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ABSTRACT
This work tackles the persistent challenge of image-text retrieval,
a key problem at the intersection of computer vision and natural
language processing. Despite significant advancements facilitated
by large-scale Contrastive Language-Image Pretraining (CLIP) mod-
els, we found that existing methods fall short in bridging the fine-
grained semantic gap between visual and textual representations,
particularly in capturing the nuanced interplay of local visual de-
tails and the textual descriptions. To address the above pitfalls, we
propose a general framework called Local and Generative-driven
Modality Gap Correction (LG-MGC), which devotes to simultane-
ously enhancing representation learning and alleviating the modal-
ity gap in cross-modal retrieval. Specifically, the proposed model
consists of two main components: a local-driven semantic comple-
tion module, which complements specific local context information
that overlooked by traditional models within global features, and
a generative-driven semantic translation module, which leverages
generated features as a bridge to mitigate the modality gap. This
framework not only tackles the granularity of semantic correspon-
dence and improves the performance of existing methods without
requiring additional trainable parameters, but is also designed to be
plug-and-play, allowing for easy integration into existing retrieval
models without altering their architectures. Extensive qualitative
and quantitative experiments demonstrate the effectiveness of LG-
MGC by achieving consistent state-of-the-art performance over
strong baselines. The code is included in the supplementary material.

1 INTRODUCTION
Image and text are two pivotal information carriers to help human
and intelligent agents to better understand the real world. Numer-
ous studies [20, 28, 51, 55] have been undertaken in both the fields
of computer vision and natural language processing to bridge these
two modalities. As a fundamental yet intricate topic, image-text
retrieval benefits a variety of applications such as person search,
sketch-based image retrieval, and food recipe retrieval, to name but
a few [2, 19, 25, 42, 46, 59].

Although Image-text retrieval has garnered significant attention
in recent years [15, 20, 55], the fundamental challenges, such as
accurately and efficiently learning cross-modal embeddings and
bridging the inter-modality gap between images and texts, are far
from being resolved. The former challenge stems from the complex
visual appearances of images, contrasted with the abstract semantics
of texts. Specifically, characterized by rich details and contextual
scene information, it is challenging to effectively capture and distill
the visual information into a meaningful and discriminative repre-
sentation. Furthermore, textual data often represent the same visual
concept in abstract and variable ways. This misalignment necessi-
tates sophisticated feature extraction and representation learning
techniques to effectively capture these nuances. The latter challenge,
intrinsic to cross-modal tasks, arises from inherent representation dis-
parities between vision and language. Vision-based models typically

Ours

CLIP

A 
constructio
n worker is 
standing in 
the street 

and holding 
a red flag.

Image Text

ImageText 0.3246 GirlWorker 0.3353 BoyWorker 0.3390 BearWorker 0.3038 LawnStreet 0.2711

ImageText 0.4282 GirlWorker 0.3537 BoyWorker 0.3640 BearWorker 0.3347 LawnStreet 0.2840

Figure 1: Similarity maps from the vanilla CLIP and our
proposed model on Flickr30K test set. From left to right, the
maps illustrates the smooth patch-wise similarity between
the image patches and the original text, along with four mod-
ified texts (i.e., worker→{girl, boy, bear} and street→lawn).
The brighter the color, the higher the value.

process inputs as continuous and multi-dimensional arrays of pixel
values, making the visual information fundamentally different from
the discrete textual data. Bridging this heterogeneous gap requires
not only mapping different modality data to a common feature
space but also doing so in a way that aligns semantic related but
representation distinct entities.

In addressing the challenges, prevailing image-text retrieval
methods can be classified into two paradigms. The first, known as
the score-based matching approach [3, 6, 27], involves cross-modal
interaction between local visual and textual features to obtain a
cumulative similarity score. However, due to the large depth of in-
teraction between modalities, such methods significantly lag in pro-
cessing speed, making them suboptimal for large-scale cross-modal
retrieval. In response, the embedding-based matching approach,
which employs a dual-encoder architecture, has become increas-
ingly favored for its efficiency in facilitating retrieval [20, 34, 47].
This approach first employs two dedicated encoders to generate
features for images and texts separately, and then cultivates a joint
image-text embedding space by constraining the coarse-grained
alignment between global image and text features. Nevertheless,
this coarse-grained alignment constraint tends to overlook the
intricate semantics of images and texts, ultimately constraining the
image-text matching performance.

Fortunately, recentworks using the large-scale Contrastive Langu
age-Image Pretraining (CLIP) model [4] have shown great potential
in improving the performance of the embedding-based methods
through learning robust features (addressing the first challenge).
However, studies [1, 38] also find that although the performance
of the cross-modal retrieval task is greatly improved, it is still chal-
lenging to learn specific fine-grained visual and textual concepts.
Furthermore, we found that the CLIP model [4] tends to be biased
toward dominant pixels, which causes micro-objects containing
critical information to be represented at greater distances from
the textual representation than the background. To validate this
conclusion, we calculate the similarity between a given image and
the corresponding original text description, as well as with texts
where key information within the image have been altered, such
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as replacing ‘worker’ with ‘girl’ , ‘boy’, and ‘bear’. The similarity
map with the score is shown in Fig. 1. From the results in the first
four columns (in the first row) of the figure, it is evident that CLIP
is insensitive to local changes, because the similarity between the
image and its altered text descriptions aligns with, or is even higher
than (when ‘worker’ is replaced with ‘girl’ and ‘boy’), the similarity
with the original text. However, replacing words in the text that
describe background elements, such as substituting ‘street’ with
‘lawn’, leads to a noticeable decline in the similarity score, dropping
from 0.3246 to 0.2711. Our analysis of the underlying causes behind
this phenomenon highlights that the CLIP model, trained via con-
trastive loss, aims to match an image with the text based on global
features derived from the class token, without explicitly capturing
local features. Although it incorporates numerous self-attention
modules to enhance information exchange among different image
patches, it tends to overlook patches that do not contain dominant
pixels, such as the object ‘worker’. Yet, this oversight is crucial for
fine-grained cross-modal retrieval, particularly in the real-world
scenarios. Therefore, to overcome this pitfall, making the retrieval
model sensitive to both local and global information is worthy of
exploration. In this paper, we propose a straightforward yet potent
approach for the simultaneous explicit and implicit integration of
local information into the global representation.

Furthermore, in addressing the second challenge, namely the
heterogeneous modality gap, existing CLIP models primarily rely
on contrastive loss to narrow the distance between paired data and
widen the gap between unpaired data. In this way, it can map the
image and text into a shared representation space. However, recent
study [32] suggests that the inherent inductive bias of deep neural
architectures leads to a phenomenon known as the ‘cone effect’, and
different encoders will create different cones, which exacerbates
the modality gap in image-text retrieval. Additionally, it also shows
that relying solely on the naive global-focused contrastive learning
that frequently employed by multi-modal models fails to adequately
bridge this gap. In this case, a common solution is to translate data
from one modality to another, and then measure the similarities in
the transformed space. Existing methods often involve training an
additional mapping model to project data from one modality to an-
other. However, fine-tuning the over-parameterized CLIP has posed
significant challenges. Increasing the model’s training parameters
would not only raises the training time and cost, but it may also ex-
acerbates the risk of overfitting and produces unsatisfactory results.
Thus, to address this pitfall, mapping data from different modalities
to the same space without introducing extra parameters is of great
importance. Recently, diffusion-based text-to-image generation
methods have seen significant advancement and been adopted in
various applications, such as semantic segmentation [37, 48], image
captioning [33], and video anomaly detection [50]. This inspires
us to resort to the diffusion model to mitigate the heterogeneous
modality gap between image and text.

Inspired by above discussions, we propose a general Local and
Generative-driven Modality Gap Correction (LG-MGC) mechanism
to capture fine-grained semantics and alleviate the heterogeneous
modality gap for image-text retrieval, which is designed in a plug-
and-play manner for ease of integration. Specifically, the LG-MGC
comprises two main modules: the first is a Local-driven Semantic
Completion (LSC) module, designed to integrate effective local

information into the global representation in both explicit and
implicit manners. Consequently, more comprehensive visual and
textual representations can be learned (addressing challenge 1). To
mitigate the modality gap in the image-text retrieval, we further
develop a Generative-driven Semantic Translation (GST) module
based on a fixed diffusion model. This module is responsible for
the transmission of global semantics, ensuring that the overall
semantic flow can be effectively transferred and aligned across dif-
ferent modalities, thereby narrowing the modality gap (addressing
challenge 2). Through clever collaboration between the LSC and
GST, as shown in the bottom row in Fig.1, our proposed model
significantly enhances the performance of existing cross-modal
retrieval models. Notably, it achieves these improvements without
introducing additional trainable parameters, paving the way for a
more intuitive and effective retrieval process.

The main contributions of this paper are three-fold. (1) We
intuitively unveil the pitfalls of embedding-based image-text re-
trieval approaches and propose a model-agnostic method named
Local and Generative driven Modality Gap Correction (LG-MGC),
which serves as a plug-and-play module to enhance dual-encoder
vision-language frameworks for image-text retrieval. (2) By in-
troducing two semantic enhancement techniques, Local-driven
Semantic Completion (LSC) and Generative-driven Semantic Trans-
lation (GST), we can effectively capture fine-grained cross-modal
information and mitigate the heterogeneous modality gap, without
adding additional trainable parameters to the baseline image-text re-
trieval model. (3) Extensive qualitative and quantitative experiments
have demonstrated the effectiveness of our LG-MGC, achieving
significant performance gains over the original CLIP and other
state-of-the-art methods across two typical benchmarks.

2 RELATEDWORK
2.1 Image-Text Retrieval
Image-Text Retrieval is a typical cross-modal task, whose main
challenge is to learn a shared representation of images and texts
and accuratelymeasure their similarity [7, 16, 20]. According to how
the cross-modal interaction is implemented, image-text matching
methods can be divided into two categories, i.e., score-based and
embedding-based matching. Specifically, in the domain of score-
based approaches, fine-grained cross-modal interactions and se-
mantic alignments occur between local fragments, followed by the
computation of a cumulative similarity score [3, 6, 11, 27, 56]. For
instance, SCAN [27] introduces a cross-modal attention mechanism
to calculate the similarity between words and local areas of an
image, facilitating local semantic alignment. IMRAM [3] delineates
an iterative network designed to enhance multiple stages cross-
modal interaction. NAAF [56] employs dual matching mechanisms
to evaluate both similarity and dissimilarity degrees, thereby en-
abling a comprehensive inference of the overall similarity. In spite
of the effectiveness of these methods, their efficiency is compro-
mised mainly due to reliance on mechanisms such as cross-modal
attention, iterative matching, and graph-based relationship rea-
soning, making them challenging to apply in large-scale cross-
modal retrieval tasks. In the embedding-based matching methods,
there typically contains a text encoder and an image encoder. The
images and texts are encoded independently into a unified em-
bedding space, with semantic similarity assessed through cosine
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similarity [4, 8, 14, 20, 34, 47]. For example, VSE++ [14] designs
a two-stream global feature learning network for fast image-text
matching. GPO [4] proposes a learnable pooling operation to project
local features into the global embedding. Benefiting the simple
calculation method, the embedding-based retrieval model usually
has a fast retrieval speed. However, due to the limited interaction
between images and texts, these models primarily focus on holistic
information during training and align image and text through con-
trastive learning, struggling to capture fine-grained cross-modal
knowledge. Thereby, they face challenges in coping with the intri-
cate heterogeneous modality gap, resulting in lower performance
compared to the score-based methods. Our method leverages a local-
driven semantic completion module learn fine-grained visual and
textual representations. Furthermore, a fixed diffusion model is
utilized to enhance the embedding-based methods through directly
translating textual semantics into the visual domain. By harnessing
external knowledge provided by the pre-trained visual-language
model, our approach not only ensures fast retrieval speeds but also
significantly enhances the model’s retrieval performance.
2.2 Visual Language Pre-training
Vision Language Pre-training (VLP) aims to learn semantic corre-
spondence between vision and language modalities by pre-training
on large-scale image-text pairs. Inspired by the success of Trans-
former based [45] pre-training language model (such as BERT) [10]
and Vision Transformer (ViT) [12], Vision-Language Pre-training
(VLP) has emerged as the prevailing paradigm in learning mul-
timodal representations, demonstrating strong results on down-
stream tasks such as image captioning [9, 33, 40], cross-modal re-
trieval [18, 29, 58], and visual question answering [17, 24, 44]. Most
of these approaches utilize transformer based architectures, which
can be categorized as single-stream and dual-stream pre-training,
depending on their model structure. Specifically, in the single-stream
models [21, 26, 49, 54, 57] , text and visual features are concatenated
and then fed into a single transformer encoder. Although this archi-
tecture consistently achieves high accuracy in downstream tasks,
it exhibits slow retrieval speeds during the inference stage. This
slowdown occurs because it needs to predict the similarity score for
all possible image-text pairs, making it impractical for large-scale
cross-modal retrieval tasks. Instead, dual-stream models [13, 22, 38]
use two separate encoders to extract the textual and visual features
independently, and these two transformer encoders do not share
parameters, making it possible to calculate similarities of image-text
pairs in the linear time complexity. Typical work, such as CLIP [4],
exploits cross-modal contrastive pre-training by encoding image
and text separately. This method allows image and text features to
be computed offline, enabling efficient calculation of similarities
between large-scale image-text pairs. Although this technique sig-
nificantly improves the performance of cross-modal retrieval tasks
by million-scale image-text contrastive pre-training, as discussed in
Sec. 1 (Introduction), the dual-stream method remains challenging
and ineffective for learning specific fine-grained concepts, espe-
cially when the objects do not occupy dominant pixels in the image.
By contrast, our method could incorporate local information into
the global visual and textual representations in both explicit and
implicit manners. Furthermore, it can obtain fine-grained cross-
modal information by the dual-stream models without introducing
additional trainable parameters into them.

3 PROPOSED METHOD
The overall architecture of our proposed Local and Generative-
driven Modality Gap Correction (LG-MGC) model is structured as
a dual-encoder framework as illustrated in Fig. 2, which makes it
practical for large-scale cross-modal retrieval tasks. This architec-
ture utilizes separate comprehensive transformer-based unimodal
encoders to encode the image and text before the computation of
cross-modal contrastive losses. Meanwhile, we further design two
pivotal modules to strengthen the semantic representation learning
and cross-modal alignment, i.e., the Local-driven Semantic Comple-
tion (LSC) module, and the Generative-driven Semantic Translation
(GST) module. Specifically, the LSC focuses on complementing
specific local context information within global features with two
criteria. The first criterion calculates the similarity between the
patch (or word) token and the corresponding global embedding,
and selectively injectes the most dissimilar local information into
the global feature to explicitly enhance the local details. The sec-
ond criterion selects the features with the highest values on each
channel to implicitly encode local information. As a result, our
method leverages both holistic and local representation for effective
image-text retrieval. Furthermore, due to the inherent inductive
bias within deep neural architectures, the intrinsic modality gap
challenge has never been effectively resolved. Therefore, we further
propose the GST module tasked with transmitting global semantics.
This module ensures that the overall semantic content is effectively
transferred and aligned across various modalities. Through the
strategic integration of the LSC and GST, our proposed method sig-
nificantly boosts the performance of existing cross-modal retrieval
models without requiring additional parameters.
Problem formulation. Given a set of image and text pairs, the
vision and text encoder aim to encode the image𝑉 and text𝑇 . After
that, the model is required to generate a similarity score 𝑆 (𝑡,𝑉 )
between a text query 𝑡 ∈ 𝑇 and each image based on the relevance
of the textual representation and the visual feature.
3.1 Vanilla Image-Text Retrieval Model
Capitalizing on the renowned simplicity and substantial knowledge
transfer potential of the CLIP model [38], we initialize the proposed
model with the full CLIP image and text encoder to ensure it with
preliminary cross-modal alignment capability, thereby establishing
a solid foundational baseline.

Image Encoder. Following the success of vision transformer
[12], the image encoder directly takes image patches as the input.
By slicing an image into multiple patches, a patch sequence 𝑉 =

[𝑣1, 𝑣2, ..., 𝑣𝑛] is used to form a simple linear projection of pixels. To
enhance the relationships among the patches, the class token [CLS]
embedding is inserted into the sequence. Positional embedding is
added to each patch token to encode the spatial information. The
image encoder consists of a stack of 𝐿𝑣 transformer layers. Let 𝐹 𝑣

𝑙
be the input sequence of the 𝑙-th vision transformer layer, and then
the transformation at this layer produces an output sequence that
subsequently becomes the input for the next layer (𝑙 + 1):

𝐹 𝑣
𝑙+1 = 𝐹

𝑣
𝑙
+𝑀𝐿𝑃 (𝐿𝑁 (𝐹 𝑣

𝑙
)), 𝐹 𝑣

𝑙
= 𝐹 𝑣

𝑙
+𝑀𝐻𝑆𝐴(𝐿𝑁 (𝐹 𝑣

𝑙
)), (1)

where𝑀𝑆𝐻𝐴(·) is themulti-head self-attention layer,𝑀𝐿𝑃 (·)means
the multi-layer perception network, and 𝐿𝑁 (·) denotes the layer
normalization. The input of the first transformer block is just the
patch sequence 𝑉 . Finally, the output of the last vision transformer
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Figure 2: The pipeline of our framework includes two key components: LSC and GST. The LSC focuses on complementing
specific local information within global representations in both explicit and implicit manners. Meanwhile, the GST is dedicated
to transmitting global semantics into a unified feature space to mitigate the modality gap between image and text.

layer can be represented as 𝐹 𝑣 = {𝑓 𝑣
𝑐𝑙𝑠
, 𝑓 𝑣1 , ..., 𝑓

𝑣
𝑛 }, where 𝑓 𝑣𝑐𝑙𝑠 de-

notes the global feature from the class token [CLS], and 𝑓 𝑣
𝑖
denotes

the local feature from 𝑖-th patch token. Finally, the 𝑓 𝑣
𝑐𝑙𝑠

is linearly
projected into the image-text embedding space to obtain the ulti-
mate global visual representation 𝐺𝑣 .

Text Encoder. Similar to the vision encoder, we utilize the CLIP
text encoder to extract the textual representation, which contains
a stack of 𝐿𝑡 standard transformer layers modified by Radford et
al. [38]. Following CLIP, the lower-cased byte pair encoding with a
49, 152 vocab size [43] is firstly employed to tokenize the input text
description. In this way, we can convert the input text into a token
sequence 𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑚]. Then, the text description bracketed
with [SOS] and [EOS] tokens to indicate the start and end of the se-
quence 𝑇 . After that, the tokenized text 𝑇 = [𝑡𝑠𝑜𝑠 , 𝑡1, 𝑡2, ..., 𝑡𝑚, 𝑡𝑒𝑜𝑠 ]
is fed into the transformer and exploits correlations of each word
by masked self-attention, resulting in a transformed textual repre-
sentation 𝐹𝑇 = {𝑓 𝑡𝑠𝑜𝑠 , 𝑓 𝑡1 , ..., 𝑓

𝑡
𝑚, 𝑓

𝑡
𝑒𝑜𝑠 }. Finally, the [EOS] token 𝑓 𝑡𝑒𝑜𝑠

is linearly projected into the image-text embedding space to obtain
the ultimate text representation 𝐺𝑡 .

Contrastive Learning.After the feature extracting, mainstream
methods for image-text retrieval typically rely on the global visual
and textual feature𝐺𝑣 and𝐺𝑡 for similarity calculation. The model
is then fine-tuned using a contrastive learning loss as follows:

L𝑜𝑟𝑖 =
1
2
(L𝑣2𝑡 + L𝑡2𝑣), (2)

with

𝐿𝑣2𝑡 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 ((𝐺𝑣

𝑖
)⊤𝐺𝑡

𝑖
/𝜏1)∑𝑁

𝑗=1 𝑒𝑥𝑝 ((𝐺𝑣𝑖 )
⊤𝐺𝑡

𝑗
/𝜏1)

,

𝐿𝑡2𝑣 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 ((𝐺𝑡

𝑖
)⊤𝐺𝑣

𝑖
/𝜏1)∑𝑁

𝑗=1 𝑒𝑥𝑝 ((𝐺𝑡𝑖 )
⊤𝐺𝑣

𝑗
/𝜏1)

,

(3)

where 𝑁 is the number of matched image-text pairs. 𝜏1 denotes the
temperature hyperparameter, which is a trainable variable. By the

contrastive loss, the model can maximize the similarity between
positive image-text pairs and minimize the similarity between neg-
ative pairs, thereby realizing cross-modal retrieval.
3.2 Local-Driven Semantic Completion
Despite the success of previous methods, we found that relying on
global embeddings to establish semantic correspondence between
an entire image and a complete sentence can cause the model to
overlook detailed image and text semantics. This oversight conse-
quently impedes performance improvements in image-text retrieval.
As shown in Fig. 1, we can observe that background patches in
the image consistently exhibit higher similarity with the global
visual representation in the vanilla CLIP model. This phenomenon
indicates that the global-based image-text contrasting tends to rely
heavily on dominant pixels (e.g., the background), while neglecting
some significant local object information (e.g., the worker). As a
result, the learned retrieval model is insensitive to the variance of
objects, further making the model struggles to achieve satisfied
fine-grained cross-modal retrieval performance.

Therefore, we design a local-driven semantic completion mech-
anism, enabling the model to simultaneously leverage global and
local information during the optimization process. Instead of di-
rectly concatenating features extracted from patch and word to-
kens with the global feature, we meticulously develop two criteria
to integrate local information into the global features, employ-
ing both explicit and implicit strategies, respectively. Specifically,
in the explicit manner, given the encoded visual representation
𝐹 𝑣 = {𝑓 𝑣

𝑐𝑙𝑠
, 𝑓 𝑣1 , ..., 𝑓

𝑣
𝑛 } from the image encoder, we first calculate

the similarity 𝑆𝑣 =< 𝑓 𝑣
𝑐𝑙𝑠
, {𝑓 𝑣

𝑖
}𝑛
𝑖=1 > between each local feature

𝑓 𝑣
𝑖
and the global feature 𝑓 𝑣

𝑐𝑙𝑠
, and 𝑆𝑣 ∈ 𝑅1×𝑛 . After that, we sort

the 𝑆𝑣 ∈ 𝑅1×𝑛 in ascending order, and opt to integrate the first 𝐾
local region features into the global feature 𝑓 𝑣

𝑐𝑙𝑠
. In other words,

the 𝐾 local features most dissimilar to the global feature 𝑓 𝑣
𝑐𝑙𝑠

are
selected to enhance it. This process is straightforward and makes
sense, because the local features that do not have a high similarity to
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global features inevitably contain the ignored information. Through
this strategy, we can explicitly integrate the overlooked local visual
representations into the global feature, thereby obtaining a refined
global feature 𝐹 𝑣𝑒𝑥𝑝 ∈ 𝑅𝑛×2𝑑 that is explicitly enhanced based on
the selected local regions 𝐹 𝑣

𝑠𝑒𝑙
∈ 𝑅𝐾×𝑑 :

𝐹 𝑣
𝑠𝑒𝑙

= {𝑓 𝑣
𝑘
}𝑆
𝑣
𝐾

𝑘=𝑆𝑣1
, 𝑤𝑖𝑡ℎ 𝑆𝑣 = 𝑠𝑜𝑟𝑡𝑛 (𝑆𝑣),

𝐹 𝑣𝑒𝑥𝑝 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑑 (𝑓 𝑣𝑐𝑙𝑠 , 𝑀𝑒𝑎𝑛𝑘 (𝐹
𝑣
𝑠𝑒𝑙

)),
(4)

where 𝑠𝑜𝑟𝑡𝑛 (·), 𝐶𝑜𝑛𝑐𝑎𝑡𝑑 (·), and 𝑀𝑒𝑎𝑛𝑘 (·) denote the similarity
ranking, feature concatenation, and mean pooling operation along
the dimension 𝑛, 𝑑 , and 𝐾 , respectively.

In the implicit manner, we automatically select the features with
the greatest values on each channel. These features are expected to
contain local information about important visual concepts and key
entities for image-text contrasting, regardless of the foreground
and background. Specifically, as shown in Fig. 2 (top), given the
encoded local visual feature 𝐹 𝑣

𝑙𝑜𝑐
= {𝑓 𝑣1 , ..., 𝑓

𝑣
𝑛 } ∈ 𝑅𝑛×𝑑 , we first

sort them in descending order along dimension 𝑑 , and choose to
incorporate the forefront𝑀 responses into the global feature:

𝐹𝑠𝑒𝑙
𝑙𝑜𝑐

= {[𝐹 𝑣
𝑙𝑜𝑐

]𝑚}1≤𝑚≤𝑀 , 𝑤𝑖𝑡ℎ 𝐹 𝑣
𝑙𝑜𝑐

= 𝑠𝑜𝑟𝑡𝑑 (𝐹 𝑣𝑙𝑜𝑐 ),

𝐹 𝑣𝑖𝑚𝑝 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑑 (𝑓 𝑣𝑐𝑙𝑠 , 𝐹
𝑠𝑒𝑙
𝑙𝑜𝑐

) .
(5)

Through this strategy, we can integrate the local region features
into the global feature 𝑓 𝑣

𝑐𝑙𝑠
with an implicit manner, and obtain-

ing a global feature 𝐹 𝑣
𝑖𝑚𝑝

that is implicitly enhanced by the local
information. Similarly, we apply the same process for the textual
representation 𝐹𝑇 = {𝑓 𝑡𝑠𝑜𝑠 , 𝑓 𝑡1 , ..., 𝑓

𝑡
𝑚, 𝑓

𝑡
𝑒𝑜𝑠 }, and obtain the explicit

and implicit local-enhanced texture feature 𝐹 𝑡𝑒𝑥𝑝 and 𝐹 𝑡
𝑖𝑚𝑝

. Subse-
quently, we can calculate the local-driven contrastive loss L𝑙𝑜𝑐1 and
L𝑙𝑜𝑐2 regarding with the enhanced visual feature 𝐹 𝑣𝑒𝑥𝑝 , 𝐹 𝑣𝑖𝑚𝑝 , and
the texture feature 𝐹 𝑡𝑒𝑥𝑝 , 𝐹 𝑡𝑖𝑚𝑝 by Eq. (2) and Eq. (3), respectively.
3.3 Generative-driven Semantic Translation
Recent studies reveal that the inherent inductive bias within deep
neural architectures results in varying embedding cones across
different encoders, highlighting the intrinsic challenge in the image-
text retrieval, i.e., the heterogeneous modality gap. Moreover, ex-
clusive reliance on contrastive learning has been demonstrated
to be insufficient for overcoming this challenge effectively [32].
Thus, it becomes imperative to identify and develop strategies to
mitigate the modality gap, with the ultimate objective of enhancing
the performance of image-text retrieval. Although one modality’s
representation can be mapped to another modality’s feature space
through a complex learnable mapping network, this approach not
only increases training time but also adds to the complexity of
the model. Especially when data is scarce, it may lead to model
overfitting and result in a decline in the retrieval performance. In
fact, our ablation studies in Sec. 4.3 have also demonstrated this
point. Therefore, we design a generative-driven semantic trans-
lation module based on an off-the-shelf text-to-image generation
model [39], which can narrow the modality gap without increasing
any trainable parameters on the vanilla CLIP model.

The objective of the GST is to directly generate the corresponding
image embedding for any given text query. Subsequently, the re-
trieval model is optimized using both the original visual and textual
representations along with the generated image embedding. This

involves two sub-problems: how to perform cross-modal generation
from text to image, and how to align the generated visual representa-
tionwith the featuremanifold of the original visual data. For the first
problem, we propose harnessing the superior generative capabilities
of the DALL-E 2 [39] to translate textual features into the visual
domain. Recently, this model has demonstrated excellent perfor-
mance in text-to-image generation, pushing state-of-the-art across
a broad spectrum of vision and language tasks [33, 37]. Furthermore,
because it consists of two-stages (i.e., a prior stage that generates
CLIP image embedding given a text description, and a decoder stage
that synthesizes an image conditioned on the image embedding),
we can easily obtain translated textual feature under CLIP image
embedding space with its prior stage. In this way, we can mitigate
potential noises introduced during the image generation process
and ensure a more seamless and accurate semantic translation.
Technically, given a text 𝑇 , its translated image embedding 𝑇𝑔𝑒𝑛
can be calculated as follows:

𝑇𝑔𝑒𝑛 = 𝑓𝜃 (𝑇
(𝑒 )
𝑔𝑒𝑛 , 𝑒,𝑇 ), 𝑤𝑖𝑡ℎ 𝑒 ∼ [1, 𝐸], (6)

where 𝑓𝜃 (·) is a Gaussian diffusion model, which can generate an
image embedding conditioned on the text 𝑇 . 𝑒 means the iteration
time, 𝑇 (𝑒 )

𝑔𝑒𝑛 denotes the generated image embedding at time 𝑒 , and
𝑇
(0)
𝑔𝑒𝑛 ∼ N(0, 1) means the randomly sampled Gaussian noise.
Through the diffusion model, we can translate the textual fea-

ture into the visual domain. However, this off-the-shelf process
cannot guarantee that the translated image embedding is under
the unified feature distribution with the original image features,
thereby imposing limitations onmodel optimization (i.e., the second
sub-problem). Therefore, to establish connection between the gen-
erated embedding and the original visual feature, as shown in Fig. 2
(right), we introduce a projection layer𝑀𝐿𝑃𝑠 (·) after the diffusion
model, which mirrors the architecture and shares parameters with
the terminal layer of the image encoder. The transformed image
embedding 𝑇𝑔𝑒𝑛 can be derived as:

𝑇𝑔𝑒𝑛 = 𝑀𝐿𝑃𝑠 (𝑇𝑔𝑒𝑛) . (7)

Finally, we take the transformed image embedding𝑇𝑔𝑒𝑛 as a bridge,
and conduct contrastive learning between the 𝑇𝑔𝑒𝑛 and the global
visual and textual features 𝐺𝑣 and 𝐺𝑡 , respectively. Overall, the
generative-driven loss can be defined as:

L𝑔𝑒𝑛 =
1
2
(L𝑔2𝑡 + L𝑔2𝑣), (8)

with

𝐿𝑔2𝑡 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 ((𝑇 𝑖𝑔𝑒𝑛)⊤𝐺𝑡𝑖 /𝜏2)∑𝑁
𝑗=1 𝑒𝑥𝑝 ((𝑇 𝑖𝑔𝑒𝑛)⊤𝐺𝑡𝑗/𝜏2)

,

𝐿𝑔2𝑣 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (((𝑇 𝑖𝑔𝑒𝑛)⊤𝐺𝑣𝑖 /𝜏2)∑𝑁
𝑗=1 𝑒𝑥𝑝 ((𝑇 𝑖𝑔𝑒𝑛)⊤𝐺𝑣𝑗 /𝜏2)

,

(9)

where 𝜏2 denotes the trainable temperature hyperparameter.
3.4 Training and Inference
During training, we apply a combination of the original, local-
driven, and generative-driven losses to fine-tune the image and text
encoder in the CLIP model for fine-grained cross-modal retrieval,
formulated as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑜𝑟𝑖 + 𝛼L𝑙𝑜𝑐1 + 𝛽L𝑙𝑜𝑐2 + 𝛾L𝑔𝑒𝑛, (10)
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where 𝛼 , 𝛽 , and 𝛾 are the hyper-parameter to balance the four loss
items. Jointly optimizing the network by Eq. (10), we could finally
learn local-sensitive cross-modal representation and effectively
mitigate the heterogeneous modality gap. Our method is plug-
and-play and does not alter the architecture of the dual-encoder
CLIP model. During inference, like the vanilla CLIP, we extract the
representation of a given query (image or text) using the corre-
sponding encoder, and find the best matching target in the database
by comparing cosine distances between all combinations.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Datasets & Evaluation Metrics.We evaluate the proposed frame-
work on the typical Flickr30K [53] and MS-COCO [5] datasets,
where each image is annotated with 5 texts. Following the dataset
split in [3, 27], the Flickr30K dataset contains 29, 000, 1, 000, and
1, 014 images for training, testing, and validation, respectively. The
MS-COCO dataset contains 123, 287 images. Following [35], we use
113, 287 images for training, 5, 000 images for validation, and 5, 000
images for testing. As a common practice in information retrieval,
we measure the performance by the Recall at K (R@K) and RSUM.
The higher R@K indicates better performance.

Implementation Details. Our method is designed to be plug-
and-play, meaning it can be easily applied to existing image-text
retrieval models without changing their original architectures. To
validate the improved performance of our method in cross-modal
retrieval, we conduct main experiments based on the popular pre-
trained dual-encoder framework CLIP, including both ViT-B/16
and ViT-L/14 configurations [38]. The diffusion model (in Sec. 3.3)
pertains to DALL-E 2 [39]. During training, the parameters of the
image encoder and text encoder in CLIP are updated by the original
contrastive loss, as well as the proposed local-driven and generative-
driven loss. The image size is standardized at 224 × 224, while the
maximum length of the text token sequence is defined as 77. We fine-
tune the model for 6 epochs with batch size of 32. Adam Optimizer
is used as the training optimizer, with an initial learning rate of
1 × 10−5, and the cosine learning rate decay is applied [23]. As the
investigation in Sec. 4.3, the hyperparameters 𝐾 ,𝑀 , 𝛼 , 𝛽 , and 𝛾 are
set to 20, 5, 1, 0.98, and 0.01, respectively. More details of our model
can be found in the Code.

4.2 Comparison with State-of-the-art Methods
ComparedMethods. To validate the effectiveness of our approach,
we evaluate our method by comparing its performance with a
number of state-of-the-art methods including without pre-training
(i.e., SCAN [27], IMRAM [3], VSE [4], SGRAF [11], NAAF [56],
CHAN [36], HREM [16], and NUIF [55]), partial pre-training (i.e.,
VSE [4], VSRN++ [30], MV-VSE [31], CHAN [36], HREM [16], and
NUIF [55]), and pre-training (CLIP𝑉𝑖𝑡−𝐵/16 and CLIP𝑉𝑖𝑡−𝐿/14) [38]
methods. Specifically, the methods without pre-training usually
employ the Faster RCNN [41] and ResNet-101 as the image encoder
to extract region visual features, and adopt the 𝐵𝑖𝐺𝑅𝑈 as the text
encoder to learn textual feature. The partial pre-trainingmethods re-
place the text encoder in the without pre-training with a pre-trained
𝐵𝐸𝑅𝑇 [10]. The pre-training models have been optimized with
amounts of text-image pairs, and show promising alignment ability
compared with the without pre-training and partial pre-training

methods. We adopt the typical dual-encoder work 𝐶𝐿𝐼𝑃 [38] as
the baseline, and integrate the proposed modules into it. Note that,
the proposed method is plug-and-play, which does not affect the
architecture of the 𝐶𝐿𝐼𝑃 model.
Results Analysis. Table 1 shows the performance comparison
with the state-of-the-art without pre-training, partial pre-training,
and pre-training cross-modal retrieval models. From the table, we
can draw the following conclusions: (1) Among all the methods,
the approaches without pre-training usually achieve low retrieval
results. Compared with these approaches, although the partial
pre-training methods just replace the text encoder with the pre-
trained BERT model [10], they achieve remarkable improvements
across both datasets, which indicates that making reasonable use
of external knowledge is beneficial to facilitate the comprehension
of complex data. Furthermore, by substituting the image encoder
of the partial pre-training methods with the pre-trained model, the
retrieval results can experience further enhancement. (2) We apply
the proposed framework to partial pre-training method VSE∞ [4]
and pre-training method 𝐶𝐿𝐼𝑃 [38] (denoted as +𝐿𝐺-𝑀𝐺𝐶). The
results are annotated with the purple background, which reveal
that the proposed method can improve the performance of all
baseline models, and achieve new state-of-the-art results on almost
all metrics. Specifically, on the Flickr30K test set, we increase the
RSUM of VSE∞ [4], CLIP𝑉𝑖𝑡−𝐵/16, and CLIP𝑉𝑖𝑡−𝐿/14 by 3.2%, 10%,
and 7.2%, respectively. On the MS-COCO test set, our method can
also exceed the baselines with satisfactory improvements from 1.7%
to 11.1% in terms of the RSUM. Note that, in the 𝐶𝐿𝐼𝑃+𝐿𝐺-𝑀𝐺𝐶
method, consistent with the vanilla CLIP model, we just utilize the
features derived from the class tokens for testing. The gains indicate
that our method is capable of extracting local knowledge beneficial
for fine-grained cross-modal retrieval and mitigating the modality
gap between the image and text, proving the effectiveness of the
proposed approach. (3) By integrating the retrieval results derived
from global representations with the results based on local features,
we observe further performance enhancements, as illustrated at
the bottom of Table 1 marked with pink background. Additionally,
we find that the ensemble results closely align with those from
𝐶𝐿𝐼𝑃+𝐿𝐺-𝑀𝐺𝐶 , further demonstrating that the proposed modality
gap correction module has already enhanced the CLIP model’s
ability to capture local information. Due to limited space, more
quantitative results can be found in our supplementary material.

4.3 Ablation Studies
Influence of Different Network Components. To analyze our
proposed method and show the benefits of each module, we design
several variants of our approach. Specifically,

(1) Baseline: we adopt the typical 𝐶𝐿𝐼𝑃𝑉𝑖𝑇−𝐵/16 [38] as the
Baseline model, and fine-tune it on the Flickr30K dataset.

(2) +Local𝑒𝑥𝑝 : this variant incorporates the explicit LSC module
into the Baseline model. By comparing it with the Baseline, we
can evaluate the effect of the proposed strategy that explicitly
incorporates the local representation into the global features.

(3) +Local𝑓 𝑢𝑙𝑙 : this variant incorporates the implicit LSC mod-
ule into the +Local𝑒𝑥𝑝 . Since both the explicit and implicit LSC
modules do not add any trainable parameters to the Baseline, we
can conveniently explore the influence of local information by
comparing it with the Baseline. Furthermore, by comparing it with
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Table 1: Comparisons with state-of-the-art methods on Flickr30k and MSCOCO. † denotes the improved results by the authors
compared to the original paper, while ‡ means ensemble results of two models.

Data Split→ Flickr30K (1K) MS-COCO (5K)
Eval Task→ Image-to-Text Text-to-Image RSUM Image-to-Text Text-to-Image RSUMMethod ↓ R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
(Faster-RCNN, ResNet-101, BiGRU, without pre-training)
SCAN(𝐸𝐶𝐶𝑉 ′18) [27] 67.4 90.3 95.8 48.6 77.7 85.2 465.0 50.4 82.2 90.0 38.6 69.3 80.4 410.9
IMRAM(𝐶𝑉𝑃𝑅′20) [3] 74.1 93.0 96.6 53.9 79.4 87.2 484.2 53.7 83.2 91.0 39.7 69.1 79.8 416.5
SGRAF(𝐴𝐴𝐴𝐼 ′21) [11] 78.4 94.6 97.5 58.2 83.0 89.1 500.8 55.8 83.0 91.0 42.0 72.4 82.1 426.3
VSE∞(𝐶𝑉𝑃𝑅′21) [4] 76.5 94.2 97.7 56.4 83.4 89.9 498.1 56.6 83.6 91.4 39.3 69.9 81.1 421.9
NAAF(𝐶𝑉𝑃𝑅′22) [56] 81.9 96.1 98.3 61.0 85.3 90.6 513.2 58.9 85.2 92.0 42.5 70.9 81.4 430.9
CHAN(𝐶𝑉𝑃𝑅′23) [36] 79.7 94.5 97.3 60.2 85.3 90.7 507.8 60.2 85.9 92.4 41.7 71.5 81.7 433.4
HREM(𝐶𝑉𝑃𝑅′23) [16] 81.4 96.5 98.5 60.9 85.6 91.3 514.3 60.6 86.4 92.5 41.3 71.9 82.4 435.1
NUIF(𝐴𝐴𝐴𝐼 ′24) [55] 84.3 96.3 98.0 60.7 85.0 90.7 515.1 61.8 86.8 93.1 43.3 72.4 82.6 439.8
(Faster-RCNN, ResNet-101, BERT, partial pre-training)
VSRN++(𝑇𝑃𝐴𝑀𝐼 ′22) [30] 79.2 94.6 97.5 60.6 85.6 91.4 508.9 54.7 82.9 90.9 42.0 72.2 82.7 425.4
MV-VSE(𝐼 𝐽𝐶𝐴𝐼 ′22) [31] 82.1 95.8 97.9 63.1 86.7 92.3 517.5 59.1 86.3 92.5 42.5 72.8 83.1 436.3
CHAN(𝐶𝑉𝑃𝑅′23) [36] 80.6 96.1 97.8 63.9 87.5 92.6 518.5 59.8 87.2 93.3 44.9 74.5 84.2 443.9
HREM(𝐶𝑉𝑃𝑅′23) [16] 84.0 96.1 98.6 64.4 88.0 93.1 524.2 64.0 88.5 93.7 45.4 75.1 84.3 450.9
NUIF(𝐴𝐴𝐴𝐼 ′24) [55] 85.6 97.2 98.6 69.8 90.4 94.4 535.9 67.8 89.8 94.8 49.9 77.9 86.7 439.8
VSE†∞(𝐶𝑉𝑃𝑅′21) [4] 80.5 96.1 98.0 61.3 85.9 91.5 513.3 59.1 85.1 92.2 42.4 73.0 83.0 434.8
+LG-MGC (Ours) 82.4 95.8 98.0 61.5 86.9 91.9 516.5 59.0 85.8 92.4 42.8 73.1 83.4 436.5
(Dual-Encoder, pre-traning)
CLIP†

𝑉𝑖𝑡−𝐵/16 88.4 98.7 99.5 76.1 94.6 97.2 554.5 65.2 87.3 92.2 50.3 76.0 84.2 455.2
+LG-MGC (Ours) 92.6 99.5 99.7 78.9 95.5 98.2 564.5 67.6 88.5 93.8 51.2 77.9 86.4 465.3
CLIP†

𝑉𝑖𝑡−𝐿/14 90.7 99.0 99.6 77.3 94.6 97.7 558.9 65.7 87.2 92.8 50.2 76.6 84.9 457.4
+LG-MGC (Ours) 92.4 99.2 99.6 80.3 96.2 98.4 566.1 66.3 87.7 93.4 51.6 77.2 85.7 461.9
CLIP‡

𝑉𝑖𝑡−𝐵/16 (Ensemble) 93.1 99.7 99.8 78.9 95.5 98.2 565.2 68.1 88.6 94.0 51.1 77.8 86.3 466.0
CLIP‡

𝑉𝑖𝑡−𝐿/14 (Ensemble) 92.7 99.2 99.6 80.3 96.3 98.3 566.4 67.3 87.6 93.8 51.6 77.1 85.7 463.1

the +Local𝑒𝑥𝑝 , we can evaluate the effect of the implicit LSC module
on the retrieval task.

(4) +G𝑡𝑟𝑎𝑖𝑛 : this variant adds the GST module into the Baseline,
in which the generative model (i.e., the DALL-E 2 [39]) is trained
with the Baseline in an end-to-end manner.

(5) +G𝑓 𝑖𝑥 : this variant fixes the parameters of the generative
model in +G𝑡𝑟𝑎𝑖𝑛 , leaving the rest unchanged. By comparing it with
the Baseline, the effectiveness of the proposed GST can be verified.
Furthermore, by contrasting it with the +G𝑡𝑟𝑎𝑖𝑛 , we can evaluate
the influence of varying generative mechanisms.

(6) +Local𝑓 𝑢𝑙𝑙&G𝑓 𝑖𝑥 (Ours): this variant integrates both the
explicit and implicit LSC module along with the fixed GST module
into the Baseline, thereby allowing us to verify the effectiveness of
our proposed approach.

Table 2: Ablation studies on Flickr30K dataset.

Eval Task→ Image-to-Text Text-to-Image RSUMMethod ↓ R@1 R@5 R@10 R@1 R@5 R@10
CLIP†

𝑉𝑖𝑡−𝐵/16 88.4 98.7 99.5 76.1 94.6 97.2 554.5
+Local𝑒𝑥𝑝 91.8 98.8 99.9 76.9 94.9 97.4 559.8
+Local𝑎𝑙𝑙 91.9 99.1 99.7 77.6 95.6 98.0 561.9
+G𝑡𝑟𝑎𝑖𝑛 88.2 98.2 99.8 75.9 94.3 97.7 552.9
+G𝑓 𝑖𝑥 91.9 99.3 99.8 78.1 95.3 98.1 562.4
+Local𝑎𝑙𝑙&𝐺𝑓 𝑖𝑥 92.6 99.5 99.7 78.9 95.5 98.2 564.5

Table 2 shows the ablation study results. From the table, we can
conclude the following observations: (1) as expected, among all the
variants, the Baseline gets theweakest performance, and ourmethod
could improve the base model by a clear margin. By comparing
it with the +Local𝑒𝑥𝑝 , +Local𝑓 𝑢𝑙𝑙 , and G𝑓 𝑖𝑥 , we can infer that the
performance of the Baseline is constrained due to its inadequate
depiction of the fine-grained information and the inefficient ability
in mitigating the modality gap. (2) The results from +Local𝑒𝑥𝑝 and
+Local𝑓 𝑢𝑙𝑙 indicate that capturing the local information, especially
in the explicit manner, is critical for the fine-grained image-text

retrieval task. (3) Compared with the Baseline and G𝑓 𝑖𝑥 , the variant
+G𝑡𝑟𝑎𝑖𝑛 demonstrates a clear decline in terms of the RSUM. We
speculate that this phenomenon primarily arises from the neces-
sity of sufficient paired data to fully train the generative model.
Otherwise, fine-tuning the model without extra design may lead
to overfitting, thereby affecting the performance. (4) The results
shown in the last line in Table 2 are from our full model. As can
be seen, it consistently outperforms other incomplete solutions,
which indicates that both the LSC and GST module help improve
the alignment of cross-modal embeddings.
Influence of the Size of Local Information. We investigate the
influence of two main parameters involved in our proposed local-
driven semantic completion strategy: the number of local region
features𝐾 and the response𝑀 that integrated into the global feature
in Sec. 3.2. Specifically, we train models for𝐾 ∈ {5, 10, 20, 30, 40, 50}
and 𝑀 ∈ {1, 3, 5, 7, 9, 11}, and the results are depicted in Fig. 3.
From Fig. 3 (a), we can observe that with more local information
incorporated (5→20), better retrieval results can be obtained, and
the performance converges at 𝐾 = 20. The results in Fig. 3 (b)
suggest that with the increase of the local response (1→5), the
performance raises accordingly. When more local information is
added, the final performance exhibits a certain degree of decline.
Therefore, we set 𝐾 = 20 and𝑀 = 5 in our experiments.
Influence of Different Hyperparameters. Fig. 4 shows the effect
of the tradeoff parameters 𝛼 , 𝛽 , and 𝛾 in Eq. (10). Specifically, we
vary 𝛼 from 0.7 to 1.2 (in increments of 0.1), vary 𝛽 from 0.94 to 1.00
(in increments of 0.01), and vary𝛾 from 0.005 to 0.025 (in increments
of 0.005) to control the weight of the explicit and implicit local-
driven losses, as well as the generative-driven loss. From Fig. 4 (a),
we find that the model performance increases with the increment
of 𝛼 and the optimal value is 1.0, while the performance decreases
when 𝛼 goes beyond the optimal value. Additionally, from Fig. 4
(b) and (c), we can observe that the optimal value of the 𝛽 and 𝛾
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are 0.98, and 0.01, respectively. We finally set 𝛼 = 1.0, 𝛽 = 0.98 and
𝛾 = 0.01 in our experiments.(a) (b)

(a) (b)
Figure 3: Performance variation with respect to different
sizes of local information, 𝐾 and𝑀 , on Flickr30K dataset.

(a) (b) (c)

(a) (b)

Figure 4: Performance variation with respect to different
parameters 𝛼 , 𝛽 , and 𝛾 on Flickr30K dataset.

4.4 Visualization
Visualization of the Patch-Wise Similarity Maps. To quali-
tatively verify whether the proposed method can effectively in-
corporate fine-grained local features into the global embeddings,
following [52], we calculate the similarity between each image
patch and the global textual feature, which could be interpreted
as the contribution of each patch feature to the global feature. For
each sample, we visualized the similarity maps based on both the
CLIP𝑉𝑖𝑡−𝐵/16 and our model, and the results are shown in Fig. 5.
Note that, in the figure, a brighter color indicates higher similarity,
and a darker color means lower similarity. Specifically, from the
qualitative results between each patch and the global feature (the
first column of Fig. 5), we can observe that our method can pre-
cisely capture both objects (e.g., man and women) and environment
information, while the CLIP𝑉𝑖𝑡−𝐵/16 tends to focus on the domi-
nated scenes. Correspondingly, compared with the CLIP𝑉𝑖𝑡−𝐵/16,
our method can obtain a higher similarity (indicated by the blue
rectangular) between the image and text. Furthermore, when we
replace the word man in the text with girl, boy, and panda (in the
middle three columns), the proposed method shifts its focus away
from the image areas that containman. In contrast, the results from
CLIPVit-B/16 show almost no change compared to the similarity
with the original text, indicating its insensitivity to fine-grained
local information. Additionally, when we replace the word lake
with grassland (in the last column), the CLIP model completely
ignores all areas of the image, whereas our method still accurately
focuses on objects related to the unchanged words, such asmen and
women. Due to limited space, more qualitative results and detailed
analysis are reported in the supplementary material.

Visualization of the Modality Gap. To testify whether our
method can alleviate the heterogeneous modality gap, we com-
pute the cross-modal distance and visualize it following the recipe
from [32] in Fig. 6. Specifically, given 1000 image-text pairs from
the test set of Flickr30K dataset, we first calculate the similarity
between different samples based on euclidean distance (i.e., the

BoyMan 0.3981

GirlMan 0.3523 PandaMan 0.3421ImageText 0.3550 BoyMan 0.3609

GirlMan 0.3793 PandaMan 0.3971ImageText 0.4430

A woman dressed in a
purple sweater is leaning
back on a park bench.

A young shirtless man
in red and black shorts

stands on a snowy cliff and
looks out over the lake.

BoyWomen 0.2641 GirlWomen 0.2720 KangarooWomen 0.2689 BeachPark 0.2421

BoyWomen 0.2552 KangrooWomen 0.2326 BeachPark 0.2613

ImageText 0.2713

ImageText 0.3395

GrasslandLake 0.3214

GrasslandLake 0.3653

GirlWomen 0.2786

CLIP

CLIP

Ours

Ours

Figure 5: Similarity maps from the vanilla CLIP and our
proposed model on Flickr30K test set. The brighter the color,
the higher the value.

CLIP - (gap: 0.81) Ours - (gap: 0.62)

(a) (b)

Figure 6: Visualization of the modality gap for the CLIP (a)
and our proposed method (b).
distance between the blue dots and orange dots in Fig. 6). More-
over, the modality gap (shown in the top of Fig. 6) is assessed as
the the difference between the center of image embeddings and
text embeddings by Δ𝑔𝑎𝑝 = 1

𝑛

∑𝑛
𝑖=1 𝑓

𝑣
𝑐𝑙𝑠𝑖

− 1
𝑛

∑𝑛
𝑖=1 𝑓

𝑡
𝑒𝑜𝑠𝑖

. From the
comparison between Figure 6 (a) and (b), we can observe that the
proposed model could clearly reduce the gap between different
modalities. A possible explanation for this behavior could be that
mapping textual features directly into the visual feature space can
more effectively reduce the distance between them.

5 CONCLUSIONS
In this paper, to learn fine-grained semantic information and es-
tablish robust correspondence between image and text, we design
a plug-and-play approach called LG-MGC. Our proposed model
comprises two main components: a LSC module that supplements
specific local context informationwithin global representations, and
a GST module that leverages the superior generative capabilities
of a fixed diffusion model to translate textual features into the
visual domain to enhance semantic flow. Through the innovative
integration of the LSC and GST, our proposed model significantly
enhances the performance of existing cross-modal retrieval models
without adding extra trainable parameters, paving the way for a
more intuitive and effective retrieval process. Extensive qualita-
tive and quantitative experiments demonstrate the effectiveness
of our proposed LG-MGC, achieving consistent state-of-the-art
performances against strong baselines.
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