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Organization. We organize our supplementary materials as follows. For the theory part, we provide
detailed proofs of the theorems in Section A. In Sections B, we provide more detailed formulations
of spatial and temporal denoising. In Section C, we provide detailed settings of noise degradation in
the experiments. In Section D, we provide more settings, details and results of the experiments. In
Section E, we give the limitations and societal impacts of our proposed method.

A THEORETICAL ANALYSIS

We build a relationship between the denoising problem and general optimization problem training
with noise. Given a training data (x,y), the general optimization problem training with some kind of
noise zσ can be written as:

min
f

Eσ

[
E(xσ,y)

[
∥f(xσ)− y∥2

]]
. (1)

Based on the analysis of (Bishop, 1995), we first provide the following theorem.

Theorem 1 (Effect of noise degradations) Let zσ=g(x) − x, and assume that the mean and
variance of the noise distribution are 0 and η2(zσ), then the loss (1) , i.e.,

Ezσ

[
E(x,y)

[
∥f(x+ zσ)− y∥2

]]
= E(x,y)

[
∥f(x)− y∥2

]
+ η2(zσ)E(x,y)

[∥∥∥∥∂f∂x
∥∥∥∥2 + 1

2
(f(x)− y)

⊤ ∂2f

∂x2
1

]
.

(2)

Proof Based on the expectation w.r.t. x,y and zσ , we have
Ezσ

[
E(x,y)

[
∥f(x+ zσ)− y∥2

]]
(3)

=

∫ ∫ ∫
∥f(x+ zσ)− y∥2p(x)p(y|x)p(zσ)dxdydzσ (4)

=
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k
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2p(x)p(y|x)p(zσ)dxdydzσ (5)

=
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k
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+
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]
p(x)p(y|x)dxdy (7)

=E(x,y)

[
∥f(x)− y∥2

]
+ η2(zσ)E(x,y)

[∥∥∥∥∂f∂x
∥∥∥∥2 + 1

2
(f(x)− y)

⊤ ∂2f

∂x2
1

]
, (8)

where the Equations (6-7) hold the assumption of the noise zσ , i.e.,∫
zip(zσ)dzσ = 0,

∫
zizjp(zσ)dzσ = η2(zσ)δij (9)

and use the Taylor series of the noise zσ , i.e.,

fk(x+ zσ) = fk(x) +
∑
i

zi
∂fk
∂xi

∣∣∣∣
zσ=0

+
1

2

∑
i

∑
j

zizj
∂2fk

∂xi∂xj

∣∣∣∣
zσ=0

+O(z3
σ). (10)

□

Note that when x=y, the general learning problem turns to a problem of learning AutoEncoder.
Based on Theorem 1, we have rewrite the following theorem when x=y.
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Theorem 1 (Effect of noise degradations) Let zσ=g(x)−x, and assume that the mean and variance
of the noise distribution are 0 and η2(zσ), then the loss (1) , i.e.,

Eσ

[
E(x)

[
∥f(xσ)− x∥2

]]
= Ex

[
∥f(x)− x∥2

]
+ η2(zσ)Ex

[∥∥∥∥∂f∂x
∥∥∥∥2 + 1

2
(f(x)− x)

⊤ ∂2f

∂x2
1

]
.

(11)

Proof Let x = y in Theorem 1, we complete the proof. □

From this theorem, the loss (1) trained with our noise degradations is equivalent to a Autoencoder
loss with a regularization term. The parameter η2(zσ) is related to the amplitude or variance of the
noise zσ and controls how the regularization term influences the loss.

B MORE DETAILS OF SPATIAL AND TEMPORAL DENOISING

Spatial denoising. Given a feature, we use multi-layered residual blocks (He et al., 2016) to
implement the spatial encoder Espatial to extract deep features and reduce the spatial noise at each
scale, i.e.,

Espatial
(
gs−1
i

)
= RN ◦ · · · ◦R1

(
gs−1
i

)
, (12)

where ◦ is a function composition, and each Ri is a residual block. In the experiment, we set N = 5
and the number of features channels is 64. Given a feature g, the residual block is formulated as

Ri(g) = g +Conv2(ReLU(Conv1(g))), (13)

where Conv1 and Conv2 are convolutional layers, and ReLU is an activation.

Temporal denoising. We implement Etemporal by using the architecture of the flow-guided deformable
alignment of (Chan et al., 2022a) to predict offset and mask in DCN (Zhu et al., 2019). Given denoised
spatial features gs

i , we use the optical-flow-guided deformable alignment as our temporal encoder
Etemporal to compute the features at the j-th branch, i.e.,

f̂i =Etemporal
(
gs
i ,f

s
i−1,j ,f

s
i−2,j ,o

s
i→i−1,o

s
i→i−2

)
(14)

=DCN([fi−1;fi−2], [õi→i−1; õi→i−2], [mi→i−1;mi→i−2]), (15)

where the offsets and masks are formulated as

õi→i−p = oi→i−p +Conv([gi; f̄i−1; f̄i−2]), (16)

mi→i−p = Sigmoid(Conv([gi; f̄i−1; f̄i−2])), (17)

where p = 1, 2 and fi−1 is a warped feature using the optical flow oi→i−1, i.e.,

f̄i−1 = warp(fi−1,oi→i−1) and f̄i−2 = warp(fi−2,oi→i−2), (18)

where warp(·) is a warp function according to the optical flow. After reducing the temporal noise, we
use another spatial encoder E′

spatial with 7 residual blocks.

C EXPERIMENT DETAILS OF NOISE DEGRADATION

Noise. In the experiment, we consider 6 kinds of noises in the degradations, including Gaussian
noise, Poisson noise, Speckle noise, Processed camera sensor noise, JPEG compression noise and
video compression noise. To explore the properties of video denoising, we use the default order of
the following noise in Figure 1 (a) and 10 (Top).

• Gaussian noise. We uniformly sample noise levels σ from [2, 50]. We randomly choose AWGN
and grayscale AWGN with the probabilities of 0.6 and 0.4, respectively.

• Poisson noise. We add Poisson noise in color and grayscale images by sampling different noise
levels. We first multiply the clean video by 10α in the function of Poisson distribution, where α is
unformly chosen from [2, 4] and divide by 10α.

• Speckle noise. We sample the level of this noise from [0, 50].
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• Processed camera sensor noise. Inspired by (Zhang et al., 2022), the reverse ISP pipeline first
get the raw image from an RGB image, then the forward pipeline constructs noisy raw image by
adding noise to the raw image.

• JPEG compression noise. The JPEG quality factor is uniformly chosen from [30, 95]. JPEG
compression noise will introduce 8× 8 blocking artifacts.

• Video compression noise. We use the Pythonic operator av in FFmpeg to produce compression
noise. We randomly selected codecs from [‘libx264’, ‘h264’, ‘mpeg4’] and bitrate from [1e4, 1e5]
during training.

Blur. In addition to noise, most real-world videos inherently suffer from blur structure in a digital
camera. Thus, we consider two blur degradations, including Gaussian blur and resizing blur.

• Gaussian blur. We synthesize Gaussian blur with different kernels, including [‘iso’, ‘aniso’,
‘generalized_iso’, ‘generalized_aniso’, ‘plateau_iso’, ‘plateau_aniso’, ‘sinc’]. We randomly choose
these kernels with the probabilities of [0.405, 0.225, 0.108, 0.027, 0.108, 0.027, 0.1]. The settings
of these blur are the same as (Chan et al., 2022b).

• Resizing blur. We randomly draw the resize scales from [0.5, 2], and choose the interpolation mode
from [‘bilinear’, ‘area’, ‘bicubic’] with the same probability of 1/3.

D MORE EXPERIMENTS

D.1 MORE DETAILS OF EXPERIMENT SETTING

We adopt Adam optimizer (Kingma & Ba, 2015) and Cosine Annealing scheme (Loshchilov &
Hutter, 2016) to decay the learning rate from 1×10−4 to 10−7. The patch size is 256×256, and
batch size is 8. The number of input frames is 15. All experiments are implemented by PyTorch
1.9.1. We train a denoising model on 8 A100 GPUs. We use the pre-trained SPyNet (Ranjan &
Black, 2017) to estimate the flow. Note that we fix the parameters of SPyNet during the training.
We train our video denoiser with 150k iterations. For the synthetic Gaussian denoising, the learning
rate of the generator is 1×10−4. For real-world video denoising, the learning rates of the generator
and discriminator are set to 5×10−5 and 1×10−4. The architecture of the generator is introduced in
Section B. The architecture of the discriminator is the same as Real-ESRGAN (Wang et al., 2021).
When training classic video denoising, we use Charbonnier loss (Charbonnier et al., 1994) due to its
stability and good performance. For real video denoising, we first use Charbonnier loss to train a
model, then we finetune the network by using the perceptual loss Lpix (Johnson et al., 2016) and
adversarial loss Ladv (Goodfellow et al., 2014), i.e., L = Lpix + λ1Lper + λ2Ladv, where λ1 = 1
and λ2 = 5× 10−1. Code will be made publicly available.

D.2 TRAINING LOSS AND PSNR

To demonstrate the efficiency of our model, we show the training loss and PSNR, as shown in Figure
1. At every 10K iterations, the PSNR value is calculated on Set8 with the noise level of 10. The total
training iterations is 150k and takes 3 days. The training loss decreases rapidly at early iterations
and stay steady in the later iterations. The PSNR values on Set8 increase during the training. These
results demonstrate that our model is easy to train to have good performance.
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Figure 1: An illustration of training loss and PSNR.
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D.3 DIFFERENCES OF IMAGE AND VIDEO DEGRADATIONS

Our video degradation significantly differs from the existing single image degradation. First, we con-
sider the blur degradation (Gaussian blur and resizing blur) which would change the statistics of other
noises and make the noise more complex. Second, we consider different video compression noises
which usually require temporal information for better noise removal. From Table 1, training without
blur degradation and video compression noise lead to inferior performance, which demonstrates the
dominant role.

Table 1: Ablation study on noise types on VideoLQ.

Types NIQE BRISQUE PIQE

w/o Blur degradation 4.1643 34.8137 50.2962
w/o video compression noise 4.0537 31.8712 50.7835

Ours 4.0205 29.0212 45.0768

D.4 PARAMETERS FOR NOISE TYPES.

We determine the parameters for each noise type according to the common well-studied settings or
experimental analysis. For example, some parameter settings in image-based denoising methods
(Zhang et al., 2022; 2021) have been well-studied. We further conduct an analysis for different
parameters of noise degradation. Here, we analyze the bitrate range of video compression noise due
to its importance in our noise degradation in Table 2. The model achieves the best performance with
a bitrate range of [1e4, 1e5], which accords with the setting in (Chan et al., 2022b).

Table 2: Performance of different bitrate ranges on VideoLQ.

Types NIQE BRISQUE PIQE

[1e3, 1e4] 4.2317 30.1674 46.7984
[1e4, 1e5] 4.0205 29.0212 45.0768
[1e5, 1e6] 4.1276 31.3297 49.4122

Actually, the included speckle noise is already a type of spatially correlated noise. For certain unseen
applications, there may exist other types of noises. Without prior knowledge, it is difficult to cover
all types of unseen noises. Thus, this paper considers the most common and general noises in our
degradation model. Certainly, if a noise type is dominant for a certain application, one can augment it
into our degradation model to match the noise distribution.

D.5 COMPARISON ON SRGB DATASET

We conduct experiments on real-world raw video (transformed to sRGB) denoising. Specifically,
we test our denoiser on the indoor test videos (Scenes 7-11) of CRVD (Yue et al., 2020) in Table
3. We use reference-based evaluation and directly test the models on the indoor test set. For fair
comparisons, we here compare with RealBasicVSR* because both methods are not trained on CRVD.
Our model outperforms RealBasicVSR* by a large margin under the reference-based metrics.

Table 3: Comparisons of ReViD and RealBasicVSR* on CRVD (indoor).

Reference-based metric RealBasicVSR∗ ReViD (Ours)

PSNR 27.41 29.61
SSIM 0.896 0.919

Processing an existing raw paired dataset as a paired sRGB dataset is possible as an alternative.
However, dealing with real-world videos (not synthesized videos from raw images) is the ultimate
goal of real video denoising. For most images/videos we encounter in our life and on the internet,
we do not have access to their raw versions and neither do we have access to the parameters of
different sensors and ISP pipelines. Therefore, for practical applications, the no-reference image
quality assessment (IQA) metrics (e.g., NIQE, BRISQUE and PIQE) are important and widely used
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in existing real-world super-resolution/denoising methods (Zhang et al., 2022; Wang et al., 2021;
Zhang et al., 2021). In addition to the non-reference IQA metric, we also compared the visual quality
of different methods for the real-world test videos, as shown in Figure 8 in the paper and Figure 3,
which we believe can also demonstrate the effectiveness of the proposed method.

In addition, our synthetic setting is very meaningful in real-world applications. Actually, real image
denoising/super-resolution methods (Chan et al., 2022b; Zhang et al., 2022; 2021) which use synthetic
degradations have already shown promising results and have attracted more and more attention in
the low-level computer vision community. The synthetic degradations aim to cover a wide range
of reasonable noises from randomized pipelines. These methods have shown better generalization
performance than training on collected datasets with a specific camera. Based on this, we make
the first attempt to propose a new video noise degradations in real video denoising. Extensive
experiments verify the superiority of our method on real-world videos.

D.6 ABLATION STUDY ON DCN AND MULTISCALE

We conduct ablation studies on DCN and multiscale in Table 4. Specifically, we train all architectures
on DAVIS, and calculate average PSNR over all testing noise levels on the DAVIS test set. Training
our model without DCN or multiscale degrades the performance, which demonstrate the effectiveness
of DCN and multiscale. In addition, training the model with more scales achieves better performance
but with the expense of a larger model size (29.02M). To trade-off the performance and model size,
we do not use more scales in our architecture.

Table 4: Ablation study on DCN and multiscale on DAVIS test set.

Methods w/o DCN w/o multiscale w/ more scales ReViD (Ours)

Average PSNR 36.47 36.52 37.48 37.45

D.7 COMPARISON ON FLOPS

Model inference time was provided in Table 1 in the paper, which can reflect the efficiency of the
models. We compared the FLOPs and PSNR performance of different video denoising methods in
Table 5. Here, the FLOPs is measured in TITAN RTX GPU with the spatial resolutions of 256×256.
Our model achieves the best PSNR performance, although it has more FLOPs than BasicVSR++ due
to the multi-scales. Besides, our model outperforms VRT with much fewer FLOPs.

Table 5: Comparison with different methods on FLOPs.

Methods BasicVSR++ VRT ReViD (Ours)

FLOPs (G) 42.8 721.9 172.8
PSNR (db) 36.24 37.03 37.45

D.8 RESULTS OF VIDEO DEBLURRING

Our main goal is to propose a new realistic degradation model for effective real video denoising.
The proposed degradation model and architecture can indeed be further extended to other real-world
video restoration tasks. We extend our model for the video deblurring task, and compare our model
with EDVR (Wang et al., 2019), STFAN (Zhou et al., 2019), TSP (Pan et al., 2020) and BasicVSR++
(Chan et al., 2022a). Specifically, we train our model on the GoPro dataset (Nah et al., 2017) and
show the results in Table 6. Comparing to other competing methods, our model achieves the best
PSNR and SSIM. These results further demonstrate the effectiveness and flexibility of our design.

Table 6: Performance on video deblurring on the GoPro test set.

Methods EDVR STFAN TSP BasicVSR++ ReViD (Ours)

PSNR/SSIM 26.83/0.843 28.59/0.861 31.67/0.928 34.01/0.952 34.23/0.958

5



Under review as a conference paper at ICLR 2023

D.9 GENERALIZATION OF REAL VIDEO DENOISING MODEL

To investigate the generalization performance, we compare the PSNR of our method with RealBa-
sicVSR (Chan et al., 2022b) using on REDS4 testing set. Note that these two methods are trained on
our noise degradations. Specifically, we use REDS4 (4 testing clips, i.e., 000, 011, 015 and 020) to
synthesize Gaussian noise, Poisson noise, Speckle noise, Camera noise, JPEG compression noise
and Video compression noise using the same setting as Figures 1 and 10. The levels of Gaussian and
Speckle noise are 10, the scale of Poisson is 0.05, the quality scale of JPEG compression noise is 80,
and the codec and bitrate of Video compression noise are ‘mpeg4’ and 1e5. In Table 7, our method
achieves higher PSNR than RealBasicVSR (Chan et al., 2022b). It means that our video denoiser has
better generalization performance on other noise.

Table 7: Generalization to different kinds of noise on REDS4.

Methods Gaussian
noise

Poisson
noise

Speckle
noise

Camera
noise

JPEG comp.
noise

Video comp.
noise

RealBasicVSR∗ 26.57 26.63 26.15 26.92 26.19 25.13
Ours-real 28.03 28.17 28.14 28.63 28.18 26.82

D.10 MORE QUALITATIVE COMPARISON

In Figures 2 and 3, we provide more visual comparisons of different video denoising methods for
synthetic Gaussian denoising and general real video denoising. Our proposed denoiser restores better
structures and preserves clean edge than previous state-of-the-art video denoising methods, even
though the noise level is high. In particular, our model is able to synthesize the side profile in the
second line of Figure 2. For real video denoising, our model achieves the best visual quality among
different methods. For example, our model can generate feather texture of a bird in the third line
of Figure 3. There results demonstrate our degradation model is able to improve the generalization
ability.

E LIMITATIONS AND SOCIETAL IMPACTS

Our method achieves state-of-the-art performance in synthetic Gaussian denoising and practical real
video denoising. This paper makes the first attempt to propose noise degradations. Our method can
be used in some applications with positive societal impacts. For example, it is able to restore old
videos and remove compression noise from video in web. However, there are some limitations in
practice. First, it is hard for our model to remove blur artifacts which often occur in videos due to
exposure time in different cameras. However, our degradation pipeline mainly contains different kind
of noise. Second, it is challenging to remove big spot noise. Third, our denoiser is trained with the
GAN loss and it may change the identity of details (e.g., human face) especially when the input is
severely degraded.
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Figure 2: Visual comparison of different methods on DAVIS under the noise level of 50.
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Figure 3: Visual comparison of different video denoising methods on VideoLQ and NoisyCity4.
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