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ABSTRACT

Diffusion models have emerged as powerful tools for solving inverse problems
due to their exceptional ability to model complex prior distributions. However,
existing methods predominantly assume known forward operators (i.e., non-blind),
limiting their applicability in practical settings where acquiring such operators
is costly. Additionally, many current approaches rely on pixel-space diffusion
models, leaving the potential of more powerful latent diffusion models (LDMs)
underexplored. In this paper, we introduce LatentDEM, an innovative technique
that addresses more challenging blind inverse problems using latent diffusion priors.
At the core of our method is solving blind inverse problems within an iterative
Expectation-Maximization (EM) framework: (1) the E-step recovers clean images
from corrupted observations using LDM priors and a known forward model, and
(2) the M-step estimates the forward operator based on the recovered images.
Additionally, we propose two novel optimization techniques tailored for LDM
priors and EM frameworks, yielding more accurate and efficient blind inversion
results. As a general framework, LatentDEM supports both linear and non-linear
inverse problems. Beyond common 2D image restoration tasks, it enables new
capabilities in non-linear 3D inverse rendering problems. We validate LatentDEM’s
performance on representative 2D blind deblurring and 3D pose-free sparse-view
reconstruction tasks, demonstrating its superior efficacy over prior arts.

1 INTRODUCTION

Inverse problems aim to recover underlying signals x from partial or corrupted observations y
generated by a forward operatorAϕ(·). Such problems are prevalent in computer vision and graphics,
encompassing a variety of tasks ranging from 2D image restoration(denoising, deblurring, and
inpainting (Bertero et al., 2021; Bertalmio et al., 2000)) to 3D reconstruction(CT, NLOS, inverse
rendering (Marschner, 1998; Mait et al., 2018; Faccio et al., 2020)), etc. Typically, inverse problem
solvers assume the forward modelA and its physical parameters ϕ are known (i.e., non-blind) (Schuler
et al., 2013). However, acquiring accurate forward models is often challenging or impractical in
real-world settings. This necessitates solving blind inverse problems, where both the hidden signals
x and the forward model parameters ϕ must be jointly estimated.

Being heavily ill-posed, inverse problems largely rely on data priors in their computation. Traditional
supervised learning approaches train an end-to-end neural network to map observations directly
to hidden images (y → x) (Li et al., 2020; Jin et al., 2017; McCann et al., 2017). Recently,
diffusion models (DMs) (Ho et al., 2020; Song et al., 2020; Sohl-Dickstein et al., 2015) have emerged
as powerful inverse problem solvers due to their exceptional ability to model the complex data
distribution p(x) of underlying signals x. DMs approximate p(x) by learning the distribution’s score
function ∇xt

log pt(xt) (Song & Ermon, 2019), allowing data-driven priors to be integrated into
Bayesian inverse problem solvers (e.g., diffusion posterior sampling (Chung et al., 2022b)). Later,
latent diffusion models (LDMs) have evolved as a new foundational model standard (Rombach et al.,
2022) by projecting signals into a lower-dimensional latent space z and performing diffusion there.
This strategy mitigates the curse of dimensionality typical in pixel-space DMs and demonstrates
superior capability, flexibility, and efficiency in modeling complex, high-dimensional distributions,
such as those of videos, audio, and 3D objects (Rombach et al., 2022; Wang et al., 2023; Stan et al.,
2023; Blattmann et al., 2023).

Although both DM-based and LDM-based solvers have demonstrated impressive posterior sampling
performance in diverse computational imaging inverse problems, existing methods predominantly fo-
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Figure 1: We apply our method on two representative blind inverse problems: 2D Blind Deblurring
and Pose-free Spare-view 3D Reconsturction. Notably, in 2D task, our method achieves more
accurate image recovery and kernel estimation over BlindDPS Chung et al. (2022a), while in 3D task
we successfully reconstruct consistent novel view images from unposed input views.

cus on non-blind settings (i.e., optimizing images x with known forward model parameters ϕ) (Chung
et al., 2022b; Rout et al., 2024; Song et al., 2023). Blind inversion poses more challenges since
jointly solving x and ϕ involves non-convex optimization, often leading to instabilities. While
recent advances have explored the feasibility of solving blind inverse problems using pixel-based
DMs (Laroche et al., 2024; Chung et al., 2022a), these methods suffer from computational inefficien-
cies and limited capability in modeling complex image priors, rendering them unsuitable for more
challenging, high-dimensional blind inversion tasks like 3D inverse rendering.

In this paper, we introduce LatentDEM, a novel approach that solves blind inverse problems using
powerful LDM priors. The core concept of LatentDEM involves a variational EM framework that
alternates between reconstructing underlying images x through latent diffusion posterior sampling
(E-step) and estimating forward model parameters ϕ using the reconstructed images (M-step). We
further design an annealing optimization strategy to enhance the stability of the vulnerable latent
space optimization, as well as a skip-gradient method to accelerate the training process. Consequently,
LatentDEM allows us to leverage the capabilities of pre-trained foundational diffusion models to
effectively solve a wide range of blind 2D and 3D inverse problems.

To the best of our knowledge, LatentDEM is the first method that incorporates powerful LDM
priors (Rombach et al., 2022) in the blind inverse problems. We first validate our method with Stable
Diffusion (Rombach et al., 2022) priors and perform the representative 2D blind motion deblurring
task, where we showcase superior imaging quality and efficiency over prior arts. LatentDEM further
demonstrates new capabilities in more challenging non-linear 3D inverse rendering problems. Given
a set of unposed sparse-view input images, we apply Zero123 priors (Liu et al., 2023b) to synthesize
the corresponding novel view images, supporting pose-free, sparse-view 3D reconstruction. Our
results exhibit more 3D view consistency and achieve new state-of-the-art novel view synthesis
performance.

2 RELATED WORK

Inverse Problems. The goal of general inverse problems is to recover signals x ∈ RD from partial
observations y ∈ RM :

y = Aϕ (x) + n, (1)

where A, ϕ and n ∼ N (0, σ2I) represent the forward operator, its parameters, and the observa-
tion noise, respectively. The signal x can be either solved by supervised learning approaches (Li
et al., 2020; Jin et al., 2017; McCann et al., 2017), or recovered within the Bayesian framework
to maximize the posterior: p(x|y) ∝ p(x)p(y|x), where data priors p(x) are of vital importance.
Traditional methods use handcrafted priors such as sparsity or total variation (TV) (Kuramochi et al.,
2018; Bouman & Sauer, 1993). However, these priors cannot capture the complex natural image
distributions, limiting the solvers’ ability to produce high-quality reconstructions (Danielyan et al.,
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2011; Ulyanov et al., 2018; Candes & Romberg, 2007). Recent advances in diffusion models (DMs),
particularly latent diffusion models (LDMs), have made them attractive for inverse problems due to
their powerful data prior modeling capabilities (Chung et al., 2022b; Rout et al., 2024; Song et al.,
2023). In this paper, we focus on solving blind inverse problems using latent diffusion models (Liu
et al., 2023b; Rombach et al., 2022).

Diffusion Models for 2D Inverse Problems. DMs have been applied to a wide range of 2D inverse
problems, including natural image deblurring, denoising, super-resolution and fusion tasks (Wang
et al., 2022; Chung et al., 2022b;c;d; Feng & Bouman, 2023; Zhao et al., 2023), as well as medical
and astronomy image enhancement (Song et al., 2021a; Chung & Ye, 2022; Wang et al., 2022).
Diffusion Posterior Sampling (DPS) pioneered the use of DMs as strong data priors to solve non-blind
2D inverse problems in a maximum-a-posteriori (MAP) manner (Chung et al., 2022b;c;d). Later
works (Rout et al., 2024; Song et al., 2023) evolved DPS with Latent Diffusion Model (LDM)
priors, demonstrating improved performance due to better priors. While these methods (Chung
et al., 2022b; Rout et al., 2024; Song et al., 2023) all address non-blind problems, BlindDPS (Chung
et al., 2022a) extends DPS to the blind setting by modeling diffusion priors of both data and forward
model parameters. Similar to our approach, FastEM (Laroche et al., 2024) proposes to address blind
inversion within an Expectation-Maximization (EM) framework. However, Chung et al. (2022a);
Laroche et al. (2024) remain limited to pixel-based DMs, as the instability of LDMs makes the
optimization even harder. In this paper, we investigate how to integrate more powerful LDM priors
with EM frameworks in blind inversion tasks and demonstrate new state-of-the-art results.

Diffusion Models for 3D Inverse Problems. 3D reconstruction from 2D images, also known as
inverse graphics, has long been a significant goal in the fields of vision and graphics (Loper & Black,
2014; Chen et al., 2019; Mildenhall et al., 2020). Recently, diffusion models are also largely involved
in tackling this problem (Poole et al., 2022; Lin et al., 2023; Müller et al., 2023; Shi et al., 2023b;
Liu et al., 2023b). In this context, the underlying signals x and the observation y represent 3D data
and 2D images, while A denotes the forward rendering process and ϕ are the camera parameters.
Although the most straightforward way is to directly model 3D distributions (Müller et al., 2023;
Zeng et al., 2022), this way is not feasible due to the scarcity of 3D data (Chang et al., 2015; Deitke
et al., 2023). Alternatively, recent works focus on utilizing 2D diffusion priors to recover 3D scenes
with SDS loss (Poole et al., 2022) but suffer from view inconsistency issues (Lin et al., 2023; Tang
et al., 2023; Wang et al., 2024; Chen et al., 2023).

To mitigate this problem, a branch of work fine-tunes Latent Diffusion Models (LDMs) with multi-
view images, transforming LDMs into conditional renderers (Liu et al., 2023b; Shi et al., 2023b;
Tewari et al., 2023). Given an image and its camera parameter, they predict the corresponding
novel views of the same 3D object. In other words, these models can also be utilized to provide 3D
data priors. However, existing methods typically operate in a feed-forward fashion, still leading to
accumulated inconsistency during novel view synthesis and requiring further correction designs (Shi
et al., 2023a; Liu et al., 2024; 2023a). In contrast, LatentDEM treats the sparse-view 3D reconstruc-
tion (Jiang et al., 2023) task as a blind inverse problem. Given sparse-view input images without
knowing their poses, we apply Zero123 (Liu et al., 2023b) priors to jointly optimize their relative cam-
era parameters and synthesize new views. Our method utilizes information of all input views (Song
et al., 2023) and produces significantly better view-consistent objects compared to feed-forward
baselines (Liu et al., 2023b; Jiang et al., 2023).

3 PRELIMINARY

Diffusion Models and Latent Diffusion Models. DMs (Ho et al., 2020; Song et al., 2021b;
Sohl-Dickstein et al., 2015) model data distribution by learning the time-dependent score function
∇xt log pt(xt) with a parameterized neural networks sθ. In the forward step, it progressively injects
noise into data through a forward-time SDE; while in the inverse step, it generates data from noise
through a reverse-time SDE (Song et al., 2021b):

Forward-time SDE: dx = −βt

2
xdt+

√
βtdw,

Reverse-time SDE: dx =

[
−βt

2
x− βt∇xt

log pt(xt)

]
dt+

√
βtdw,

(2)

where βt ∈ (0, 1) is the noise schedule, t ∈ [0, T ], w and w are the standard Wiener process running
forward and backward in time, respectively. This equation is also called variance-preserving SDE (VP-
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Figure 2: Overview of LatentDEM. Top: One EM iteration. Given currently estimated data and
kernel, in the E-step, we draw new samples with LDM priors with the proposed annealing technique.
In the M-step, we apply the maximum-a-posterior (MAP) algorithm to update forward parameters.
Bottom: Evolution of the optimized signals and forward parameters.

SDE) that equals DDPM (Ho et al., 2020). Through this paper, we define αt := 1−βt, ᾱt :=
∏t

i=1 αi

following Ho et al. (2020), as adopted in Algorithm 1, 2.

A significant drawback of pixel-based DMs is that they require substantial computational resources
and a large volume of training data. To reduce the computation overhead, a generalized family of
Latent Diffusion Models (LDMs) is proposed (Rombach et al., 2022; Blattmann et al., 2023). LDMs
embed data into a compressed latent space through z = E(x), model the diffusion process of z for
efficiency and flexibility, and decode the latent code z back to the pixel space through x = D(z),
where E : RD → RN and D : RN → RD are the encoder and decoder, respectively. LDMs fuel
state-of-the-art foundation models such as Stable Diffusion (Rombach et al., 2022), which can serve
as a powerful cross-domain prior. The versatility of LDMs makes them promising solvers for inverse
problems. However, such an efficient paradigm is a double-edged sword, as LDMs are notorious for
their instability due to the vulnerability of latent space (Rout et al., 2024; Chung et al., 2023).

Diffusion Models for Inverse Problems. A common approach to apply DM priors in non-blind
inverse problems is to replace unconditional score function ∇xt log pt(xt) with conditional score
function ∇xt log pt(xt|y) and apply posterior sampling (Song et al., 2021a; Chung et al., 2022b).
With the Bayesian rules, we have

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt) (3)

≈ sθ(xt, t) + log p(y|x̂0(xt)). (4)

While ∇xt log pt(xt)(Eq. 3 middle) can be approximated by diffusion models sθ(xt, t)(Eq. 4
left). However, ∇xt

log pt(y|xt)(Eq. 3 right) is not tractable as the likelihood pt(y|xt) is not
known when t ̸= 0. Following DPS (Chung et al., 2022b), we also assume pt(y|xt) =∫
x0

p(y|x0)p(x0|xt)dx0 ≈ p(y|x̂0(xt)), where x̂0(xt) = E [x0|xt], which is computational
efficient and yields reasonable results. We apply the same trick (Rout et al., 2024) for the latent space
sampling as well.

Expectation-Maximum Algorithm. The Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; Gao et al., 2021) is an iterative optimization method used to estimate the parameters
ϕ of the statistical models that involve underlying variables x given the observations y. It aims to
maximize the data likelihood log pϕ(y). Through Jensen’s inequality, this MLE can be simplified as
maximizing its lower bound, equivalent to minimizing the Kullback-Leibler (KL) divergence with
respect to the model parameters ϕ and an auxiliary distribution q(x|y) (Murphy, 2023):

log pϕ(y) = log

∫
q(x|y)pϕ(y,x)

q(x|y) dx ≥
∫

q(x|y) log pϕ(y,x)

q(x|y) dx = −DKL(q(x|y) ∥ pϕ(y,x))

= −
∫

q(x|y) log q(x|y)
pϕ(y|x)p(x)

dx = −Eq(x|y) [log q(x|y)− log pϕ(y|x)− log p(x)] = L(q, ϕ),

(5)
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where pϕ(x,y) denotes the true joint distribution. To solve this optimization problem, the EM
algorithm iterates between optimizing q(x|y) and ϕ, known as the Expectation step (E-step) and the
Maximization step (M-step), respectively. In the E-step, q(x|y) is optimized if and only if the equality
holds in Eq. 5, which, according to the Jensen’s inequality, require x to be sampled from pϕ(x|y),
assuming the model parameters ϕ are known. In the M-step, ϕ is optimized using the posterior
samples obtained from the E-step. Through this iterative approach, the EM algorithm converges
towards a local maximum of the observed data log-likelihood, making it a versatile tool for estimation
problems with underlying variables. The step-by-step derivation is provided in Appendix G.

4 METHOD

We now describe how to solve blind inverse problems using latent diffusion priors. Our method is
formulated within a variational Expectation-Maximization (EM) framework, where the signals and
forward operators are iteratively optimized through EM iterations. In the E-step (Sec.4.1), we leverage
latent diffusion priors to draw signal posterior samples, where we introduce an annealing technique
to stabilize the optimization process. In the M-step (Sec.4.2), we estimate forward operators in a
maximum-a-posteriori (MAP) manner, and adopt a skip-gradient method to improve the efficiency.
In Sec.4.3, we show how our framework can be applied to solve representative problems such as 2D
blind deblurring and 3D pose-free sparse-view reconstruction.

4.1 E-STEP: POSTERIOR SAMPLING VIA LATENT DIFFUSION

The goal of LatentDEM’s E-step is to solve for the posterior distribution pϕ(x|y) by leveraging the
reverse time SDE in Eq. 2. To utilize the latent priors, inspired by PSLD (Rout et al., 2024), we
conduct posterior sampling in the latent space by defining a conditional latent diffusion process:

∇zt log pt(zt|y) = ∇zt log pt(zt) +∇zt log pt(y|zt) (6)
≈ s∗θ(zt, t) +∇zt

log pϕ(y|D∗ (E[z0|zt])) (7)

= s∗θ(zt, t)−
1

2σ2
∇zt
∥y −Aϕ (D∗ (E[z0|zt]))∥22 (8)

where s∗θ(zt, t) is the pre-trained LDM that approximates the latent score function∇zt
log pt(zt),

Aϕ is the parameterized forward model, σ is the standard deviation of the additive observation noise,
D∗ is the pre-trained latent decoder, and E[z0|zt] can be estimated through a reverse time SDE
from zt (Chung et al., 2022b). However, Eq. (8) works only when Aϕ is known, i.e., non-blind
settings (Rout et al., 2024). In the context of blind inversion, Aϕ is randomly initialized so that
significant modeling errors perturb the optimization of zt in the latent space. Consequently, there are
significant artifacts when directly applying Eq. 8. We have to introduce an annealing technique to
stabilize the training process:

Technique 1 (Annealing consistency) Suppose that the estimated forward operatorAϕ is optimized
from coarse to fine in the iterations, we have that:

∇zt
log pt(zt|y) ≈ s∗θ(zt, t)−

1

2ζtσ2
∇zt
∥y −Aϕ (D∗ (E[z0|zt]))∥22 , (9)

where ζt is a time-dependent factor that decreases over time, e.g., it anneals linearly from 10 at
t = 1000 to 1 at t = 600 and then holds.

We refer to this scaling technique as Annealing consistency. Intuitively, Aϕ is randomly initialized at
the beginning, which cannot provide correct gradient directions. Therefore, we reduce its influence on
the evolution of zt with a large factor (ζt = 10). As sampling progresses, Aϕ gradually aligns with
the underlying true forward operator. We then anneal the factor (ζt = 1) to enforce data consistency.
We find that this annealing technique is critical for blind inversion with latent priors; without it, the
optimized signal x consistently exhibits severe artifacts, as shown in Figure 5. Further theoretical
explanations can be found in Appendix B.

4.2 M-STEP: FORWARD OPERATOR ESTIMATION

The goal of LatentDEM’s M-step is to update the forward operator parameters ϕ with the estimated
samples x̂0 from the E-step. This can be achieved by solving a maximum-a-posterior (MAP)

5
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Algorithm 1 LatentDEM for Blind Deblurring

Require: T,y, {ζi}Ti=1, {ᾱt}Ti=1, {σ̃t}Ti=1, σ, δ, λ, E∗,D∗, s∗θ,K, ST

zT ∼ N (0, I)
for t = T to 0 do
s← s∗θ(zt, t)
ẑ0 ← 1√

ᾱt

(
zt +

√
1− ᾱts

)
,

ϵ ∼ N (0, I)

zt−1 ←
√
ᾱt−1ẑ0 +

√
1− ᾱt−1 − σ̃2

t s+ σ̃tϵ
if (t > ST and t | K) or t < ST then

x̂0 = D∗(ẑ0) ▷ Skip gradient
Aϕ(t−1) = M-step(y, x̂0,Aϕ(t) , λ, δ)

zt−1 ← zt−1 − 1
2ζtσ2∇zt

∥y −Aϕ(t−1)(x̂0)∥22 ▷ Annealing consistency
end if

end for
return x̂0, Âϕ

estimation problem:
ϕ∗ = argmax

ϕ
Ex̂0

[log pϕ(y|x̂0) + log p(ϕ)] = argmin
ϕ

Ex̂0

[
||y −Aϕ(x̂0)||22 +R(ϕ)

]
, (10)

where p(ϕ) is the prior distribution of ϕ, x̂0 = D∗(ẑ0) = D∗(E [z0|zt]). R(ϕ) is a regularizer
equivalent to log p(ϕ), including sparsity, patch-based priors, plug-and-play denoisers (Pan et al.,
2016; Sun et al., 2013), etc. This MAP estimation problem can be solved using either gradient-
based optimization (Laroche et al., 2024) or neural networks (Chung et al., 2022a). Compared to
BlindDPS (Chung et al., 2022a), which jointly optimizes x and ϕ using two diffusion processes, our
method leverages the properties of EM (Gao et al., 2021), resulting in faster convergence and better
performance.

Different from pixel-space diffusion models, latent diffusion models require encoding and decoding
operations that map between latent space and pixel space (i.e., x = D∗(z) and z = E∗(x)),
which takes primary time consumption. Therefore, we further design an acceleration method
that “skips” these operations to improve the efficiency of LatentDEM. Specifically, in the whole
EM iteration, the E-step comprises two sub-steps: prior-based diffusion (∇zt log pt(zt)) and data
likelihood-based diffusion (∇zt log pt(y|zt)). (See Eq. 6 for the two terms). The former happens
in latent space(∇zt

log pt(zt)) while the latter happens in pixel space that requires encoder-decoder
operations. Moreover, the M-step also involves the encoder-decoder operations. We propose to skip
these operations to accelerate the training process:

Technique 2 (Skip gradient) In early stages (t > ST ), performing K times E-step in latent space
with∇zt log pt(zt) only, then perform the whole EM-step in both latent space and image space.

We refer to this new technique as Skip gradient. We find it largely accelerates the training process
without hurting the performance for two reasons. First, similar to the annealing case, in the early
stages of the diffusion posterior sampling process, the sampled data x̂0 and forward parameters ϕ are
far from the true value, making frequent LDM encoding and decoding unnecessary, as they won’t
provide useful gradient signals. Second, while the skip-gradient steps rely only on unconditional
latent diffusion (∇zt log pt(zt)), the optimization still partially follows the previous conditional
sampling trajectory, leading to meaningful convergence, as also noted in (Song et al., 2023).

We typically set ST = 500 and K = 8, which means the total skipped number M = (T − ST )(1−
1/K) = (1000 − 500)(1 − 1/8) ≈ 437 full gradient computation steps. We show it significantly
reduces computation overhead while keeping PSNR values approximate to the non-skip version, as
demonstrated in Table 2. Our full algorithm is described in Algorithm 1.

4.3 BLINDING INVERSION TASKS

Our framework incorporates powerful LDM priors within the EM framework, which enables solving
both linear and non-linear inverse problems. We showcase two representative tasks: the 2D blind
debluring task, and the high-dimension, non-linear 3D blind inverse rendering problem.

6
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2D Blind Deblurring. In the blind deblurring task, we aim to jointly estimate the clean image x
and the blurring kernel ϕ given a blurry observation y = Aϕ(x) = ϕ ∗ x. The LatentDEM approach
proceeds as follows:

• E-step: Assuming a known blurring kernel ϕ, sample the latent code zt and the corresponding
image x̂

(t)
0 = D(ẑ0(zt)) based on Eq. 8. To enhance training stability, we adopt the "gluing"

regularization (Rout et al., 2024) to address the non-injective nature of the latent-to-pixel space
mapping. More discussions about this regularization are shown in Appendix C.

• M-step: Estimate blur kernels using Half-Quadratic Splitting (HQS) optimization (Geman & Yang,
1995; Laroche et al., 2024):

Z(t−1) = F−1(
F(y)

∑n
i=1 F(x̂

(t)
0 )+nδσ2F(ϕ(t))∑n

i=1 F(x̂
(t)
0 )F(x̂

(t)
0 )+nδσ2

), ϕ(t−1) = D√
λ/δ

(Z(t−1)), (11)

where Z is an intermediate variable, D is a Plug-and-Play (PnP) neural denoiser (Laroche et al.,
2024; Zhang et al., 2017), F and F−1 are forward and inverse Fourier transforms, σ defines the
noise level of measurements, and λ, δ are tunable hyperparameters (Zhang et al., 2021). The
superscripts (t−1) and (t) index diffusion steps, and n is the number of samples. More details on
implementation are provided in Appendix C.

Pose-free Sparse-view 3D Reconstruction. We also demonstrate for the first time that LDM-based
blind inversion can be applied to sparse-view, unposed 3D reconstruction, a challenging task that
jointly reconstructs the 3D object and camera parameters. Zero123, a conditional LDM, is utilized
to approximate the 3D diffusion prior in our task. Given an input image y and camera parameters
ϕ = (R, T ) at a target view, Zero123 generates a novel-view image x̂

(t)
0 = D(ẑ0), ẑ0 = E[z0|zt]

through a conditional latent diffusion process ∇zt log pt(zt|y, ϕ). However, the current Zero123 is
limited to view synthesis and 3D generation from a single image.

By integrating Zero123 into LatentDEM, we can reconstruct a view-consistent 3D object from
multiple unposed images. Without loss of generality, we illustrate this with two images y1 and y2
without knowing their relative pose. The LatentDEM approach becomes:

• E-step: Assuming known camera parameters ϕ1 and ϕ2, aggregate information through a joint
latent diffusion process∇zt

log pt(zt|y1, ϕ1,y2, ϕ2) to create view-consistent latent codes zt and
synthesized image x̂

(t)
0 .

• M-step: Estimate camera parameters based on x̂
(t)
0 by aligning unposed images to synthetic and

reference views via gradient-based optimization:

ϕ
(t−1)
2 = ϕ

(t)
2 −λ∇ϕ

(t)
2
∥zt(y2, ϕ

(t)
2 )−zt(x̂

(t)
0 ,0)∥22−δ∇ϕ

(t)
2
∥zt(y2, ϕ

(t)
2 )−zt(y1, ϕ1)∥22, (12)

where zt(·, ·) represents the time-dependent latent features of an image after specified camera
transformation, 0 indicates no transformation, and λ, δ are tunable hyperparameters. Note only ϕ2

is optimized, as ϕ1 defines the reference view.

Through the synthesis of multiple random novel views from input images and subsequent volumetric
rendering, we finally generate a comprehensive 3D representation of the object. This approach
extends to arbitrary n unposed images, where n-1 camera poses should be estimated. More views
yield better 3D generation/reconstruction performance. It outperforms state-of-the-art pose-free
sparse-view 3D baselines (Jiang et al., 2023) and generates well-aligned images for detailed 3D
modeling (Liu et al., 2024). Further details, including the derivation of the view-consistent diffusion
process from traditional Zero123 and 3D reconstruction results from various numbers of images, are
provided in Appendix D.

5 EXPERIMENTS

In this section, we first apply our method on the 2D blind deblurring task in Sec. 5.1. We then
demonstrate our method on pose-free, sparse-view 3D reconstruction in Sec. 5.2. Lastly, we perform
extensive ablation studies to demonstrate the proposed techniques. Additional implementation details
and results can be found in Appendix C, D and E.
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Figure 3: Blind motion deblurring results. Row (1-2): ImageNet. Row (3-4): FFHQ. Our method
successfully recovers clean images and accurate blur kernels, consistently outperforming all the
baselines, even under challenging cases where the observations are severely degraded.

5.1 2D BLIND MOTION DEBLURRING

Dataset. We evaluate our method on the images from the widely used ImageNet (Deng et al.,
2009) and FFHQ (Karras et al., 2019). We randomly choose 64 validation images from each dataset,
where the resolutions are both 256 × 256. We chose to use the state-of-the-art Stable Diffusion
v-1.5 model (Rombach et al., 2022) as our cross-domain prior. For quantitative comparison, we
evaluate the image quality with three metrics: peak signal-to-noise-ratio (PSNR), structural similarity
index (SSIM), and learned perceptual image patch similarity (LPIPS). We assess the estimated
kernel via mean-squared error (MSE), and maximum of normalized convolution (MNC) (Hu & Yang,
2012). We also provide a comparison with SOTA self-supervised methods on an additional standard
benchmark (Lai et al., 2016), which is shown in Appendix E.

Table 1: Quantitative evaluation (PSNR, SSIM, LPIPS) of blind deblurring task and (MSE, MNC) of
kernel estimation on ImageNet and FFHQ. Bold: Best, under: second best.

Method

ImageNet (256× 256) FFHQ (256× 256)
Image Kernel Image Kernel

PSNR ↑SSIM ↑LPIPS ↓MSE ↓MNC ↑PSNR ↑SSIM ↑LPIPS ↓MSE ↓MNC ↑
MPRNet 19.85 0.433 0.470 - - 21.60 0.517 0.399 - -

Self-Deblur 16.74 0.232 0.493 0.016 0.036 18.84 0.328 0.493 0.017 0.045
BlindDPS 17.31 0.472 0.309 0.036 0.274 22.58 0.583 0.245 0.048 0.270
FastEM 17.36 0.422 0.377 0.440 0.266 17.46 0.554 0.169 0.035 0.399
Ours 19.35 0.496 0.256 0.010 0.441 22.65 0.653 0.167 0.009 0.459

Results. We provide motion deblurring results in Figure 3 and Table 1. Our method is compared
with two state-of-the-art methods that directly apply pixel-space diffusion models for blind deblurring:
BlindDPS (Chung et al., 2022a) and FastEM (Laroche et al., 2024), and three widely applied methods:
MPRNet (Zamir et al., 2021), DeblurGAN V2 (Kupyn et al., 2019), and Self-Deblur (Ren et al., 2020).
Several interesting observations can be found here. First, LatentDEM outperforms all the baselines
qualitatively. As shown in Fig. 3, in challenging cases with severe motion blur and aggressive image
degradation, previous methods are unable to accurately estimate the kernel, while the proposed
method enables accurate kernel estimation and high-quality image restoration. We attribute this to
the fact that the powerful LDM priors provide better guidance than pixel-space DM priors in the
posterior sampling, together with the deliberately designed EM optimization policies. Moreover, as
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Figure 4: Pose-free sparse-view 3D reconstruction results. Our method successfully synthesizes
consistent novel view images given two sparse input views. In contrast, Zero123 (Liu et al., 2023b)
produces images missing the engine handle that are not consistent with the input views, while
LEAP (Jiang et al., 2023) fails to generate photo-realistic images.

Observation No Annealing W. Annealing GT

Figure 5: Effectiveness of our annealed consistency technique. Left: blur kernel accuracy curve
(green) on 10 examples (std are represented by shadow). It indicates that the kernel is very wrong
at the beginning but becomes meaningful when t < 600, which corresponds to the annealing factor
curve (red). Right: we further show that simply applying LDM priors in blind inversion produces
images with severe artifacts due to the fragile latent space, while the annealing technique stabilizes
the optimization and generates much better results. Gluing term is used in all experiments.

shown in Table 1, LatentDEM also achieves the best scores in most metric evaluations, especially for
kernel estimation, which demonstrates the efficacy of our EM framework. Interestingly, MPRNet
shows higher PSNR in ImageNet dataset but visually it produces smooth and blurry results, which
indicates the quality of deblurring cannot be well-reflected by PSNR. Nevertheless, LatentDEM still
largely outperforms in SSIM and LPIPS metrics. We additionally compared LatentDEM with the
current SOTA self-supervised deblurring method, using datasets from the self-supervised deblurring
benchmark ((Lai et al., 2016)). The results are in Table 4, 5 and Fig. 10. In most cases, LatentDEM
outperforms (Li et al., 2023) without the need for heavy parameter tuning.

5.2 EXPERIMENTS ON POSE-FREE SPARSE-VIEW 3D RECONSTRUCTION

Dataset. We evaluate the pose-free sparse-view 3D reconstruction performance on Objaverse
dataset (Deitke et al., 2023), which contains millions of high-quality 3D objects. We pick up 20
models and for each model, we randomly render two views without knowing their poses. Our goal is
to synthesize novel views and reconstruct the underlying 3D model from the unposed sparse-view
inputs, which is a very challenging task (Jiang et al., 2023) and cannot be easily addressed by
NeRF (Mildenhall et al., 2020) or Gaussian Splatting (Kerbl et al., 2023) that require image poses.

Results. We provide novel view synthesis results in Fig 4. Our model is built on top of Zero123 (Liu
et al., 2023b) priors. Zero123 has demonstrated effectiveness in synthesizing high-quality novel-view
images, but it sometimes fails in creating view-consistent results across different views, as shown
in the first row of Fig. 4. A major reason is that it synthesizes new views from a single input
only and cannot capture the whole information of the 3D object, resulting in hallucinated synthesis.
Instead, our method could easily crack this nut by aggregating the information of all input views and
embedding them together through hard data consistency (Song et al., 2023). We show that multiple
consistent novel view images can be acquired from only two input views. Moreover, our method
doesn’t need to know the poses of images as they can be jointly estimated, which supports the more
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Table 2: Effectiveness of our skip gradient technique. We evaluate different skip gradient schemes
on the blind deblurring task. Compared to the setting without skipping, skipping half steps or even
more steps performs similarly while reducing the running time significantly.

Method
Running Image Kernel

Time PNSR MSE

a FastEM 1min30sec 17.46 0.048
b BlindDPS 1min34sec 22.58 0.035
c No skipping. (ST = 1000,K = 1,M = 0) 6min33sec 23.45 0.011
d Skip-grad. (ST = 500,K = 8,M = 437) 4min17sec 23.44 0.011
e Skip-grad. (ST = 0,K = 8,M = 875) 2min54sec 23.00 0.010
f Skip-grad. (ST = 0,K = 16,M = 937) 1min20sec 22.56 0.010

challenging pose-free, sparse view 3D reconstruction. We compare our method with the current
state-of-the-art pose-free 3D reconstruction baseline, LEAP (Jiang et al., 2023). As shown in the
second row of Fig. 4, while LEAP fails to generate photo-realistic new views, our method could
leverage the powerful Zero123 prior to overcome texture degradation and geometric misalignment,
maintaining fine details like the geometry and the texture of the jacket. Besides, we find that adding
more views significantly improves the fidelity of the 3D reconstruction. The LatentDEM framework
facilitates consistent 3D reconstruction across different images. We provide more results and analysis
in Appendix D.4, D.5, E.

5.3 ABLATION STUDIES

Annealed Consistency. A major problem when using LDMs instead of pixel-based DMs is the
vulnerable latent space optimization. In the context of blind inverse problems, the inaccurate
forward operators at the beginning could make the problem even worse, where the optimal solutions
significantly deviate from the true value and contain strong image artifacts, as demonstrated in Fig. 5
right. To ensure stable optimization, we should set our empirical annealing coefficients(ζt anneals
linearly from 10 at t = 1000 to 1 at t = 600 and then holds) based on the forward modeling errors,
as shown in Fig. 5. This technique show stabilizes the optimization process and produces a more
accurate estimation (Fig. 5 right). We provide more annealing analysis in Appendix B, which explains
why annealing consistency aligns better with the blind inversion problem and brings more stable
optimization, as well as superior performance.

Skip Gradient for Acceleration. We also investigate the influence of the skip-gradient technique,
where we compute the full EM step every K steps while in the middle steps we only run the latent
space diffusion. We validate 4 different groups of hyperparameters and compare their running
times and imaging quality on 2D blind deblurring task (Table 2). We find the running time for
LatentDEM linearly decreases as the number of accelerated steps M increases. In the accelerated
steps, the encoder-decoder inference and gradients are skipped, therefore significantly reducing the
total optimization time. Moreover, though we have skipped a lot of computation burden, due to the
fact that the diffusion tends to follow the previous optimization trajectory, it still results in meaningful
convergence. In an extreme setting (case f) where we skip 900 gradients, our method still outperforms
baselines, as well as achieving the fastest optimization speed.

6 CONCLUSION

In this work, we proposed LatentDEM, a novel method that incorporates powerful latent diffusion
priors for solving blind inverse problems. Our method jointly estimates underlying signals and
forward operator parameters using an EM framework with two carefully designed optimization
techniques, which reveals more accurate and efficient 2D blind debluring performance than prior arts,
as well as demonstrates new capabilities in 3D pose-free sparse-view reconstruction. Its limitation
includes that in 3D tasks it still relies on LDMs fine-tuned with multi-view images. It is interesting to
think about how to combine LatentDEM with SDS loss to directly run 3D inference from purely 2D
diffusion models. The code and project page are available upon request.
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A APPENDIX

We provide an appendix to describe the details of our derivations and algorithms, as well as show
more results. We first provide a theoretical explanation for the annealing consistency technique in
Sec. B. We then provide implementation details of the 2D blind deblurring in Sec. C and the 3D
pose-free, sparse-view reconstruction in Sec. D. Lastly, we report more results in Sec. E.

B THEORETICAL EXPLANATIONS FOR ANNEALING CONSISTENCY

We consider the blind inversion as a time-dependent modeling process and the annealing consistency
technique helps address time-dependent modeling errors. Specifically, we express the image formation
model as:

y = Aϕ(t)(x̂0) + wt + n, wt ∼ N (0, ν2t I), n ∼ N (0, σ2I), (13)

where ϕ(t) represents the estimated forward model parameters at step t, x̂0 = D∗(E(z0|zt)), wt

is the time-dependent modeling noise which is assumed to follow a Gaussian distribution with a
time-dependent standard deviation of νt, and n is the observation noise with a constant standard
deviation of σ. Therefore, following (Chung et al., 2022b) we derive below data likelihood term to
account for both modeling errors and observation noise during the diffusion posterior sampling:

∇zt log pt(y|zt) ≈ −
1

2(ν2t + σ2)
∇xt ∥y −Aϕ (D∗ (E[z0|zt]))∥22 , (14)

where ν2t should gradually decrease from a large value to zero as the estimated model parameters
converge to the ground truth. This is consistent with the proposed technique, where in Eq. 9 ζt linearly
anneals from a large number to a constant. As a result, annealing consistency aligns better with the
blind inversion problem and brings more stable optimization, as well as superior performance.

C IMPLEMENTATION DETAILS OF 2D BLIND DEBLURRING

C.1 E-STEP

Diffusion Posterior Sampling with Gluing Regularization. In the 2D blind deblurring task,
the E-step performs latent diffusion posterior sampling (DPS) to reconstruct the underlying image,
assuming a known blur kernel. The basic latent DPS takes the form as follows:

∇zt log pt(zt|y) ≈ s∗θ(zt, t) +∇ztp (y|D∗ (E [z0|zt])) ,

= s∗θ(zt, t)−
1

2ζtσ2
∇zt ∥y −Aϕ (D∗ (E[z0|zt]))∥22 ,

(15)

which simply transform the equation from pixel-based DPS (Chung et al., 2022b) to the latent space.
However, this basic form always produces severe artifacts or results in reconstructions inconsistent
with the measurements (Song et al., 2023). A fundamental reason is that the decoder is an one-to-
many mapping, where numerous latent codes z0 that represent underlying images can match the
measurements. Computing the gradient of the density specified by Eq. 15 could potentially drive
zt towards multiple different directions. To address this, we employ an additional constraint called
“gluing” (Rout et al., 2024) to properly guide the optimization in the latent space:
∇zt

log p (y|zt) = ∇zt
p (y|D∗ (E [z0|zt]))︸ ︷︷ ︸
DPS vanilla extension

+ γ∇zt ||E [z0|zt]− E∗
(
AT

ϕ(t−1)y +
(
I −AT

ϕ(t−1)Aϕ(t−1)

)
D∗ (E [z0|zt])

)
∥22︸ ︷︷ ︸

“gluing” regularization

,

(16)
where γ is a tunable hyperparameter. The gluing objective (Rout et al., 2024) is critical for LatentDEM
as it constrains the latent code update following each M-step, ensuring that the denoising update, data
fidelity update, and the gluing update point to the same optima. Note that gluing is also involved in
the skip-gradient technique, i.e., we will also ignore it during the skipped steps.
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C.2 M-STEP

The M-step solves the MAP estimation of the blur kernel using the posterior samples x̂0 from the
E-step. This process is expressed by:

ϕ∗ = argmin
ϕ

Ex̂0

[
1

2σ2
||y −Aϕ(x̂0)||22 +R(ϕ)

]
, (17)

where σ2 denotes the noise level of the measurements andR is the regularizer. Common choices of
the regulation term can be l2 or l1 regularizations on top of the physical constraints on the blur kernel
(non-negative values that add up to one). Despite being quite efficient when the blurry image does not
have noise, they generally fail to provide high-quality results when the noise level increases (Laroche
et al., 2024). Therefore, we decide to leverage a Plug-and-Play (PnP) denoiser, Dσd

, as the regularizer.
We find that training the denoiser on a dataset of blur kernels with various noise levels (σd) can lead
to efficient and robust kernel estimation. Now with this PnP denoiser as the regularizer, we can solve
Eq. 17 with the Half-Quadratic Splitting (HQS) optimization scheme:

Zi+1 = argmin
Z

[
1

2σ2
∥AZ(x̂0)− y∥22 +

δ

2
∥Z− ϕi∥22

]
, (18)

ϕi+1 = D√
λ/δ

(Zi+1) = argmin
ϕ

[
λR(ϕ) + δ

2
∥ϕ− Zi+1∥22

]
, (19)

where Z is a intermediate variable, Dσd
is a PnP neural denoiser (Laroche et al., 2024; Zhang et al.,

2017), σ defines the noise level of measurements, and λ, β are tunable hyperparameters (Zhang
et al., 2021). The subscripts i and i+1 index iterations of Eq. 18 and Eq. 19 in one M-step. For the
deconvolution problem, Eq 18 can easily be solved in the Fourier domain and Eq 19 corresponds to
the regularization step. It corresponds to the MAP estimator of a Gaussian denoising problem on
the variable Zi+1. The main idea behind the PnP regularization is to replace this regularization step
with a pre-trained denoiser. This substitution can be done becaue of the close relationship between
the MAP and the MMSE estimator of a Gaussian denoising problem. In the end, the M-step can be
expressed by Eq 11.

Plug-and-Play Denoiser. We train a Plug-and-Play (PnP) denoiser to serve as the kernel regularizer
in the M-step. For the architecture of the denoiser, we use a simple DnCNN (Zhang et al., 2017) with
5 blocks and 32 channels. In addition to the noisy kernel, we also take the noise level map as an extra
channel and feed it to the network to control the denoising intensity. The settings are similar to one
of the baseline methods, FastEM (Laroche et al., 2024). In the data preparation process, we generate
60k motion deblur kernels with random intensity and add random Gaussian noise to them. The noisy
level map is a 2D matrix filled with the variance and is concatenated to the kernel as an additional
channel as input to the network. We train the network for 5,000 epochs by denoising the corrupted
kernel and use the MSE loss. All the training is performed on a NVIDIA A100 which lasts for seven
hours. We also try different network architectures like FFDNet but find the DnCNN is sufficient to
tackle our task and it’s very easy to train.

Hyperparameters. For the motion deblur task, we leverage the codebase of PSLD (Rout et al.,
2024), which is based on Stable Diffusion-V1.5. Besides the hyperparameters of the annealing
and skip-gradient technique, we find it critical to choose the proper parameters for the gluing and
M-step. Improper parameters result in strong artifacts. In our experiments, we find the default
hyperparameters in (Rout et al., 2024) won’t work, potentially due to the more fragile latent space.
The hyperparameters in our M-step are λ = 1 and δ = 5e6, and We iterate Eq. 11 20 times to balance
solution convergence and computational efficiency.

D IMPLEMENTATION DETAILS OF POSE-FREE SPARSE-VIEW 3D
RECONSTRUCTION

D.1 BASICS

Problem Formulation. The pose-free, sparse-view 3D reconstruction problem aims to reconstruct
a 3D object from multiple unposed images. This task can be formulated as a blind inversion problem
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A. Coordinate System & Camera Model

Figure 11: Spherical Coordinate System [57].
We use a spherical coordinate system to represent cam-

era locations and their relative transformations. As shown
in Figure 11, assuming the center of the object is the ori-
gin of the coordinate system, we can use θ, φ, and r to
represent the polar angle, azimuth angle, and radius (dis-
tance away from the center) respectively. For the creation
of the dataset, we normalize all assets to be contained inside
the XYZ unit cube [−0.5, 0.5]3. Then, we sample camera
viewpoints such that θ ∈ [0, π], φ ∈ [0, 2π] uniformly cover
the unit sphere, and r is sampled uniformly in the interval
[1.5, 2.2]. During training, when two images from differ-
ent viewpoints are sampled, let their camera locations be
(θ1, φ1, r1) and (θ2, φ2, r2). We denote their relative cam-
era transformation as (θ2 − θ1, φ2 − φ1, r2 − r1). Since
the camera is always pointed at the center of the coordi-
nate system, the extrinsics matrices are uniquely defined by
the location of the camera in a spherical coordinate system.
We assume the horizontal field of view of the camera to be
49.1◦, and follow a pinhole camera model.

Due to the incontinuity of the azimuth angle, we encode
it with φ 7→ [sin(φ), cos(φ)]. Subsequently, at both train-
ing and inference time, four values representing the relative
camera viewpoint change, [θ, sin(φ), cos(φ), r] are fed to
the model, along with an input image, in order to generate
the novel view.

B. Dataset Creation
We use Blender [2] to render training images of the fine-

tuning dataset. The specific rendering code is inherited from
a publicly released repository1 by authors of Objaverse [8].
For each object in Objaverse, we randomly sample 12 views
and use the Cycles engine in Blender with 128 samples per
ray along with a denoising step to render each image. We
render all images in 512×512 resolution and pad transpar-
ent backgrounds with white color. We also apply random-
ized area lighting. In total, we rendered a dataset of around
10M images for finetuning.

1https://github.com/allenai/objaverse-rendering

C. Finetuning Stable Diffusion
We use the rendered dataset to finetune a pretrained Sta-

ble Diffusion model for performing novel view synthesis.
Since the original Stable Diffusion network is not condi-
tioned on multimodal text embeddings, the original Stable
Diffusion architecture needs to be tweaked and finetuned to
be able to take conditional information from an image. This
is done in [1], and we use their released checkpoints. To fur-
ther adapt the model to accept conditional information from
an image along with a relative camera pose, we concatenate
the image CLIP embedding (dimension 768) and the pose
vector (dimension 4) and initialize another fully-connected
layer (772 7→ 768) to ensure compatibility with the diffu-
sion model architecture. The learning rate of this layer is
scaled up to be 10× larger than the other layers. The rest
of the network architecture is kept the same as the original
Stable Diffusion.

C.1. Training Details

We use AdamW [28] with a learning rate of 10−4 for
training. First, we attempted a batch size of 192 while main-
taining the original resolution (image dimension 512×512,
latent dimension 64×64) for training. However, we discov-
ered that this led to a slower convergence rate and higher
variance across batches. Because the original Stable Diffu-
sion training procedure used a batch size of 3072, we sub-
sequently reduce the image size to 256× 256 (and thus the
corresponding latent dimension to 32 × 32), in order to be
able to increase the batch size to 1536. This increase in
batch size has led to better training stability and a signifi-
cantly improved convergence rate. We finetuned our model
on an 8×A100-80GB machine for 7 days.

C.2. Inference Details

To generate a novel view, Zero-1-to-3 takes only 2 sec-
onds on an RTX A6000 GPU. Note that in prior works,
typically a NeRF is trained in order to render novel views,
which takes significantly longer. In comparison, our ap-
proach inverts the order of 3D reconstruction and novel
view synthesis, causing the novel view synthesis process to
be fast and contain diversity under uncertainty. Since this
paper addresses the problem of a single image to a 3D ob-
ject, when an in-the-wild image is used during inference,
we apply an off-the-shelf background removal tool [35] to
every image before using it as input to Zero-1-to-3.

D. 3D Reconstruction
Different from the original Score Jacobian Chaining

(SJC) implementation, we removed the “emptiness loss”
and “center loss”. To regularize the VoxelRF representation,

12

Figure 6: Spherical coordinate system (Inc., 2008).

with the following forward model:

y = Aϕ (x) ,y = {y1, · · · ,yn}, ϕ = {ϕ1, · · · , ϕn}, (20)

where x represents the underlying 3D object, y is the set of observations containing images from
multiple views, and ϕ denotes the camera parameters corresponding to different views. The task
requires us to jointly solve for both the 3D model, x, and the image poses, ϕ, to reconstruct a
view-consistent 3D object. 3D models can be represented in various forms, including meshes, point
clouds, and other formats. In our paper, we implicitly represent the 3D model as a collection of
random view observations of the 3D object. These views can then be converted into 3D geometry
using volumetric reconstruction methods such as Neural Radiance Fields (NeRF) or 3D Gaussian
Splatting (3DGS).

Camera Model Representation. We employ a spherical coordinate system to represent camera
poses and their relative transformations. As shown in Fig. 6, we place the origin of the coordinate
system at the center of the object. In this system, θ, ϕ, and r represent the polar angle, azimuth angle,
and radius (distance from the center to the camera position), respectively. The relative camera pose
between two views is derived by directly subtracting their respective camera poses. For instance,
if two images have camera poses (θ1, ϕ1, r1) and (θ2, ϕ2, r2), their relative pose is calculated as
(θ2 − θ1, ϕ2 − ϕ1, r2 − r1).

Zero123. Zero123 is a conditional latent diffusion model, ∇zt
log pt(zt|y, ϕ), fine-tuned from

Stable Diffusion for novel view synthesis. It generates a novel-view image at a target viewpoint,
x0 = D(z0), given an input image, y, and the relative camera transformation, ϕ, where D maps
the latent code to pixel space. This model enables 3D object generation from a single image: by
applying various camera transformations, Zero123 can synthesize multiple novel views, which can
then be used to reconstruct a 3D model. As a result, Zero123 defines a powerful 3D diffusion prior.

Figure 7: Graphic model of
the E-step.

D.2 E-STEP

In the E-step, we perform a view-consistent diffusion process to
generate target novel views from multiple input images, where we
assume the camera pose of each image is known.

Derivation of View-consistent Diffusion Model from Zero123.
The view-consistent generation is governed by a latent dif-
fusion process conditioned on multiple images, defined as
∇zt

log pt(zt|y1, ϕ1,y2, ϕ2). In the graphical model of the 3D reconstruction problem, the input
images y1 and y2 represent different views of the same object. These views should be indepen-
dent of each other given the geometry of the 3D object, which is described by the latent code zt.
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Algorithm 2 LatentDEM for Pose-free Sparse-view 3D Reconstruction

Require: T,y1,y2, ϕ1, ϕ
(T )
2 , {ᾱi}Ti=1, {σ̃i}Ti=1, {γi}T−1

i=0 , δ, λ, E∗,D∗, s∗θ
zT (y1, ϕ1) ∼ N (0, I)

zT (y2, ϕ
(T )
2 ) ∼ N (0, I)

for t = T to 0 do
s1 ← s∗θ(zt(y1, ϕ1), t,y1, ϕ1)

s2 ← s∗θ(zt(y2, ϕ
(t)
2 ), t,y2, ϕ

(t)
2 )

ẑ0(y1, ϕ1)← 1√
ᾱi
(zt(y1, ϕ1) +

√
(1− ᾱt)s1)

ẑ0(y2, ϕ
(t)
2 )← 1√

ᾱi
(zt(y2, ϕ

(t)
2 ) +

√
(1− ᾱt)s2)

ϵ ∼ N (0, I)

zt−1(y1, ϕ1)←
√
ᾱt−1ẑ0(y1, ϕ1) +

√
1− ᾱt−1 − σ̃2

t s1 + σ̃tϵ

zt−1(y2, ϕ2)←
√
ᾱt−1ẑ0(y2, ϕ2) +

√
1− ᾱt−1 − σ̃2

t s2 + σ̃tϵ

zt−1(y1, ϕ1,y2, ϕ
(t−1)
2 ) = E-step(zt−1(y1, ϕ1), zt−1(y2, ϕ

(t−1)
2 ), γt−1)

ϕ
(t−1)
2 = M-step(zt−1(y1, ϕ1), zt−1(y2, ϕ

(t)
2 ), zt−1(y1, ϕ1,y2, ϕ

(t−1)
2 ), δ, λ)

zt−1(y1, ϕ1)← zt−1(y1, ϕ1,y2, ϕ
(t−1)
2 )

end for
return D∗(ẑ0(y1, ϕ1)), ϕ

(0)
2

Consequently, the view-consistent diffusion can be derived from Zero123 as follows:
p(zt−1|zt,y1, ϕ1,y2, ϕ2) ∝ p(y1,y2|zt−1, zt, ϕ1, ϕ2)

= p(y1|zt−1, zt, ϕ1)p(y2|zt−1, zt, ϕ2)

∝ p(zt−1|zt,y1, ϕ1)p(zt−1|zt,y2, ϕ2),

(21)

where the conditional diffusions from single images, p(zt−1|zt,y1, ϕ1) and p(zt−1|zt,y2, ϕ2), are
defined by Zero123, and they both follow Gaussian distributions according to the Langevin dynamics
defined by the reverse-time SDE (Eq. 2), here we adopt the DDIM framework.

pt(zt−1|zt,y1, ϕ1) = N
(√

ᾱt−1ẑ0(zt|y1, ϕ1) +
√

1− ᾱt−1 − σ2
t · ∇zt log pt(zt|y1, ϕ1), σ

2
t I

)
pt(zt−1|zt,y2, ϕ2) = N

(√
ᾱt−1ẑ0(zt|y2, ϕ2) +

√
1− ᾱt−1 − σ2

t · ∇zt
log pt(zt|y2, ϕ2), σ

2
t I

)
(22)

In our pose-free 3D reconstruction task, we account for potential inaccuracies in ϕ2 during early
diffusion stages, so the diffusion process is modified as:

pt(zt−1|zt,y2, ϕ2) = N
(√

ᾱt−1ẑ0 +
√
1− ᾱt−1 − σ2

t · ∇zt
log pt(zt|y2, ϕ2), (σ

2
t + ν2t )I

)
,

(23)
where νt represents the standard deviation of time-dependent model errors. As a result,
p(zt−1|zt,y1, ϕ1,y2, ϕ2) becomes

p(zt−1|zt,y1, ϕ1,y2, ϕ2) = N
(

σ2
t + ν2t

2σ2
t + ν2t

µ1 +
σ2
t

2σ2
t + ν2t

µ2,
σ2
t (σ

2
t + ν2t )

2σ2
t + ν2t

)
µ1 =

√
ᾱt−1ẑ0(zt|y1, ϕ1) +

√
1− ᾱt−1 − σ2

t · ∇zt
log pt(zt|y1, ϕ1)

µ2 =
√
ᾱt−1ẑ0(zt|y2, ϕ2) +

√
1− ᾱt−1 − σ2

t · ∇zt log pt(zt|y2, ϕ2),

(24)

which defines a view-consistent diffusion model, whose score function is a weighted average of two
Zero123 models:
∇zt

log pt(zt|y1, ϕ1,y2, ϕ2) = (1− γt)∇zt
log pt(zt|y1, ϕ1) + γt∇zt

log pt(zt|y2, ϕ2),

γt =
σ2
t

2σ2
t + ν2t

.
(25)

This derivation can be readily extended to scenarios with multiple unposed images.
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Annealing of View-consistent Diffusion. An annealing strategy is essential for the view-consistent
diffusion process in pose-free 3D reconstruction due to initial inaccuracies in estimated camera poses.
In a two-image-based 3D reconstruction problem, for instance, model errors are quantified by νt in
Eq. 25. This error term starts large and gradually decreases to zero as the camera pose ϕ2 becomes
increasingly accurate. Consequently, γt progressively increases from nearly 0 to 0.5. During early
stages, the diffusion process primarily relies on a single reference view y1, and the intermediate
generative images are utilized to calibrate camera poses of other images. As camera poses gain
accuracy, the other images exert growing influence on the diffusion process, ultimately achieving
view-consistent results.

D.3 M-STEP

The M-step estimates unknown camera poses by aligning unposed images to synthetic and reference
views:

ϕ2 = argmin
ϕ

Ex̂0

[
λ∥zt(y2, ϕ2)− zt(x̂0,0)∥22 + δ∥zt(y2, ϕ2)− zt(y1, ϕ1)∥22

]
, (26)

where x̂0 are the posterior samples from the E-step, and λ and δ balance the calibration loss on the
synthetic and reference images, respectively. zt(·, ·) is the time-dependent latent variable representing
semantic information of the transformed input image. As suggested by Eq. 12, this optimization
problem can be efficiently solved using gradient-based optimization. We dynamically adjust the ratio
of the two balancing factors, λ/δ, throughout the diffusion process. In early stages, we set λ/δ to a
small value, primarily relying on the reference image for pose calibration. As the synthetic image
becomes more realistic during the diffusion process, we gradually increase λ/δ until it converges to
1, balancing the influence of both synthetic and reference images in the final stages.

Table 3: Numerical results of 3D models generated using single (Zero123) and dual (ours) inputs. The
measurements for 3D metrics (CD and VolumeIoU) are computed across 10 cases, while 2D metrics
(PSNR, SSIM and LPIPS) were evaluated by generating 12 new viewpoint images (at 30-degree
intervals) for each case, utilizing the same inputs as for 3D reconstruction.

Methods PSNR↑ SSIM↑ LPIPS↓ CD↓ VolumeIoU↑
zero123 12.76 0.769 0.249 0.115 0.470

Ours 14.19 0.800 0.191 0.105 0.670

D.4 3D RECONSTRUCTION FROM 2D NOVEL VIEWS

Previous sections primarily focused on synthesizing novel views from unposed input images, however,
this technique can be extended to render 3D objects by generating multiple random novel views.
Following the 3D reconstruction process described in One-2-3-45(Liu et al., 2024), we input these
synthetic images and their corresponding poses into an SDF-based neural surface reconstruction
module to achieve 360◦ mesh reconstruction. Fig. 8 and Table 3 demonstrate the results of this
process, showing 3D reconstructions of both textured and textureless meshes derived from two
unposed input images.

D.5 MORE INPUT VIEWS YIELD BETTER RECONSTRUCTION

In Sec. D.2, Sec. D.3 and Sec. D.4, we primarily explore 3D reconstruction based on images from
two unposed views. This approach is readily adaptable to scenarios involving an arbitrary number of
views. We evaluate the quality of 3D reconstructions using one, two, and three unposed images, as
shown in Fig. 9. The results indicate that adding more views significantly improves the fidelity of
the 3D reconstruction. The LatentDEM framework facilitates consistent 3D reconstruction across
different images. Specifically, 3D reconstruction from a single view (equivalent to Zero123) results
in a hollow reconstruction, whereas incorporating additional views progressively yields more realistic
3D models.
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Figure 8: 3D mesh reconstruction with One-2-3-45 (Liu et al., 2024). We compare our method’s
performance on 3D mesh reconstruction with One-2-3-45. Both texture and textureless meshes are
shown. The baseline sometimes fails to recover fine details as they can only take one input view,
while our method shows better mesh reconstruction with two input views.

Input view 1 Input view 2 Input view 3

Output 1 Output 2 Output 3

Figure 9: 3D reconstruction of an apple using different numbers of unposed images. We evaluate
our method’s performance with varying numbers of input sparse views. Left: One view (Output 1 is
from Input view 1 which is 1equivalent to Zero123) generates an unrealistic model that is hollow
inside. Middle: Output 2 is from Input view 1 & 2. Two views improve results but still exhibit
hallucinations in the 3D geometry of the bitten apple, e.g.the red dot in the middle of the bitten part.
Right: Output 3 is from all three input views. Three views successfully recover all details.
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Observation Self-Deblur [Li et al. 2023] Ours Ground Truth
Figure 10: Comparison of blind motion deblurring results between LatentDEM, Self-Deblur , and the
current SOTA self-supervised method Li et al. (2023) on various datasets (ImageNet, FFHQ, and Lai
et al. (2016)).

Table 4: Comparison with SOTA self-supervised method Li et al. (2023) on ImageNet and FFHQ.

Method
ImageNet FFHQ

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Self-Deblur 16.74 0.232 0.493 18.84 0.328 0.493

Li et al. (2023) 17.94 0.315 0.381 20.18 0.4 0.338
Ours 19.35 0.496 0.256 22.65 0.653 0.167

E MORE ABLATIONS AND EXPERIMENTAL RESULTS

Comparison with SOTA Self-supervised Deblurring Method on Benchmark Dataset. We
additionally compared LatentDEM with the current SOTA self-supervised deblurring method, specifi-
cally Li et al. (2023), using datasets from both the plug-and-play deblurring community (ImageNet,

Table 5: Average PSNR on Lai et al. (2016) dataset, compared with SOTA supervised learning
method Li et al. (2022) and self-supervised method Li et al. (2023) across various categories.

Method Saturated People Natural Text Manmade Average

Li et al. (2022) 16.73 24.23 20.59 17.45 17.28 19.25
Li et al. (2023), Reported 17.21 31.02 26.00 25.46 23.06 24.55
Li et al. (2023), ID Kernel 12.96 17.02 22.72 12.98 14.93 16.12

Li et al. (2023), OOD Kernel 11.53 13.80 14.62 10.21 11.88 12.41
Ours 18.29 23.39 23.99 16.57 20.06 20.46
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FFHQ) and the self-supervised deblurring benchmark (Lai et al. (2016)). The results are in Table 4, 5
and Fig. 10. In ImageNet and FFHQ datasets, we found the new baseline significantly improves over
Self-Deblur. However, LatentDEM still outperforms it.

We further tested latentDEM across various categories from the Lai et al. (2016) dataset. Results are
shown in Table 5, Reported denotes results in the original paper, ID kernel and OOD kernel denote the
results we tested using their officially-released code, respectively using 4 kernels inside the dataset and
other similar random kernels not included in the dataset. Our method outperformed SOTA supervised
learning method Li et al. (2022) and self-supervised method Li et al. (2023) across various categories,
though it still lags behind Li et al. (2023) in natural observations when kernels are ID, which indicates
Li et al. (2023)’s sensitivity to the blur kernels. We want to emphasize that Li et al. (2023) typically
requires different neural network architectures (e.g., channels of convolutional kernels), training
epochs, and hyperparameters for different image categories to achieve optimal performance. This
tuning process is very empirical, and we have tried our best to conduct the comparison fairly. In
contrast, LatentDEM uses a pre-trained diffusion model, which requires minimal tuning and achieves
decent results across most images.

LDMVQ-4 v.s. Stable Diffusion-V1.5. We evaluate LatentDEM’s performance on 2D blind
deblurring using two widely adopted foundational latent diffusion models: LDMVQ-4 and Stable
Diffusion V1.5 Rombach et al. (2022). Fig. 12 presents the results of this comparison. Both models
achieve satisfactory reconstruction outcomes, demonstrating LatentDEM’s ability to generalize across
various LDM priors when solving blind inverse problems. Notably, LatentDEM exhibits superior
performance with Stable Diffusion compared to LDMVQ-4. This difference can be attributed to
Stable Diffusion’s more recent release and its reputation as a more advanced diffusion model.

Vanilla EM v.s. Diffusion EM. Traditional EM algorithms perform both E-step and M-step until
convergence at each iteration before alternating. This approach guarantees a local optimal solution,
as demonstrated by numerous EM studies. However, in the context of diffusion posterior sampling,
which involves multiple reverse diffusion steps, this paradigm proves inefficient and computationally
expensive.

Our implementation of the EMDiffusion algorithm for blind inverse tasks deviates from this conven-
tional approach. Instead of waiting for the diffusion process to converge (typically 1,000 reverse
steps with a DDIM scheduler), we perform model parameter estimation (M-step) after each single
diffusion reverse step, except during the initial stage where we employ the skip gradient technique, as
detailed in Sec. 4.2. Table 6 compares the performance of vanilla EM and our method on the blind
deblurring task. Our approach, LatentDEM, requires only 1.5 minutes compared to vanilla EM’s 120
minutes, while achieving superior reconstruction quality and kernel estimation.

Besides, we’ve tested running a second iteration of the full diffusion process once the forward model
parameters are determined. Specifically, we first used our original setting to estimate the blur kernel,
then fixed the kernel and ran another 1000 diffusion steps (equivalent to 1000 E-steps only) from
Gaussian noise. As reported in Fig. 11, the quality of reconstructed images from the second iteration
is comparable to the original single-iteration implementation. This is likely because our annealing
techniques help avoid overfitting to wrong images with the guidance of inaccurate blur kernels at
early diffusion stages, so the second iteration slightly helps but will not significantly improve results.

These results demonstrate that performing the M-step after each reverse step is both effective and
efficient for blind inverse tasks. Moreover, this strategy offers improved escape from local minima
and convergence to better solutions compared to vanilla EM, which completes the entire diffusion
reverse process in each EM iteration.

Table 6: Vanilla EM v.s. Diffusion EM in blind deblurring.

Method
Image Kernel Time

PSNR↑ SSIM↑ LPIPS↓ MSE↓ MNC↑ Minute↓
Vanilla EM 20.43 0.561 0.419 0.024 0.124 120
LatentDEM 22.23 0.695 0.183 0.023 0.502 1.5
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Single
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Figure 11: Comparison of blind motion deblurring results between the original single-iteration and
suggested second-iteration diffusion. The quality of reconstructed images from the second iteration is
comparable to the single-iteration results.

Observation LDMVQ-4 Stable Diffusion Ground Truth

Figure 12: LDMVQ-4 v.s. Stable Diffusion-V1.5. Stable Diffusion V1.5 generates results with
more detailed textures due to its more powerful priors.

Additional Results of Pose-free Sparse-view Novel-view Synthesis. Figure 13 presents additional
results of novel-view synthesis using LatentDEM.
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Input views Output views

Figure 13: Pose-free sparse-view novel-view synthesis.
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Observation
Vanilla

Latent DPS Gluing Annealing
Gluing

Annealing GT

Figure 14: The effect of annealing consistency technique and gluing term. We find that both the
gluing term and annealing consistency technique yield better results, while combining them achieves
the best result.

F EXPERIMENTS FOR REVIEWERS

Role of “Gluing” regularization vs. Annealing Consistency Figure 14 shows the isolation
experiments to look into the effectiveness of the annealing consistency technique and the gluing term.

FastEM Reproduce We provide additional results based on small kernels in Figure 15 to prove we
have correctly reproduced the FastEM.

Compare with GibbsDDRM We show the comparison results with an extra baseline GibbsD-
DRM Murata et al. (2023) in Figure 16

Divergence Results

• HQS times: Figure 17 show some results with different HQS times and some will cause the
results to diverge. Here HQS times means how many HQS optimizations we perform in one
single M step.

• Annealing schedule: Figure 18 show some results with different annealing schedules and
we can basically achieve good performances.

– Annealing 1: ζt anneals linearly from 10 at t = 1000 to 1 at t = 800 and then holds
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Observation Ground Truth FastEM

Figure 15: FastEM Reproduce results. When the kernel is rather simple and small, FastEM can
produce good results.

Observation Gibbs Gibbs* Gibbs+ Gibbs△ Ours Ground Truth

Figure 16: Comparison with GibbsDDRM. Our method still outperforms GibbsDDRM with their
official implementation and checkpoint, even though we have finely tuned the hyperparameters
(Gibbs*: σ=5 for normalization, Gibbs+: iterHupdate = 10 for updating kernels and Gibbs△:
λ = 500 for weighting Laplace prior).
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Observation Ground Truth HQS 5 HQS 10 HQS 15 HQS 20

Figure 17: HQS times cause divergence. If the HQS times are not chosen carefully, it will lead to
divergence results.

Observation Ground Truth Annealing 1 Annealing 2 Annealing 3 Annealing 4

Figure 18: Different annealing schedules cause degradation. Different annealing schedules won’t
lead to divergence but will cause slightly degradation compared with the optimal results.

– Annealing 2: ζt anneals linearly from 10 at t = 1000 to 1 at t = 600 and then holds
– Annealing 3: ζt anneals linearly from 10 at t = 1000 to 1 at t = 200 and then holds
– Annealing 4: ζt anneals linearly from 10 at t = 1000 to 0.8 at t = 600 and then holds
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G DERIVATION OF EXPECTATION-MAXIMIZATION ALGORITHM

The Expectation-Maximization (EM) algorithm Dempster et al. (1977); Murphy (2023) is an iterative
optimization method used to estimate the parameters ϕ of a statistical model that involves underlying
(latent) variables x, given observations y. Below, we provide a step-by-step derivation based on
maximizing the marginal log-likelihood log pϕ(y).

STEP 1: MARGINAL LOG-LIKELIHOOD

The goal of EM is to maximize:

log pϕ(y) = log

∫
pϕ(y, x) dx. (27)

STEP 2: INTRODUCING AN AUXILIARY DISTRIBUTION q(x|y)

Using an auxiliary distribution q(x|y), the marginal log-likelihood can be rewritten as:

log pϕ(y) = log

∫
q(x|y)pϕ(y, x)

q(x|y) dx. (28)

STEP 3: APPLYING JENSEN’S INEQUALITY

By applying Jensen’s inequality, we obtain a lower bound on log pϕ(y):

log pϕ(y) ≥
∫

q(x|y) log pϕ(y, x)

q(x|y) dx. (29)

STEP 4: SIMPLIFYING THE LOWER BOUND

The lower bound becomes:∫
q(x|y) log pϕ(y, x)

q(x|y) dx =

∫
q(x|y) [log pϕ(y, x)− log q(x|y)] dx. (30)

Decomposing pϕ(y, x) into pϕ(y|x) and p(x), we have:∫
q(x|y) log pϕ(y, x) dx =

∫
q(x|y) [log pϕ(y|x) + log p(x)] dx. (31)

Rewriting the lower bound :

L(q, ϕ) =

∫
q(x|y) [log pϕ(y|x) + log p(x)− log q(x|y)] dx. (32)

Therefore, maximizing L(q, ϕ) is equivalent to maximizing log pϕ(y).

29


	Introduction
	Related Work
	Preliminary
	Method
	E-step: Posterior Sampling via Latent Diffusion
	M-step: Forward Operator Estimation
	Blinding Inversion Tasks

	Experiments
	2D Blind Motion Deblurring
	Experiments on Pose-free Sparse-view 3D Reconstruction
	Ablation Studies

	Conclusion
	Appendix
	Theoretical Explanations for Annealing Consistency
	Implementation Details of 2D Blind Deblurring
	E-step
	M-step

	Implementation Details of Pose-free Sparse-view 3D Reconstruction
	Basics
	E-Step
	M-step
	3D Reconstruction from 2D Novel Views
	More Input Views Yield Better Reconstruction

	More Ablations and Experimental Results
	Experiments for Reviewers
	Derivation of Expectation-Maximization Algorithm

