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A  PROOFS
A.1 REGRET UPPER BOUND OF ALGORITHM 1

We start by recalling that A, := f“* (z*) — f“* (z¢) denotes the regret or gap of selecting allocation z; at round ¢ instead
of the optimal allocation z*. Now, define the event
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Also, define ]/%T = ZtT: vn41 Az, 1{&}. Then, from Kveton et al.|[2015, Lemma 1], it holds that
Rr <E [ET] +(1+7%/3)KMN . (1)

Now, let us consider two sequence of constants (c;);>1 and (5;);>0 such that 8y = 1, a; > «;, §; > B; forall i > 7,

lim; o o; = lim;_o f; = O and Y, , % < 1/4/6.

Let A, denote the subset of items induced by the allocation z; chosen at round ¢. In other words, an item a; ; € A, if
zy; = j. Similarly, let A* denote the corresponding subset induced by the optimal allocation z*. Let A, = A;\A* and

. 2 . . . .
m; = —xz—. Now, similar to Kveton et al.| [2015], define the series of mutually exclusive events (Git)is1, where G,

denotes the event that at least 3; K items in A, were observed at most m; ¢ times and for all j < 4, less than 5, K items
in A were observed at most m;_; ; times. Then, under the event J, it holds that the event {Ug1 G} happens [Kveton
et al.,2015, Lemma 3]. Hence, we have
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Now for any item a; ;, let us define the events
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Let us now define the following events:
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Note that because of the ordered structure. if a; ; has only been observed a certain number of times, then a; ;, would be
observed less than or equal number of times i.e., T;_1 (@ j+&) < Ti—1(a;,;), which, in turn, implies that
bl Lt = {zf <j+k=2,T_1(a;;) <my} S F
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It turns out that Fy,, ;¢ = Lt which in turn implies F,, ;¢ S Uk I gk
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U;‘Vi1{Gl,t N\ Fa, 1} < Uj=1{Gl7t ﬂ Hg, ;1,¢}. Now observe that Hy, | 1t 2 Ha, 0,6 2 ... Ha, 51,6, implying that the

RHS of the above is a union over decreasing sets, and hence it holds that Uﬁl {Gre(Fa, ;1) € {G1,e(VHa, ,1,¢}- This
further implies
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Then, it holds that

=: Hy, ; 1,¢- This implies that
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Therefore, we can bound }A{T as
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Now let each item a; ;, which are not included in the optimal allocation z*, be contained in N; ; suboptimal allocations z
and A j1 = A 2 = ... = Ay N, ; be the gaps of these solutions. Then, we have
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where the last term is the solution of the optimization problem:
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Then, similar to Kveton et al.|[2015]], we obtain
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where A; ; denotes the minimum gap as defined in main paper, and is given by A; ; , .. Now, from (I)), we can complete
the proof.

A.2 PROBABILITY OF ERROR OF ALGORITHM 2

As a first step we define an event 1 which helps us in the rest of the proof. Note that Bubeck et al.|[2013]] also defined a
similar event £ in their proof of Theorem 1, but our event is different from theirs. In 7 we only consider the |®| (< 2N)
sized subset of phases where some item from the boundary set ® is accepted or rejected, whereas [Bubeck et al.|[2013]]

considered all the M N — 1 phases. Let k1 < k2 ... < k|g| be the phases where items in ¢ were accepted or rejected. Under

this notation Hy = max —Y+1=Fi  Consider the event 1) defined by
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Note that by abuse of notation, we have renamed our items as 1,..., M N above. Also X; ; denotes the bernoulli reward

received for item i in its s pull so far. Recall that T}, was defined as e (M ]:G)_( %x FEE—, By Hoeffding’s inequality and

union bound, we bound the probability of the complement event 7 as
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Next, we show that assuming the event 7, the algorithm does not make any error. The proof of this part is very similar to the
proof of Theorem 1 in|/Bubeck et al.|[2013]]. The main difference is that in our case since we always accept items (items) that
are in the top of some list and reject items that are in the bottom of some list, we do not make any error until we reach an
item in the boundary i.e. . We will claim that the event 1 prevents these errors from happening. This is done by induction
on the phases where some boundary item is accepted or rejected i.e. phases k1, . . ., k|g|. Since we only need to argue about
correctness for these phases, we defined 7 only for &k € {k1, ..., kp|}. Note that this is the critical difference between our
event 7 and the corresponding event ¢ defined in proof of Theorem 1 in|Bubeck et al.|[2013]]). Define &£y = 0 and consider
j = 1. Using an induction approach we assume that no errors have happened till phase k;_;. As explained above the next
error can only occur at an item in boundary and therefore has to occur at phase k;. We show that under event 7, this cannot
happen. We will need the following observation.

Observation A.1. Let e be the first item to be erroneously accepted or rejected. As mentioned above e € ®. From Algorithm
2, we know that there is some active item ¢’ in the same list as e with the highest empirical gap A, among all the active
items. By the design of our algorithm, if e was accepted it is the top item of its list which also contains the active element
€' = e < pe. Since e was erroneously accepted, it does not belong to the top K items = €' also does not belong to the
top K items. Similarly if e was erroneously rejected (i.e. it belongs to top K items), it is the bottom of its list which contains
the active element ¢’ = . < pe. Thus €’ also belongs to top K items.

Event n implies that at the end of stage k;, empirical means of rewards of all items are within %A[ MN+1—k;] of their true
reward means. Let Ak]. ={a1,...,apMN+1— k; } be the active set of items during phase k; with decreasing true reward means
ie. fla; = ... = piN+1-k,- We assume that K items in the top K are left to be found at the starting of phase k;. Using
the induction assumption this implies {a1,...,ax/} € {1,..., K} and {axi1,...,apuNy1-k ) E{K +1,...,MN}.
Now there can be two types of errors.

 Type 1 error - An item q; is accepted for some [ > K’ + 1.

 Type 2 error - An item q; is rejected for some | < K.

As done in|Bubeck et al.|[2013]], we only show that Type 1 error does not occur and the other can be shown symmetrically.
We know that a boundary item is accepted or rejected in phase k;, thus a; is a boundary item. Since a; is not in the top
K items, using Observation [A.T| we get that there is some active item a,, (in the same list as a;) also not in top K i.e.
p = K’ + 1 such that it has the highest empirical gap among all active items.

From here on wards our proof resembles the proof in|Bubeck et al [[2013]]. We can basically replace a; in their proof with
our a,, K with M N and k with k;, and repeat the steps that follow. However, to make it work we will have to use that a,, is
not in the top K items as explained in Observation We show that Ay 1] > max{fta, — UK, LK — Hann+i—r, }.
This cannot hold since at stage k; since only k; — 1 items have been accepted or rejected implying that Ajyrn 1, <
max{fla, — K K — Harns1- K }. This will give us a contradiction similar to Bubeck et al.| [2013]]. However, to show this
we need to use the implication of our observation that a,, is also not in the top K items and that it has the highest empirical
mean reward i.e. [i,, > [iq for all @ € Ay, . This is true since it has the highest empirical gap and it led to acceptance of a;
(see Algorithm 2).

"By abuse of notation we are using i to denote the i** item from the top.
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Now, since ay, is not in the top K items we know that ., < pix = Ay Ni1-k;] = Hay — HK-
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Leto: {l,...,MN+1—k;} — Ay, be apermutation with o(1) = p, such that fi,(1y 1, = ... = Ho(MN+1-k;),T}. -
J J
Since a,, has the highest empirical gap in this phase, we know that,

Ha, 10, — ,aa(K’Jrl),Tkj = ,aa(K’),Tkj - /D'U(IWN+17kj),Tkj (2)

We claim that there are at least K’ + 1 items (aq,...,ax,ap) in Ay, such that their empirical mean rewards

are > ug — %A[MNH,,W]. This is trivially true for aq,...,ax since for i < K’, event n implies fi,, 7, =
3 J

Ma; — iA[MNH_k?] > pg — %A[MN+1—kj]' Since a,, is not in the top K items and has empirical mean reward

Ha, Ty = Ha,,T,.» this also holds for a,. This basically implies that both fi, k1), ly(k741) are = fix — iA[MNH_k.j].
] ’ J

Note that, since fi,(a7n+1-k,) is smallest it is < finsn41-x; Which under n, is < pyn 11—, + iA[MNkaj} Also

under 7, ﬁap,Tkj < Ma, + iA[ MN+1—k;]- Putting all of these together we get that
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where the last inequality again holds because a,, is not in in the top K items i.e. pix > pq,-

This completes our proof.

B DETAILED EXPERIMENTS

Regret Minimization: Here, we present simulation results for other choices of parameters M, N, K and for 100
independent trials. In Figure [T, we plot the results for synthetic bandit instance with Bernoulli rewards and with
N = 10,M = 20,K = 10. Next, in Figure [2, we plot the results for synthetic bandit instance with Gaussian re-
wards and with N = 5, M = 20, K = 10 . Finally, in Figure[3] we plot the results for semi-synthetic bandit instance with
100 clusters (i.e., 100 total number of arms) and with N = 5, M = 20, K = 10. Similar to those reported in the main paper,
in these experiments too we observe that our algorithm Ordered-CombUCB fair much better than the baseline CombUCB.

K-Best Arm Identification: Similar to the main paper, we generate a hard banidt instance by sampling arm means
uniformly in [0.45,0.55] and then sampling the rewards from Gaussian distributions with aforementioned means and
projected to [0, 1]. We run our algorithm ordered SAR and the baseline algorithm SAR for rounds 7" € [1000, . . ., 10000].
To mitigate the effect of randomness (as seen in the plots reported in the main paper), we increase number of independent
trials to 1000 and plot the probability of error for both algorithms in Figure[d] Similar to those reported in the main paper,
here too ee find that the failure probability of Ordered SAR is consistently lower than that of SAR.
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Figure 1: Comparison of cumulative regret for CombUCB and Ordered CombUCB on synthetic Bernoulli bandit instance.
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Figure 2: Comparison of cumulative regret for CombUCB and Ordered CombUCB on synthetic Gaussian bandit instance.
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Figure 3: Comparison of cumulative regret for CombUCB and Ordered CombUCB on semi-synthetic bandit instance.
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Figure 4: Comparison of probability of error for SAR and Ordered SAR on Gaussian bandit instance.
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