi
def
=

∞∑
n=i+1

cn .

Proof. We decompose the compound error into a weighted average of n-step errors, and then decompose those n-step
errors into weighted sums of TD errors using Eq. (14):

Gc
t − v(St) =

( ∞∑
n=1

cnG
(n)
t

)
− v(St)

=

∞∑
n=1

cn

(
G

(n)
t − v(St)

)
14



Averaging n-step Returns Reduces Variance

=

∞∑
n=1

cn

n−1∑
i=0

γiδt+i

= c1δt + c2(δt + γδt+1) + c3(δt + γδt+1 + γ2δt+2) + . . .

= (c1 + c2 + . . . )δt + γ(c2 + c3 + . . . )δt+1 + γ2(c3 + c4 + . . . )δt+2 + . . .

= h0δt + γh1δt+1 + γ2h2δt+2 + . . .

=

∞∑
i=0

γihiδt+i ,

which completes the lemma.

C.3. Proof of Proposition 3.5

Proposition 3.5. The variance of a compound return is

Var[Gc
t | St] = (1− ρ)

∞∑
i=0

γ2ih2
iκ+ ρ

∞∑
i=0

∞∑
j=0

γi+jhihjκ .

Proof. From Lemma 3.4, the variance of the compound return is

Var [Gc
t | St] =

∞∑
i=0

∞∑
j=0

Cov[γihiδt+i, γ
jhjδt+j | St]

=

∞∑
i=0

∞∑
j=0

γi+jhihjCov[δt+i, δt+j | St]

=

∞∑
i=0

∞∑
j=0

γi+jhihj((1− ρ)1i=j + ρ)κ

= (1− ρ)

∞∑
i=0

γ2ih2
iκ+ ρ

∞∑
i=0

∞∑
j=0

γi+jhihjκ ,

which establishes Proposition 3.5.

C.4. λ-return Variance

We calculate the variance of the λ-return under our assumptions. In the main text, we showed that the λ-return assigns
a cumulative weight of hi = λi to the TD error at time t + i, which is also known from the TD(λ) algorithm. We can
therefore apply Proposition 3.5 to obtain the following variance expression:

Var[Gλ
t | St] = (1− ρ)

∞∑
i=0

(γλ)2iκ+ ρ

∞∑
i=0

∞∑
j=0

(γλ)i+jκ

= (1− ρ)

∞∑
i=0

(γλ)2iκ+ ρ

∞∑
i=0

(γλ)i
∞∑
j=0

(γλ)jκ

=
(1− ρ)κ

1− (γλ)2
+

ρκ

(1− γλ)2
. (16)

C.5. Proof of Proposition 3.6

Proposition 3.6 (Effective n-step of compound return). Let Gc
t be any compound return and let

n =

{
logγ

(∑∞
k=1 ckγ

k
)
, if 0 < γ < 1 ,∑∞

k=1 ckk , if γ = 1 .
(7)

When n is an integer, Gc
t shares the same bound in Eq. (6) as the n-step return G

(n)
t .

15
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Proof. When γ < 1, we can take the logarithm of both sides of γn =
∑∞

k=1 ckγ
k to get

n = logγ

( ∞∑
k=1

ckγ
k

)
=

log (
∑∞

n=1 cnγ
n)

log γ
.

For the undiscounted case, we would like to evaluate this expression at γ = 1; however, since
∑∞

n=1 cn = 1 from the
definition of a compound return, we arrive at an indeterminate form, 0

0 . Instead, we can apply L’Hôpital’s rule to evaluate
the limit as γ → 1:

lim
γ→1

log (
∑∞

n=1 cnγ
n)

log γ
= lim

γ→1

d
dγ log (

∑∞
n=1 cnγ

n)
d
dγ log γ

= lim
γ→1

(
∑∞

n=1 cnγ
n−1n) / (

∑∞
n=1 cnγ

n)

1 / γ

= lim
γ→1

∑∞
n=1 cnγ

nn∑∞
n=1 cnγ

n

=

∑∞
n=1 cnn∑∞
n=1 cn

=

∞∑
n=1

cnn ,

where the last step follows again from the fact that
∑∞

n=1 cn = 1. This establishes the case where γ = 1 and completes
the proof.

C.6. Proof of Theorem 3.7

Theorem 3.7 (Variance-reduction property of compound returns). Let G(n)
t be any n-step return and let Gc

t be any com-
pound return with the same effective n-step: i.e., c satisfies Proposition 3.6. The inequality Var[Gc

t | St] ≤ Var[G
(n)
t | St]

always holds, and is strict whenever TD errors are not perfectly correlated (ρ < 1).

Proof. Eq. (15) gives us an expression for the covariance between two n-step returns. We use this to derive an alternative
formula for the variance of a compound return:

Var[Gc
t | St] =

∞∑
i=1

∞∑
j=1

Cov[ciG
(i)
t , cjG

(j)
t | St]

=
∞∑
i=1

∞∑
j=1

cicjCov[G
(i)
t , G

(j)
t | St]

=

∞∑
i=1

∞∑
j=1

cicj
(
(1− ρ) Γ2(min(i, j))) + ρΓ1(i) Γ1(j)

)
κ

= (1− ρ)

∞∑
i=1

∞∑
j=1

cicj Γ2(min(i, j))κ+ ρ

∞∑
i=1

∞∑
j=1

cicj Γ1(i) Γ1(j)κ .

We analyze both sums separately, starting with the first term. If we assume γ < 1 for now, then γn =
∑∞

i=1 ciγ
i by

Proposition 3.6. Further note that min(i, j) ≤ (i+ j) / 2, with the inequality strict if i ̸= j. Because Γ2 is monotonically
increasing, it follows that

∞∑
i=1

∞∑
j=1

cicj Γ2(min(i, j)) <

∞∑
i=1

∞∑
j=1

cicj Γ2

(
i+ j

2

)

=

∞∑
i=1

∞∑
j=1

cicj

(
1− γi+j

1− γ2

)

16
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=
1−

∑∞
i=1

∑∞
j=1 cicjγ

i+j

1− γ2

=
1−

∑∞
i=1 ciγ

i
∑∞

j=1 cjγ
j

1− γ2

=
1− γ2n

1− γ2

= Γ2(n) .

The inequality is strict because at least two weights in c are nonzero by definition of a compound return, guaranteeing at
least one element in the sum has i ̸= j. If instead γ = 1, then n =

∑∞
i=1 cii by Proposition 3.6 and also Γ2(min(i, j)) =

min(i, j). Therefore, by Jensen’s inequality, we have

∞∑
i=1

∞∑
j=1

cicj Γ2(min(i, j)) =

∞∑
i=1

∞∑
j=1

cicj min(i, j)

< min

 ∞∑
i=1

cii,

∞∑
j=1

cjj


= min(n, n)

= Γ2(n) .

Again, the inequality is strict by definition of a compound return, so we conclude that
∞∑
i=1

∞∑
j=1

cicj Γ2(min(i, j)) < Γ2(n), for 0 < γ ≤ 1 .

We now address the second term. We show that Γ1 is invariant under a weighted average under our assumption that Eq. (7)
holds. If γ < 1, then

∞∑
i=1

ci Γ1(i) =

∞∑
i=1

ci

(
1− γi

1− γ

)
=

1−
∑∞

i=1 ciγ
i

1− γ
=

1− γn

1− γ
= Γ1(n) . (17)

If γ = 1, then
∞∑
i=1

ci Γ1(i) =

∞∑
i=1

cii = n = Γ1(n) .

Thus, regardless of γ, the second term becomes
∞∑
i=1

∞∑
j=1

cicj Γ1(i) Γ1(j) =

∞∑
i=1

ci Γ1(i)

∞∑
j=1

cj Γ1(j) = Γ1(n)
2
.

Putting everything together, we have so far shown that

Var[Gc
t | St] ≤ (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ ,

where the right-hand side is the n-step return variance given by Proposition 3.3. As we showed above, this inequality is
strict whenever the first term is active, i.e., ρ < 1, which completes the proof.

C.7. Proof of Corollary 3.8

Corollary 3.8 (Variance reduction of λ-return). The magnitude of variance reduction for a λ-return is bounded by

0 ≤ Var[Gn
t | St]−Var[Gλ

t | St] ≤ (1− ρ)
λ

1− λ2
κ .

This magnitude is monotonic in γ and maximized at γ = 1.

17
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Proof. First, the left-hand side of the inequality follows immediately from Theorem 3.7.

For the right-hand side, we next make the observation that, for any compound return,

∞∑
i=0

γihi =

∞∑
i=0

∞∑
n=i+1

γicn =

∞∑
n=1

n−1∑
i=0

γicn =

∞∑
n=1

cn
1− γn

1− γ
=

1−
∑∞

n=1 cnγ
n

1− γ
=

1− β

1− γ
.

This allows us to rewrite the variance model in Proposition 3.5 as

Var[Gc
t | St] = (1− ρ)

∞∑
i=0

γ2ih2
iκ+ ρ

∞∑
i=0

∞∑
j=0

γi+jhihjκ = (1− ρ)

∞∑
i=0

γ2ih2
iκ+ ρ

(
1− β

1− γ

)2

κ .

The second term is identical for all returns with a fixed contraction modulus β, as is assumed in Theorem 3.7. Thus,
by subtracting the variance of both returns, we get the following expression for variance reduction (positive means more
variance reduction):

Var[Gn
t | St]−Var[Gc

t | St] = (1− ρ)

(
Γ2(n)−

∞∑
i=0

γ2ih2
i

)
κ .

This reveals that the variance reduction of a compound return is proportional to 1− ρ, affirming the result of Theorem 3.7
that variance reduction occurs whenever ρ < 1. Additionally, this variance reduction is proportional to the critical quantity
Γ2(n)−

∑∞
i=0 γ

2ih2
i , a function of the weights of the compound return. Substituting the weights for a λ-return, this critical

quantity becomes

Γ2(n)−
1

1− (γλ)2
.

This gap is monotonically increasing with γ and attains its maximum value as γ → 1, i.e., the maximum-variance case of
undiscounted rewards.3 Taking the limit as γ → 1 makes the possible variance reduction proportional to

n− 1

1− λ2
=

1

1− λ
− 1

1− λ2
=

λ

1− λ2
,

where the identity n = 1 / (1−λ) comes from Proposition 3.11, the effective n-step of the λ-return. This gives us the final
upper bound:

Var[Gn
t | St]−Var[Gλ

t | St] ≤ (1− ρ)
λ

1− λ2
κ ,

which completes the inequality.

C.8. Finite-Time Analysis

In this section, we prove Theorem 3.9 to establish a finite-time bound on the performance of multistep TD learning. We
derive the bound in terms of the return’s contraction modulus and variance, allowing us to invoke Theorem 3.7 and show
an improved convergence rate.

At each iteration, TD learning updates the current parameters θt ∈ Rd according to Eq. (8). A value-function estimate
for any state s is obtained by evaluating the dot product of the parameters and the state’s corresponding feature vector:
vθ(s)

def
= θ⊤ϕ(s). Following Bhandari et al. (2018), we assume that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. This can be guaranteed in

practice by normalizing the features and is therefore not a strong assumption.

In the prediction setting, the agent’s behavior policy is fixed such that the MDP can be cast as a Markov reward process
(MRP), where r(s, s′) denotes the expected reward earned when transitioning from state s to state s′. We adopt the i.i.d.
state model from Bhandari et al. (2018, Sec. 3) and generalize it for multistep TD updates.

Assumption C.1 (i.i.d. state model). Assume the MRP under the policy π is ergodic. Let d ∈ R|S| represent the MRP’s
unique stationary distribution. Each iteration of Eq. (8) is calculated by first sampling a random initial state St,0 ∼ d and
then sampling a trajectory of subsequent states St,i+1 ∼ Pr(· | St,i), ∀ i ≥ 0.

3To see this, make the substitution λ = (1− γn−1) / (1− γn) from Proposition 3.11 because the effective n-step is the same, and
analyze the behavior as γ → 1.
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That is, a state St,0 sampled from the steady-state MRP forms the root node for the following trajectory (St,1, St,2, . . . )
that is generated according to the MRP transition function. Notably, this setting parallels the experience-replay setting
utilized by many deep RL agents.

To facilitate our analysis, we decompose the compound TD updates into weighted averages of n-step TD updates, where
each n-step update has the form

gnt (θ)
def
=
(
G

(n)
t − ϕ(St)

⊤θ
)
ϕ(St) .

This allows us to conveniently express a compound TD update as

gct (θ)
def
=

∞∑
n=1

cng
n
t (θ) .

Our proofs also make use of the expected n-step TD update:

ḡn(θ)
def
=
∑
s0∈S

∑
τ∈Sn−1

d(s0) Pr(τ | s0)
(
G(n)(s0, τ, θ)− ϕ(s0)

⊤θ
)
ϕ(s0)

where (s1, s2, . . . ) = τ and G(n)(s0, τ, θ)
def
= r(s0, s1)+ · · ·+γn−1r(sn−1, sn)+γnϕ(sn)

⊤θ is the n-step return generated
from (s0, τ).

For brevity, let Ri
def
= r(St,i , St,i+1) and ϕi

def
= ϕ(St,i) be random variables sampled according to Assumption C.1. We

more conveniently write the expected n-step TD update as

ḡn(θ) = E
[
ϕ0(R0 + γR1 + · · ·+ γn−1Rn−1)

]
+ E

[
ϕ0(γ

nϕn − ϕ0)
⊤] θ . (18)

The expected compound TD update easily follows as the weighted average

ḡc(θ)
def
=

∞∑
n=1

cnḡ
n(θ) .

Finally, let θ∗ be the fixed point of the compound TD update: i.e., ḡc(θ∗) = 0. This fixed point always exists and is unique
because the projected Bellman operator is a contraction mapping (Tsitsiklis & Van Roy, 1997), and therefore so is any
weighted average of the n-iterated operators.

Before we prove Theorem 3.9, we must introduce two lemmas. The first establishes a lower bound on the angle between
the expected TD update and the true direction toward the fixed point.

Lemma C.2. Define the diagonal matrix D
def
= diag(d). For any θ ∈ Rd,

(θ∗ − θ)⊤ḡc(θ) ≥ (1− β)∥vθ∗ − vθ∥2D . (19)

Proof. Let ξi
def
= vθ∗(St,i)− vθ(St,i) = (θ∗− θ)⊤ϕi for i ≥ 0. By stationarity, each ξi is a correlated random variable with

the same marginal distribution. Because St,0 is drawn from the stationary distribution, we have E
[
ξ2i
]
= ∥vθ∗ − vθ∥2D.

From Eq. (18), we show

ḡc(θ) = ḡc(θ)− ḡc(θ∗) =

∞∑
n=1

cnE
[
ϕ0(γ

nϕn − ϕ0)
⊤(θ − θ∗)

]
=

∞∑
n=1

cnE[ϕ0(ξ0 − γnξn)] .

It follows that

(θ∗ − θ)⊤ḡc(θ) =

∞∑
n=1

cnE[ξ0(ξ0 − γnξn)]
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= E
[
ξ20
]
−

∞∑
n=1

cnγ
nE[ξ0ξn]

≥

(
1−

∞∑
n=1

cnγ
n

)
E
[
ξ20
]

= (1− β)∥vθ∗ − vθ∥2D .

The inequality uses the Cauchy-Schwarz inequality along with the fact that every ξi has the same marginal distribution:
thus, E[ξ0ξi] ≤

√
E[ξ20 ]

√
E[ξ2i ] = E

[
ξ20
]
.

The next lemma establishes a bound on the second moment of the squared norm of the TD update in terms of the contraction
modulus β and the variance σ2 of the compound return.

Lemma C.3. Define ∆∗ def
= ∥r∥∞ + (1 + γ)∥θ∗∥∞ and C

def
= ∆∗ / (1− γ). For any θ ∈ Rd,

E[∥gt(θ)∥22] ≤ 2(1− β)2C2 + 2σ2 + 4(1 + β)∥vθ∗ − vθ∥2D .

Proof. Let δ∗t,i
def
= Ri + γϕ⊤i+1θ

∗ − ϕ⊤iθ
∗ and note that

∣∣δ∗t,i∣∣ ≤ ∆∗ for all i ≥ 0 by the triangle inequality and the

bounded-feature assumption. Denote the n-step and compound errors constructed from θ∗ by δ
(n)
t

def
=
∑n−1

i=0 γiδ∗t,i and

δct
def
=
∑∞

n=1 cnδ
(n)
t , respectively. We have

E
[
∥gt(θ∗)∥22

]
= E

[
∥δct ϕ0∥22

]
≤ E

[
(δct )

2
]
= E[δct ]

2
+ σ2 , (20)

where the inequality follows from the assumption that ∥ϕ0∥22 ≤ 1. The absolute value of the expectation can be bounded
using the triangle inequality:

∣∣∣E[δct ]∣∣∣ =
∣∣∣∣∣E
[ ∞∑
n=1

cnδ
(n)
t

]∣∣∣∣∣ ≤
∞∑

n=1

cn Γ1(n)∆
∗ =

1− β

1− γ
∆∗ = (1− β)C . (21)

The identity
∑∞

n=1 cnΓ1(n) = (1− β) / (1− γ) comes from Eq. (17). Eqs. (20) and (21) imply

E
[
∥gt(θ∗)∥22

]
≤ (1− β)2C2 + σ2 . (22)

Recall that E
[
ξ2i
]
= ∥vθ∗ − vθ∥2D for all i ≥ 0. Next, we show

E
[
∥gt(θ)− gt(θ

∗)∥22
]
= E

∥∥∥∥∥
∞∑

n=1

cnϕ0(γ
nϕn − ϕ0)

⊤(θ − θ∗)

∥∥∥∥∥
2

2


= E

∥∥∥∥∥
∞∑

n=1

cnϕ0(ξ0 − γnξn)

∥∥∥∥∥
2

2


≤

∞∑
n=1

cnE
[
∥ϕ0(ξ0 − γnξn)∥22

]
≤

∞∑
n=1

cnE
[
(ξ0 − γnξn)

2
]

≤ 2

∞∑
n=1

cn
(
E
[
ξ20
]
+ γ2nE

[
ξ2n
])

= 2

∞∑
n=1

cn(1 + γ2n)∥vθ∗ − vθ∥2D
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≤ 2

∞∑
n=1

cn(1 + γn)∥vθ∗ − vθ∥2D

= 2(1 + β)∥vθ∗ − vθ∥2D . (23)

The four inequalities respectively follow from Jensen’s inequality, the bounded-feature assumption ∥ϕ∥22 ≤ 1, the triangle
inequality, and the fact that γ2n ≤ γn. The final equality comes from the definition of the contraction modulus, the
coefficient of the left-hand side of Eq. (6). Combining Eqs. (22) and (23) gives the final result:

E
[
∥gt(θ)∥22

]
≤ E

[
(∥gt(θ∗)∥2 + ∥gt(θ)− gt(θ

∗)∥2)
2
]

≤ 2E
[
∥gt(θ∗)∥22

]
+ 2E

[
∥gt(θ)− gt(θ

∗)∥22
]

≤ 2(1− β)2C2 + 2σ2 + 4(1 + β)∥vθ∗ − vθ∥2D ,

where the second inequality uses the algebraic identity (x+ y)2 ≤ 2x2 + 2y2.

We are now ready to derive the finite-time bound. We restate Theorem 3.9 and then provide the proof.

Theorem 3.9 (Finite-Time Analysis). Suppose TD learning with linear function approximation is applied under an
i.i.d. state model with stationary distribution d ∈ R|S| (see Assumption C.1 in Appendix C.8) using the compound
return estimator Gc

t as its target. Let β ∈ [0, 1) be the contraction modulus of the estimator and let σ2 ≥ 0
be the variance of the estimator. Assume that the features are normalized such that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. Define
C

def
= (∥r∥∞ + (1 + γ)∥θ∗∥∞) / (1− γ), where θ∗ is the minimizer of the projected Bellman error for Gc

t . For any
T ≥ (4 / (1− β))2 and a constant step size α = 1 /

√
T ,

E
[∥∥vθ∗ − vθ̄T

∥∥2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

,

where D
def
= diag(d) and θ̄T

def
=

1

T

T−1∑
t=0

θt .

Proof. TD learning updates the parameters according to Eq. (8). Therefore,

∥θ∗ − θt+1∥22 = ∥θ∗ − θt − α gt(θt)∥22
= ∥θ∗ − θt∥22 − 2α gt(θt)

⊤(θ∗ − θt) + α2∥gt(θ)∥22 .

Taking the expectation and then applying Lemmas C.2 and C.3 gives

E
[
∥θ∗ − θt+1∥22

]
= E

[
∥θ∗ − θt∥22

]
− 2αE

[
gt(θt)

⊤(θ∗ − θt)
]
+ α2E

[
∥gt(θ)∥22

]
= E

[
∥θ∗ − θt∥22

]
− 2αE

[
E
[
gt(θt)

⊤(θ∗ − θt)
]
| θt
]
+ α2E

[
E
[
∥gt(θ)∥22

]
| θt
]

≤ E
[
∥θ∗ − θt∥22

]
−
(
2α(1− β)− 4α2(1 + β)

)
∥vθ∗ − vθ∥2D + 2α2

(
(1− β)2C2 + σ2

)
≤ E

[
∥θ∗ − θt∥22

]
− α(1− β)∥vθ∗ − vθ∥2D + 2α2

(
(1− β)2C2 + σ2

)
.

The first inequality is due to Lemmas C.2 and C.3, which are applicable due to the i.i.d. setting (because the trajectory
influencing gt is independent of θt). The second inequality follows from the assumption that α ≤ (1−β) / 4. Rearranging
the above inequality gives us

E
[
∥vθ∗ − vθt∥

2
D

]
≤
∥θ∗ − θt∥22 − ∥θ∗ − θt+1∥22 + 2α2

(
(1− β)2C2 + σ2

)
α(1− β)

.

Summing over T iterations and then invoking the assumption that α = 1 /
√
T :

T−1∑
t=0

E
[
∥vθ∗ − vθt∥

2
D

]
≤
∥θ∗ − θ0∥22 − ∥θ∗ − θT ∥22 + 2α2

(
(1− β)2C2 + σ2

)
T

α(1− β)
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≤
∥θ∗ − θ0∥22 + 2α2

(
(1− β)2C2 + σ2

)
T

α(1− β)

=
∥θ∗ − θ0∥22

√
T + 2

(
(1− β)2C2 + σ2

)√
T

1− β
.

We therefore conclude that

E
[∥∥vθ∗ − vθ̄T

∥∥2
D

]
≤ 1

T

T−1∑
t=0

E
[
∥vθ∗ − vθt∥

2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

,

which completes the bound.

C.9. Proof of Proposition 3.10

Proposition 3.10 (TD Solution Quality). Let θ∗ be the minimizer of the projected Bellman error under linear function
approximation for any n-step or compound return with contraction modulus β. The following bound always holds:

∥Φθ∗ − vπ∥D ≤
1

1− β
∥Πvπ − vπ∥D .

Proof. Our proof generalizes the bound for the λ-return operator given by Tsitsiklis & Van Roy (1997, Lemma 6). Let
Tπ : v 7→ r+ γPπv be the Bellman operator, where Pπ is the stochastic transition matrix of the MDP under policy π. The
n-step Bellman operator is denoted by Tn

π , where Tn
π v

def
= Tπ(T

n−1
π v) and T 0

πv
def
= v.

A compound return corresponds to the operator T (c)
π : v 7→

∑∞
n=1 cnT

n
π v. This operator is a contraction mapping since it

is a convex combination of contraction mappings. Let β be the contraction modulus of T (c)
π for the given weights, c. The

compound TD procedure in Eq. (1) converges to a fixed point θ∗ which is the unique solution of the following projected
Bellman equation:

ΠT (c)
π (Φθ∗) = Φθ∗ ,

where Π = Φ(Φ⊤DΦ)−1Φ⊤D is the linear projection operator. In their proof of Lemma 6, Tsitsiklis & Van Roy show
that Π is nonexpansive with respect to the norm ∥·∥D. Therefore, for any compound return, it follows that

∥Φθ∗ − vπ∥D ≤ ∥Φθ∗ −Πvπ∥D + ∥Πvπ − vπ∥D
=
∥∥∥ΠT (c)

π (Φθ∗)−Πvπ

∥∥∥
D

+ ∥Πvπ − vπ∥D

≤
∥∥∥T (c)

π (Φθ∗)− vπ

∥∥∥
D

+ ∥Πvπ − vπ∥D
≤ β∥Φθ∗ − vπ∥D + ∥Πvπ − vπ∥D

Solving the inequality for ∥Φθ∗ − vπ∥D gives the final bound.

C.10. Proof of Proposition 3.11

Proposition 3.11 (Effective λ of n-step return). For any n ≥ 1, when γ < 1, the λ-return with λ = (1− γn−1) / (1− γn)
has the same contraction modulus as the n-step return. When γ = 1, the λ-return with λ = (n− 1) /n has the same COM
as the n-step return.

Proof. Case γ < 1: We substitute cn = (1 − λ)λn−1 into the weighted average in Eq. (6) to compute the contraction
modulus of the λ-return:

∞∑
n=1

cnγ
n =

∞∑
n=1

(1− λ)λn−1γn = γ(1− λ)

∞∑
n=1

(γλ)n−1 =
γ(1− λ)

1− γλ
.

We therefore seek λ such that
γ(1− λ)

1− γλ
= γn
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in order to equate the λ-return’s contraction modulus to that of the given n-step return. We multiply both sides of the
equation by 1− γλ and isolate λ to complete the case:

γ(1− λ) = γn(1− γλ)

1− λ = γn−1(1− γλ)

1− λ = γn−1 − γnλ

γnλ− λ = γn−1 − 1

λ(γn − 1) = γn−1 − 1

λ = (1− γn−1) / (1− γn) .

Case γ = 1: We use Proposition 3.6 with cn = (1− λ)λn−1 to compute the effective n-step of the λ-return:

n =

∞∑
k=1

(1− λ)λk−1k = (1− λ)

∞∑
k=1

λk−1k = (1− λ)
1

(1− λ)2
=

1

1− λ
.

Rearranging the equation n = 1 / (1− λ) for λ gives the final result of λ = (n− 1) / n.
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D. Pilar: Piecewise λ-Return

Table 3. n-step returns and Pilars with equal contrac-
tion moduli when γ = 0.99.

effective
n-step n1 n2 c

2 1 4 0.337
3 1 6 0.406
4 2 7 0.406
5 2 9 0.437
10 4 16 0.515
20 6 35 0.519
25 8 43 0.530
50 13 79 0.640
100 22 147 0.760

We present a basic search algorithm for finding the corresponding Pi-
lar for a given n-step return (see Algorithm 1). The algorithm accepts
the desired effective n-step (which does not need to be an integer
necessarily) as its only argument and returns the values (n1, n2, c)

such that the two-bootstrap return (1− c)G
(n1)
t + cG

(n2)
t minimizes

the maximum absolute difference between its cumulative weights and
those of the λ-return with the same effective n-step. The algorithm
proceeds as follows. For each n1 ∈ {1, . . . , ⌊n⌋}, scan through
n2 ∈ {n1 + 1, n1 + 2, . . . , } until the error stops decreasing. Ev-
ery time a better (n1, n2)-pair is found, record the values, and re-
turn the last recorded values upon termination. The resulting Pilar
has the same contraction modulus as the targeted n-step return; thus,
their error-reduction properties are the same, but the Pilar’s variance
is lower by Theorem 3.7. To modify the search algorithm for undis-
counted rewards, we just need to change λ and c such that they equate
the COMs—rather than the contraction moduli—of the two returns.
We also include this case in Algorithm 1.

We populate Table 3 with corresponding Pilar values for several com-
mon n-step returns when γ = 0.99. A discount factor of γ = 0.99 is extremely common in deep RL, and so it is hoped
that this table serves as a convenient reference that helps practitioners avoid redundant searches with Algorithm 1.

Algorithm 1 Pilar(n)
1: require n ≥ 1, γ ∈ (0, 1)

2: λ =

{
(1− γn−1) / (1− γn) if γ < 1

(n− 1) / n if γ = 1

3: best error←∞
4: for n1 = 1, . . . , ⌊n⌋ do
5: n2 ← ⌊n⌋
6: error←∞
7: repeat
8: n2 ← n2 + 1

9: c =

{
(γn − γn1) / (γn2 − γn1) if γ < 1

(n− n1) / (n2 − n1) if γ = 1
10: prev error← error
11: error← ERROR(λ, n1, n2, c)
12: if error < best error then
13: values← (n1, n2, c)
14: best error← error
15: end if
16: until error ≥ prev error
17: end for
18: return values

19: function ERROR(λ, n1, n2, c)

20: Let hi =


γi if i < n1

cγi else if i < n2

0 else
21: return maxi≥0

∣∣hi − (γλ)i
∣∣

22: end function
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E. Experiment Setup and Additional Results
Our DQN experiment procedure closely matches that of Young & Tian (2019). The only differences in our methodology
are the mean-squared loss (rather than Huber loss), the Adam optimizer (Kingma & Ba, 2015), and multistep returns.
MinAtar represents states as 10 × 10 × 7 binary images. The agents process these with a convolutional network; the first
layer is a 16-filter 3 × 3 convolutional layer, the output of which is flattened and then followed by a dense layer with 128
units. Both layers use ReLU activations.

The agents were trained for 5 million time steps each. They executed a random policy for the first 5k time steps to
prepopulate the replay buffer (capacity: 100k transitions), and then switched to an ϵ-greedy policy for the remainder of
training, with ϵ annealed linearly from 1 to 0.1 over the next 100k steps. Every step, the main network was updated using a
minibatch of 32 return estimates to minimize the loss in Section 5. The target network’s parameters were copied from the
main network every 1k time steps.

To obtain the n-step returns, the replay buffer is modified to return a minibatch of sequences of n + 1 experiences for
each return estimate (instead of the usual two experiences for DQN). The return is computed by summing the first n
rewards and then adding the value-function bootstrap from the final experience, with discounting if γ < 1. If the episode
terminates at any point within this trajectory, then the return is truncated and no bootstrapping is necessary, since the value
of a terminal state is defined to be zero. For Pilars, the idea is the same, but the trajectories must have length n2 + 1 to
accommodate the lengths of both n-step returns. The two returns are computed as above, and then combined by averaging
them: (1− c)G(n1) + cG(n2).

We show the learning curves for each return estimator using its best step size in Figure 6, where the step size was chosen
from {10−5, 3×10−5, 10−4, 3×10−4, 10−3}. We observe that Pilars perform no worse than n-step returns in the MinAtar
domain, and sometimes significantly better. The relative improvement between Pilars and n-step returns tends to widen for
n = 5, suggesting that Pilars are better at tolerating the higher variance in this setting.

In Figure 7, we also show similar learning curves for the PPO experiments. Other than the return estimators themselves, we
use the default hyperparameters from the CleanRL implementation, which are similar to those of Schulman et al. (2017).
The network architectures for the actor and critic are 2-layer, 64-unit dense networks with tanh activations.
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Figure 6. Learning curves for DQN with n-step returns and Pilars in five MinAtar games.
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Figure 7. Learning curves for PPO with n-step returns and λ-returns in three MuJoCo environments.
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