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ABSTRACT

Semi-supervised learning is a critical tool in reducing machine learning’s depen-
dence on labeled data. It has been successfully applied to structure data, such as
image and language data, by exploiting the inherent spatial and semantic structure
therein with pretrained models or data augmentation. Some of these methods are
no longer applicable for the data where domain structures are not available because
the pretrained models or data augmentation can not be used.
Due to simplicity, existing pseudo-labeling (PL) methods can be widely used
without any domain assumption, but are vulnerable to noise samples and to greedy
assignments given a predefined threshold which is typically unknown. This paper
addresses this problem by proposing a Confident Sinkhorn Allocation (CSA), which
assigns labels to only samples with high confidence scores and learns the best label
allocation via optimal transport. CSA outperforms the current state-of-the-art in
this practically important area of semi-supervised learning.

1 INTRODUCTION

The impact of machine learning continues to grow in fields as disparate as biology (Libbrecht & Noble,
2015; Tunyasuvunakool et al., 2021), quantum technology (Biamonte et al., 2017; van Esbroeck
et al., 2020; Nguyen et al., 2021), brain stimulation (Boutet et al., 2021; van Bueren et al., 2021),
and computer vision (Esteva et al., 2021; Yoon et al., 2022). Much of this impact depends on the
availability of large numbers of annotated examples for the machine learning models to be trained on.
The data annotation task by which such labeled data is created is often expensive, and sometimes
impossible, however. Rare genetic diseases, stock market events, and cyber-security threats, for
example, are hard to annotate due to the volumes of data involved, the rate at which the significant
characteristics change, or both.

Related work. Fortunately, for some classification tasks, we can overcome a scarcity of labeled
data using semi-supervised learning (SSL) (Zhu, 2005; Huang et al., 2021; Killamsetty et al., 2021;
Olsson et al., 2021). SSL exploits an additional set of unlabeled data with the goal of improving on
the performance that might be achieved using labeled data alone (Lee et al., 2019; Carmon et al.,
2019; Ren et al., 2020; Islam et al., 2021).

Domain specific: Semi-supervised learning for image and language data has made rapid progress
(Oymak & Gulcu, 2021; Zhou, 2021; Sohn et al., 2020) largely by exploiting the inherent spatial
and semantic structure of images (Komodakis & Gidaris, 2018) and language (Kenton & Toutanova,
2019). This is achieved typically either using pretext tasks (eg. (Komodakis & Gidaris, 2018; Alexey
et al., 2016)) or contrastive learning (eg. (Van den Oord et al., 2018; Chen et al., 2020)). Both
approaches assume that specific transformations applied to each data element will not affect the
associated label.

Greedy pseudo-labeling: Without domain assumption, a simple but effective way for SSL is pseudo-
labeling (PL) (Lee et al., 2013) which generates ‘pseudo-labels’ for unlabeled samples using a model
trained on labeled data. A label k is assigned to an unlabeled sample xi where a predicted class
probability is larger than a predefined threshold γ as

yk
i = 1

[
p(yi = k | xi)≥ γ

]
(1)
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Table 1: Comparison with the related approaches in terms of properties and their relative trade-offs.

Algorithms Not domain specific Uncertainty consideration Non-greedy
Pseudo-Labeling (Lee et al., 2013) ✓ ✗ ✗

FlexMatch (Zhang et al., 2021) ✓ ✗ ✗
Vime (Yoon et al., 2020) ✗ ✗ NA

MixMatch (Berthelot et al., 2019) ✗ ✗ NA
FixMatch (Sohn et al., 2020) ✗ ✗ NA

UPS (Rizve et al., 2021) ✓ ✓ ✗
SLA (Tai et al., 2021) ✓ ✗ ✓

CSA ✓ ✓ ✓

where γ ∈ [0,1] is a threshold used to produce hard labels and p(yi = k | xi) is the predictive probability
of the i-th data point belonging to the class k-th. A classifier can then be trained using both the original
labeled data and the newly pseudo-labeled data. Pseudo labeling is naturally an iterative process,
with the next round of pseudo-labels being generated using the most-recently trained classifier. The
key advantage of pseudo-labeling is that it does not inherently require any domain assumption and
can be generally applied to most domains, including tabular data.

Greedy PL with uncertainty: Rizve et al. (2021) propose an uncertainty-aware pseudo-label selection
(UPS) that aims to reduce the noise in the training process by using the uncertainty score – together
with the probability score for making assignments:

yk
i = 1

[
p(yi = k | xi)≥ γ

]
1
[
U
(

p(yi = k | xi)≤ γu
)]

(2)

where γu is an additional threshold on the uncertainty level and U(p) is the uncertainty of a prediction
p. As shown in Rizve et al. (2021), selecting predictions with low uncertainties greatly reduces the
effect of poor calibration, thus improving robustness and generalization.

However, the aforementioned works in PL are greedy in assigning the labels by simply comparing the
prediction value against a predefined threshold γ irrespective of the relative prediction values across
samples and classes. Such greedy strategies will be sensitive to the choice of a threshold.

Non-greedy pseudo-labeling: FlexMatch (Zhang et al., 2021) considers adaptively selecting a thresh-
old γk for each class based on the level of difficulty. This threshold is adapted using the predictions
across classes. However, the selection process is still heuristic in comparing the prediction score
with an adjusted threshold. Recently, Tai et al. (2021) provide a novel view in connecting the pseudo-
labeling assignment task to optimal transport problem, called SLA, which inspires our work. SLA
and FlexMatch are better than existing PL in that their non-greedy label assignments not only use
the single prediction value but also consider the relative importance of this value across rows and
columns in a holistic way. However, both SLA and FlexMatch can overconfidently assign labels to
noise samples and have not considered utilizing uncertainty values in making assignments.

Contributions. We propose here a semi-supervised learning method that does not require any
domain-specific assumption for the data. We hypothesize that this is by far the most common case for
the vast volumes of data that exist. The method we propose is based on pseudo-labeling of a set of
unlabeled data using Confident Sinkhorn Allocation (CSA). Our method is theoretically driven by
the role of uncertainty in robust label assignment in SSL. CSA utilizes Sinkhorn’s algorithm (Cuturi,
2013) to assign labels to only the data samples with high confidence scores. By learning the label
assignment with optimal transport, CSA eliminates the need to predefine the heuristic thresholds used
in existing pseudo-labeling methods, which can be greedy. The proposed CSA is applicable to any
data domain, and could be used in concert with consistency-based approaches (Sohn et al., 2020), but
is particularly useful for data domain where pretext tasks and data augmentation are not applicable,
such a tabular data.

2 CONFIDENT SINKHORN ALLOCATION (CSA)

We consider the semi-supervised learning setting whereby we have access to a dataset consisting of
labeled examples Dl = {xi,yi}Nl

i=1, and one of unlabeled examples Du = {xi}Nu
i=1 where xi ∈ Rd and

yi ∈ Y = {1, . . . ,K}. We define also X = {xi}, i = {1, . . . ,Nl +Nu}. Our goal is to utilize Dl ∪Du to
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Probabilities from M classifiers Estimate Q using SinkhornT-test

Remove low confident samples

...

Figure 1: A depiction of CSA in application. We estimate the ensemble of predictions P on unlabeled
data using M classifiers which can result in different probabilities. We then identify high-confidence
samples by performing a T-test. Next, we estimate the label assignment Q using Sinkhorn’s algorithm.
The cost C of the optimal transport problem is the negative of the probability averaging across
classifiers, C =− log P̄. We repeat the process on the remaining unlabeled data as required.

learn a predictor f : X →Y that is more accurate than a predictor trained using labeled data Dl alone.
A notation summary is provided in Appendix Table 3.

Generating high-quality pseudo labels is critical to the final classification performance, as erroneous
label assignment can quickly lead the iterative pseudo-labeling process astray. We provide in Sec. 2.1
a theoretical analysis of the role and impact of uncertainty in pseudo-labeling, the first such analysis
as far as we are aware. Based on the theoretical result, we propose two approaches to identify the
high-confidence samples for assigning labels and use the Sinkhorn’s algorithm to find the best label
assignment. We name the proposed algorithm Confident Sinkhorn Allocation (CSA). We provide a
diagram demonstrating CSA in Fig 1, and a comparison against related algorithms in Table 1.

2.1 THEORETICAL ANALYSIS ON THE EFFECT OF UNCERTAINTY IN PSEUDO-LABELING

Our theoretical results highlight two properties of PL settings: (i) less noise and uncertainty are
beneficial, and (ii) more unlabeled data is beneficial. For the analysis, we make a popular assumption
that input features xi ∈ Dl and Du are sampled i.i.d. from a feature distribution PX , and the labeled
data pairs (xi,yi) in Dl are drawn from a joint distribution PX ,Y .

We consider the binary classification problem in one-dimensional space as follows: generate the
feature x | y = +1 iid∼ N (µ+,σ

2) and similarly x | y = −1 iid∼ N (µ−,σ
2), where µ+ and µ− are the

means of the positive and negative classes respectively, σ is the standard deviation indicating the
level of data noisiness. Without loss of generality, let µ+ > µ−. The optimal Bayes’s classifier is
f (x) = sign

(
x− µ++µ−

2

)
, eg. classify yi =+1 if xi > (µ++µ−)/2. Therefore, in the following, we

measure the probability bound to learn (µ++µ−)/2 as a criterion for achieving good performance.

Let {X̃+
i }ñ+

i=1 and {X̃−
i }ñ−

i=1 be the sets of unlabeled data whose pseudo-labels are +1 and −1, re-
spectively. Let {I+i }ñ+

i=1 be the binary indicators of correct assignments, such as if I+i = 1, then
X̃+

i ∼N (µ+,σ
2) and otherwise X̃−

i ∼N (µ−,σ
2). Similarly, we define {I−i }ñ−

i=1 indicating correct
assignment for negative class. Instead of generating from Bernoulli distribution as used in Yang &
Xu (2020), we generate the binary indicators I+i and I−i from a classifier and denote the expectations
E(I+i ),E(I−i ) and variances Var(I+i ),Var(I−i ), respectively. In the uncertainty estimation literature
(Der Kiureghian & Ditlevsen, 2009), σ2 is called the aleatoric uncertainty (noise from the obser-
vations) and Var(I+i ),Var(I−i ) are the epistemic uncertainties (from the model knowledge). As
mentioned above, we aim to learn µ++µ−

2 , via the extra unlabeled data. It is natural from the binary
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Figure 2: Examples of using total variance and T-test for estimating the confidence level on K = 3
classes. The yellow area indicates the highest confidence. We exclude the samples falling into the
dark area where the value of T-test less than 2. We have simplified the tabular data (with possibly
mixed categorical-continous-text features) into the d = 2 dimensional representation.

classification setting above to construct our estimate as θ̂ = 1
2

(
∑

ñ+
i=1 X̃+

i /ñ++∑
ñ−
i=1 X̃−

i /ñ−
)

. Please
see Appendix A.1 for details.

Theorem 1. For δ > 0, with a probability at least 1− 2exp
{
− 2δ 2[ñ++ñ−]

9σ2[ñ+ñ−]

}
− 9[Var(I+i )+Var(I−i )]

4δ 2 ,

our estimate θ̂ satisfies
∣∣∣θ̂ − ∆(µ+−µ−)

2 − (µ++µ−)
2

∣∣∣≤ δ where ∆ = |E(I+i )−E(I−i )|.

Proof. Our proof (see Appendix A.1) extends the result from Yang & Xu (2020) taking into account
the data noisiness σ2 and uncertainty Var(I+i ),Var(I−i ) for pseudo-labeling.

Interpretation. The theoretical result reveals several interesting aspects. First, training data
imbalance affects the accuracy of our estimation, as discussed in Yang & Xu (2020). The more
imbalanced the data is, the larger the gap ∆ would be, which influences the closeness between the
estimated θ̂ and desired value (µ++µ−)

2 . Note that data imbalance is not the focus of this paper. In
addition, the second term of the bound ñ++ñ−

ñ+ñ−
shows that more unlabeled data ñ+ ↑ or ñ− ↑ is helpful

for a good estimation. We empirically validate this property in Fig. 5. Finally, our analysis takes a
step further to show that both aleatoric uncertainty σ2 and epistemic uncertainty Var(I+i )+Var(I−i )
can reduce the probability of obtaining a good estimation. In other words, less uncertainty is more
helpful. Note that the interpretation through the uncertainty has not been explored in Yang & Xu
(2020). To the best of our knowledge, we are the first to theoretically characterize the role of data
noise σ2 and uncertainties Var(I+i )+Var(I−i ) affecting the performance in SSL.

2.2 IDENTIFYING HIGH-CONFIDENT SAMPLES FOR ASSIGNING LABELS

In Theorem 1, we show that the data sample noise and uncertainty can worsen the estimated classifier.
Therefore, we propose to identify and ignore the high-uncertain samples from being assigned labels.

It is notorious that machine learning predictions can vary with different choices of hyperparameters.
Under these variations, it is unclear to identify the most probable class to assign labels for some
data points. Not only the predictive values but also the ranking order of these predictive samples
vary with different hyperparameters. The variations in the prediction can be explained due to (i) the
uncertainties of the prediction coming from the noise observations (aleatoric uncertainty) and model
knowledge (epistemic uncertainty) (Hüllermeier & Waegeman, 2019) and (ii) the gap between the
highest and second-highest scores is small. These bring a challenging fact that the highest score class
can be changed with a different set of hyperparameters. This leads to the confusion for assigning
pseudo labels because (i) the best set of hyperparameter is unknown given limited labeled data and
(ii) we consider ensemble learning setting wherein multiple models are used together.

To address the two challenges above, we are motivated by the theoretical result in Theorem 1 to
only assign labels to samples in which the most probable class is statistically significant than the
second-most probable class. For this purpose, we propose to use two criteria for measuring the
confidence level: (i) Welch’s T-test and (ii) total variance across classes.
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Algorithm 1 Confident Sinkhorn Label Allocation
Input: lab data {Xl ,yl}, unlab data Xu, Sinkhorn reg ε > 0, fraction of assigned label ρ ∈ [0,1]
Output: Allocation matrix Q ∈ RN×K

1 for t = 1, ...,T do
2 Train M models θ1, ...,θM given the limited labelled data Xl ,yl
3 Obtain a confidence set X′

U ⊂ XU using T-value from Eq. (3) where N := |X′
U |

4 Define a cost matrix C from Eq. (16) using X′
U

5 Set marginal distributions r = [1T
N ;N(bT

+1K −ρbT
−1K) and c = [b+N;N(1−ρbT

−1K)]
/* Sinkhorn’s algorithm */

6 while j = 1, ...,J or until converged do
7 Initialize a( j) = 1T

K ; Update b( j+1) = r
exp(−Ci,k/ε)a( j) and a( j+1) = c

exp(−Ci,k/ε)
T

b( j+1)

8 Obtain Q = diag(a(J))exp
(
−Ci,k/ε

)
diag(b(J)) // the assignment matrix

9 Augment the assigned labels to {Xl ,yl} and remove these points from the unlabeled data Xu.

Welch’s T-test. For each data point i, we define two empirical distributions (see Appendix Fig.
6) of predicting the highest N (µi,⋄,σ

2
i,⋄) and second-highest class N (µi,⊘,σ

2
i,⊘),

1 estimated from
the predictive probability across M classifiers, such as µi,⋄ =

1
M ∑

M
m=1 pm(y = ⋄ | xi) and µi,⊘ =

1
M ∑

M
m=1 pm(y =⊘ | xi) are the empirical means; σ2

i,⋄ and σ2
i,⊘ are the variances. We consider Welch’s

T-test (Welch, 1947) to compare the statistical significance of two empirical distributions:

T-value(xi) =
µi,⋄−µi,⊘√(
σ2

i,⋄+σ2
i,⊘
)
/M

. (3)

The degree of freedom for the above statistical significance is (M−1)(σ2
1+σ2

2 )
2

σ4
1+σ4

2
. As a standard practice

in statistical testing (Neyman & Pearson, 1933; Fisher, 1955), we calculate the degree of freedom
and look at the T-value distribution. In this particular setting, we get the following rules if the T-value
is less than 2, the two considered classes are from the same distribution – eg., the sample might fall
into the dark area in right Fig. 2. Thus, we exclude a sample from assigning labels when its T-value
is less than 2.

The estimation of the T-test above encourages separation between the highest and second-highest
classes relates to entropy minimization (Grandvalet & Bengio, 2004) which encourages a classifier to
output low entropy predictions on unlabeled data.

Total variance. In multilabel classification settings (Kapoor et al., 2012), multiple high score classes
can be considered together. Thus, the Welch’s T-test between the highest and second-highest is no
longer applicable. We consider the following total variance across classes as the second criteria. This
total variance for uncertainty estimation has also been used in UPS (Rizve et al., 2021) using Monte
Carlo dropout (Gal & Ghahramani, 2016) in the context of deep neural network:

V[p(y | x)]≈ 1
K

K

∑
k=1

[ 1
M

M

∑
m=1

(
pm(y = k | x)−

M

∑
m=1

pm(y = k | x)
M

)2

︸ ︷︷ ︸
variance of assigning x to class k

]
. (4)

We exclude the data point with high uncertainty measured by the total variance. It makes sense
because a consensus of multiple classifiers is generally a good indicator of the labeling quality. In
our setting, a high consensus is represented by low variance or high confidence. While the T-test
naturally has a threshold of 2 to reject a data point, the total variance does not have such a threshold
and thus we need to impose our own value. In the experiment, we reject 50% of the points with a
high total variance score. We visualize the confidence estimated by T-test and total variance in Fig. 2.

We further consider the entropy criteria proposed in Malinin et al. (2020) as another way of estimating
the confidence score in Appendix B.1.

Discussion. In Appendix Table 4, we empirically compare the performance using different uncertainty
choices. We show that the Welch T-test is the best for this pseudo-labeling problem which can
1 Denote the highest score class by ⋄ := ⋄(i) and second-highest score class by ⊘ :=⊘(i) for a data point i.
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explicitly capture the uncertainty gap in predicting the highest and second-highest classes while total
variance and entropy can not.

2.3 OPTIMAL TRANSPORT ASSIGNMENT

We use the confidence scores to filter out the uncertain data points and assign labels to the remaining
using Sinkhorn algorithm (Cuturi, 2013). Particularly, we follow the novel view in Tai et al. (2021)
to interpret the label assignment process as an optimal transportation problem between examples
and classes, wherein the cost of assigning an example to a class is dictated by the predictions of the
classifier.

Let us denote N ≤ Nu be the number of accepted points, eg. by T-test, from the unlabeled set. Let
define an assignment matrix Q ∈ RN×K of N unlabeled data points to K classes such that we assign xi
to a class k if Qi,k > 0. We seek an assignment Q that minimizes the total assignment cost ∑ik QikCik
where Cik is the cost of assigning an example i to a class k given by the corresponding negative
probability as used in Tai et al. (2021), i.e., Cik :=− log p(yi = k | xi) where 0 ≤ p(yi = k | xi)≤ 1

minimizeQ
〈
Q,C

〉
(5)

s.t. Qik ≥ 0 (6)
Q1K ≤ 1N (7)

QT 1N ≤ Nw+ (8)

1T
NQ1K ≥ NρwT

−1K (9)

minimizeQ,u,v,τ
〈
Q,C

〉
(10)

s.t. Qik ≥ 0,u ⪰ 0,v ⪰ 0,τ ≥ 0 (11)
Q1K +u = 1N (12)

QT 1N +v = w+N (13)

uT 1N + τ = N(1−ρwT
−1K) (14)

vT 1K + τ = N(wT
+1K −ρwT

−1K) (15)

where 1K and 1N are the vectors one in K and N dimensions, respectively; ρ ∈ [0,1] is the fraction of
assigned label, i.e., ρ = 1 is full allocation; w+,w− ∈ Rk are the vectors of upper and lower bound
assignment per class which can be estimated empirically from the class label frequency in the training
data or from prior knowledge.

Our formulation has been motivated and modified from the original SLA (Tai et al., 2021) to introduce
the lower bound w− specifying the minimum number of data points to be assigned in each class. We
refer to Appendix B.6 for the ablation study on the effect of this lower bound and Appendix A.2 for
the derivations on the equivalence between the inequality in Eqs. (6,7,8,9) for linear programming
and equality in Eqs. (11,12,13,14,15) for optimal transport.

We define the marginal distributions for row r = [1T
N ;N(wT

+1k − ρwT
−1K)]

T ∈ RN+1 and column
c = [w+N;N(1−ρwT

−1K)]
T ∈ RK+1. We define the prediction matrix over the unlabeled set, which

satisfied the confidence test, P ∈ RM×N×K such that each element Pm,i,k = pm(y = k | xi) and the
averaging prediction over M models is P̄ = 1

M ∑
M
m=1 Pm,∗,∗ ∈ RN×K . The cost and the assignment

matrices are defined below

C :=
[
− log P̄ 0N

0T
K 0

]
∈ R(N+1)×(K+1) (16) Q̃ :=

[
Q u
vT τ

]
∈ R(N+1)×(K+1). (17)

We derive in Appendix A.3 the optimization process to learn Q by initializing b( j) = 1T
K and iteratively

updating for j = 1...J iterations or until convergence:

a( j+1) =
r

exp
(
−Ci,k

ε

)
b( j)

(18) b( j+1) =
c

exp
(
−Ci,k

ε

)T
a( j+1)

. (19)

After estimating Q̃, we get Q from Eq. (17) and assign labels to unlabeled data, i.e., where Qi,k > 0,
and repeat the whole pseudo-labeling process for a few iterations as shown in Algorithm 1. The
optimization process above can also be estimated using mini-batches (Fatras et al., 2020) if needed.

Discussion. Instead of performing greedy selection using a threshold γ like other PL algorithms, our
CSA specifies the frequency of assigned labels including the lower bound w− and upper bound w+

per class as well as the fraction of data points ρ ∈ (0,1) to be assigned. Then, the optimal transport
will automatically perform row and column scalings to find the ‘optimal’ assignments such that the
selected element, Qi,k > 0, is among the highest values in the row (within a data point i-th) and at the
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Figure 3: Comparison with the pseudo-labeling methods on tabular data for single-label classification
(left) and multi-label classification (right). x-axis indicates the iteration t = 1, ...,T .

same time receive the highest values in the column (within a class k-th). In contrast, existing PL will
either look at the highest values in row or column, separately – but not jointly like ours. Here, the
high value refers to high probability P or low-cost C in Eq. (5).

Multi-label. The resulting matrix Q can naturally assign each data point to multiple classes. By that
way, we can perform multi-label classification (Read et al., 2011; Nguyen et al., 2016) by assigning a
vector of labels k to each data point i s.t. Qi,k > 0. This multi-label option is also readily available for
other pseudo-labeling methods (Lee et al., 2013). In this multi-label setting, we will use the total
variance as the main criteria for confidence estimation as the T-test is not suitable to consider the
co-existence of multiple labels.

3 EXPERIMENTS

Baselines. We select to compare our CSA with the following baselines which are suitable for the
data setting without data augmentation: Pseudo-labeling (PL) (Lee et al., 2013), FlexMatch (Zhang
et al., 2021), UPS (Rizve et al., 2021) and SLA (Tai et al., 2021). We adapt the label assignment
mechanisms in Zhang et al. (2021); Rizve et al. (2021) for tabular domains although their original
designs are for computer vision tasks. Without explicitly stated, we use a pre-defined threshold of
0.8 for PL, FlexMatch, UPS. We further vary this threshold with different values in Section 3.2. We
also compare with the supervised learning method – trained using the labeled data. The multi-layer
perceptron (MLP) implemented in Yoon et al. (2020) includes two layers using 100 hidden units.
Additional to these pseudo-labeling based approaches, we compare the proposed method with Vime.

Data. We use public datasets for single-label and multi-label classifications from UCI repository
(Asuncion & Newman, 2007). Since we do not use any domain assumption, these data are presented
as vectorized or tabular data formats. In addition, we obtain three products, renamed as A, B, and C
from Amazon catalog. The Amazon data include product numerical and categorical attributes as well
as text features of a product review. We summarize all dataset statistics in Appendix Table 7. Our
data covers various domains including: image, language, medical, biology, audio, finance and retail.

Classifier and hyperparameters. Given limited labeled data presented in tabular format, we choose
XGBoost (Chen & Guestrin, 2016) as the main classifier which typically outperforms state-of-the-art
deep learning approaches in this setting (Shwartz-Ziv & Armon, 2022) although our method is
more general and not restricted to XGBoost. We use M = 20 XGBoost models for ensembling. We
refer to Appendix B.3 on the empirical analysis with different choices of M. The ranges for these
hyperparameters are summarized in Appendix Table 6.

Setting. Given the setting with limited labels data, we do not use a validation set for tuning
hyperparameters of the XGBoost model. We repeat the experiments 30 times with different random
seeds, then report the mean and standard error. All Python implementations will be released in the
final version.

3.1 COMPARISON OF PSEUDO-LABELING FOR SINGLE AND MULTI-LABEL CLASSIFICATION

We use accuracy as the main metric for evaluating single-label and precision for multi-label classifi-
cation (Wu & Zhou, 2017). We first compare our CSA with the methods in pseudo-labeling family.
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Table 2: Comparison with pseudo-labeling methods.
Datasets Supervised Learning Vime PL Flex UPS SLA CSAXGBoost MLP
Segment 95.42±1 94.63±1 92.71±1 95.68±1 95.68±1 95.67±1 95.80±1 95.90±1

Wdbc 89.20±3 91.33±2 91.83±5 91.23±3 91.23±3 91.62±3 90.61±2 91.83±3
Analcatdata 91.63±2 96.17±1 96.13±2 90.95±2 90.62±3 91.33±3 90.98±2 96.60±2

German-credit 70.73±2 71.10±3 70.50±4 70.72±3 70.72±3 71.15±2 70.72±3 71.47±3
Madelon 54.80±3 50.80±2 52.97±2 56.45±4 56.74±4 57.13±3 56.53±4 57.51±3

Dna 88.53±1 76.50±2 79.07±3 88.17±1 88.17±1 88.51±1 88.09±2 89.24±1
Agar Lepiota 57.63±1 63.80±1 63.83±1 58.98±1 59.53±1 58.88±1 58.96±1 59.53±1
Breast cancer 93.20±2 86.40±6 85.87±5 92.89±2 92.89±2 93.38±2 92.76±2 93.55±2

Digits 82.23±3 86.80±1 84.10±1 81.67±3 81.44±3 83.78±3 81.51±3 88.10±2
Category A 72.71±3 57.15±9 50.55±6 72.48±3 72.35±3 72.71±3 72.24±3 73.97±4
Category B 79.48±3 42.85±2 36.45±4 79.41±2 80.49±1 79.45±2 79.82±2 80.62±2
Category C 61.35±1 51.90±1 52.80±1 61.23±1 61.98±1 61.65±1 62.04±1 63.01±1

We show the performance achieved on the held-out test set as we iteratively assign pseudo-label to
the unlabeled samples, i.e., varying t = 1, ...,T . As presented in Fig. 3 and Appendix Fig. 11, CSA
significantly outperforms the baselines by a wide margin in the datasets of Analcatdata, Synthetic
Control and Digits. CSA improves approximately 6% compared with fully supervised learning. CSA
gains 2% in Madelon dataset and in the range of [0.4%,0.8%] on other datasets.

Unlike other pseudo-labeling methods (PL, FlexMatch, UPS), CSA can get rid of the requirement to
predefine the suitable threshold γ ∈ [0,1], which is unknown in advance and should vary with different
datasets. In addition, the selection in CSA is non-greedy that considers the relative importance within
and across rows and columns by the Sinkhorn’s algorithm while the existing PL methods can be
greedy when only compared against a predefined threshold.

Furthermore, our CSA outperforms SLA (Tai et al., 2021), which does not take into consideration
the confidence score. Thus, SLA may assign labels to ‘uncertain’ samples which can degrade the
performance. From the comparison with SLA, we have shown that uncertainty estimation provides
us a tool to identify susceptible points to ignore from the data and thus can be beneficial for SSL.

We then compare our CSA with Vime (Yoon et al., 2020), the current state-of-the-art methods in
semi-supervised learning for tabular data in Table 2. CSA performs better than Vime in most cases,
except the Agaricus Lepiota dataset which has an adequately large size (6500 samples, see Table 7) –
thus the deep network component in Vime can successfully learn and perform well.

Multi-label classification. The advantage of CSA is further demonstrated to assign labels in multi-
label classification settings. We present the comparison in the bottom row of Fig. 3 where we show
that CSA performs competitively and better than the baselines on the three datasets considered.

3.2 COMPARISON OF CSA AGAINST PSEUDO-LABELING WITH DIFFERENT THRESHOLDS

One of the key advantages of using optimal transport is that it can learn the non-greedy assignment
by performing row-scaling and column-scaling to get the best assignment such that the cost C is
minimized, or the likelihood is maximized with respect to the given constraints from the row r and
column c marginal distributions. By doing this, our CSA can get rid of the necessity to define the
threshold γ and perform greedy selection in most of the existing pseudo-labeling methods.

We may be wondering if the optimal transport assignment Q can be achieved by simply varying the
thresholds γ in pseudo-labeling methods? The answer is no. To back up our claim, we perform two
analyses. First, we visualize and compare the assignment matrix achieved by CSA and by varying a
threshold γ ∈ {0.5,0.7,0.9} in PL. As shown in left Fig. 4, the outputs are different and there are
some assignments which could not be selected by PL with varying γ , eg., the following {row index,
column index}: {1,3}, {9,3} and {14,3} annotated in red square in left Fig. 4.

Second, we empirically compare the performance of CSA against varying γ ∈ {0.7,0.8,0.9,0.95} in
PL. We present the results in right Fig. 4, which again validates our claim that the optimal assignment
in CSA will lead to better performance consistently than PL with changing values of γ .
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3.3 ABLATION STUDIES

Varying the number of labels and unlabels. Different approaches exhibit substantially different
levels of sensitivity to the amount of labeled and unlabeled data, as mentioned in Oliver et al. (2018).
We, therefore, validate our claim in Theorem 1 by empirically demonstrating the model performance
with increasing the number of unlabeled examples. In left Fig. 5, we show that the model will be
beneficial with increasing the number of unlabeled data points.

Limitation. In some situations, such as when labeled data is too small in size or contains outliers,
our CSA will likely assign incorrect labels to the unlabeled points at the earlier iteration. This
erroneous will be accumulated further and lead to poor performance, as shown in left Fig. 5 when the
number of labels is 100 and the number of unlabels is less than 500. We note, however, that other
pseudo-labeling methods will share the same limitation.
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Figure 5: Performance on Digit w.r.t.
the number of unlabeled samples given
the number of labeled samples as
100,200,500, respectively.

Further analysis. We refer to Appendix B for other
empirical analysis which can be sensitive to the perfor-
mance, including (i) different choices of pseudo-labeling
iterations T and (ii) different number of choices for XGB
models M, (iii) computational time for each component
and (iv) statistics on the number of points selected by
each component per iteration.

4 CONCLUSION AND FUTURE WORK

Although there has been significant progress in SSL for
images and text domains, limited attention has been in-
vested for unstructured domains in which data augmenta-
tion or pretraining is not available, such as data presenting
in tabular format. We propose CSA, a new method for
pseudo-labeling particularly suitable for tabular domains but not restricted to.

Our CSA has two key ingredients. First, it estimates and takes into account the confidence levels
in assigning labels. Second, it learns the optimal assignment using Sinkhorn algorithm which
appropriately scales rows and columns probability to get assignment without the greedy selection
using a threshold as used in most of PL methods.

The proposed CSA maintains the benefits of PL in its simplicity, generality, and ease of implementa-
tion while CSA can significantly improve PL performance by addressing the overconfidence issue
and better assignment with optimal transport.

Future work can extend the ensembling process by not only using XGBoost, but also other classifiers,
such as AdaBoost (Wyner et al., 2017) or CatBoost (Prokhorenkova et al., 2018). Another extension
is to use CSA as the main label assignment method for SSL and integrate it into training deep learning
model to build CSAMatch, analogous to FixMatch (Sohn et al., 2020), MixMatch (Berthelot et al.,
2019) and FlexMatch (Zhang et al., 2021).
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Table 3: Notations. We use column vectors in all notations.

Variable Domain Meaning
K N number of classes

M N number of XGBoost models for ensembling

d N feature dimension

xi Rd a data sample and a collection of them X = [x1, ...,XN ] ∈ RN×d

yi {1,2, ...,K} a data point label and a collection of labels Y = [y1, ...yN ] ∈ RN

Dl ,Du sets a collection of labeled {xi,yi}Nl
i=1 or unlabeled data {xi}Nu+Nl

i=Nl+1

1K , 1N [1, ...,1]T a vector of ones in K (or N) dimensions

ρ [0,1] allocation fraction, ρ = 0 is no allocation or ρ = 1 is full allocation

ε R+ Sinkhorn regularization parameter

Q RN×K assignment matrix, i.e., Qi,k > 0 assigns a label k to a data point i

C RN×K a cost matrix estimated from the probability matrix i.e., C = 1−P

w,w+,w− vector [0,1]K label frequency, upper bound and lower bound of label frequency

γ [0,1] a threshold for assigning labels used in pseudo-labeling methods

A APPENDIX: THEORETICAL RESULTS

We derive the proof for Theorem 1 in Sec. A.1, interpret the linear programing inequality to optimal
transport in Sec. A.2, present the derivations for the Sinkhorn algorithm used in our method in Sec.
A.3 and consider another criterion for confident estimation in Sec. B.1.

A.1 PROOF OF THEOREM 1

Setting. To highlight the role of variances and data noises toward SSL, we consider a simple binary
classification problem on one-dimensional space. We generate the feature x | y =+1 iid∼N (µ+,σ

2)

and similarly x | y =−1 iid∼N (µ−,σ
2) where µ+ and µ− are the means of the positive and negative

classes respectively, σ is the standard deviation indicating the level of data noisiness, and N (·, ·) the
suitably parameterized normal distribution. Without loss of generality, let µ+ > µ−. The optimal
Bayes’s classifier is f (x) = sign

(
x− µ++µ−

2

)
, i.e. classify yi =+1 if xi > (µ++µ−)/2. Therefore,

in the following, we measure the probability bound to learn (µ++µ−)/2 as a criterion for achieving
good performance.

Let {X̃+
i }ñ+

i=1 and {X̃−
i }ñ−

i=1 be the set of unlabeled data whose pseudo-label is +1 and −1, respectively.
Let {I+i }ñ+

i=1 be the binary indicator of correct assignments, such as if I+i = 1, then X̃+
i ∼N (µ+,σ

2)

and otherwise X̃−
i ∼N (µ−,σ

2). Similarly, we define {I−i }ñ−
i=1 indicating the correct assignment for

negative class.

Instead of generating from Bernoulli distribution as used in Yang & Xu (2020), we assume the binary
indicators I+i and I−i to be generated from a classifier. We denote the expectations E(I+i ),E(I−i ) and
variances of Var(I+i ),Var(I−i ) for the generating processes of I+i and I−i , respectively. We denote
the gap in the expectations as ∆ = |E(I+i )−E(I−i )| which can be used to characterize the imbalance
property of the data, as shown in Yang & Xu (2020).

In uncertainty estimation literature (Der Kiureghian & Ditlevsen, 2009; Hüllermeier & Waegeman,
2019), σ2 is called the aleatoric uncertainty (from the observations) and Var(I+i ),Var(I−i ) are the
epistemic uncertainty (from the model knowledge).
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As mentioned, we aim to learn µ++µ−
2 with the above setup via the extra unlabeled data. It is natural

to construct our estimate as θ̂ = 1
2

(
∑

ñ+
i=1 X̃+

i /ñ++∑
ñ−
i=1 X̃−

i /ñ−
)

.

Theorem 2. For δ > 0, with a probability at least 1− 2exp
{
− 2δ 2[ñ++ñ−]

9σ2[ñ+ñ−]

}
− 9[Var(I+i )+Var(I−i )]

4δ 2 ,

our estimate θ̂ for the above binary classification satisfies∣∣∣∣θ̂ − ∆(µ+−µ−)

2
− (µ++µ−)

2

∣∣∣∣≤ δ (20)

where ∆ = |E(I+i )−E(I−i )|.

Proof. Our proof extends the result from Yang & Xu (2020) taking into account the uncertainty
for pseudo-labeling. We rewrite X̃+

i = (1− I+i )(µ− − µ+)+ Z+
i where Z+

i ∼ N (µ+,σ
2) and I+i

is generated from a classifier with the expectation E(I+i ) and variance Var(I+i ). This means if
the pseudo-label is correct, X̃+

i ∼ Z+
i and otherwise X̃+

i ∼ (µ− − µ+) + Z+
i . Similarly, X̃−

i =

(1− I−i )(µ+−µ−)+Z−
i where Z−

i ∼N (µ−,σ
2)

θ̂ =
1
2

(
∑

ñ+
i=1 X̃+

i
ñ+

+
∑

ñ−
i=1 X̃−

i
ñ−

)
(21)

=
1
2

(
∑

ñ+
i=1(1− I+i )(µ−−µ+)+Z+

i
ñ+

+
∑

ñ−
i=1(1− I−i )(µ+−µ−)+Z−

i
ñ−

)
(22)

=
1
2

(
∑

ñ+
i=1 I+i
ñ+

(µ+−µ−)+
∑

ñ−
i=1 I−i
ñ−

(µ−−µ+)+
∑

ñ+
i=1 Z+

i
ñ+

+
∑

ñ−
i=1 Z−

i
ñ−

)
. (23)

We bound each term separately. First, we bound ∑
ñ+
i=1 I+i
ñ+

using Chebyshev’s inequality as follows

P

(∣∣∣∣∣∑ñ+
i=1 I+i
ñ+

−E(I+i )

∣∣∣∣∣> t

)
≤
Var(I+i )

t2 . (24)

Similarly, we obtain the probability bound for the negative class

P

(∣∣∣∣∣∑ñ−
i=1 I−i
ñ−

−E(I−i )

∣∣∣∣∣> t

)
≤
Var(I−i )

t2 . (25)

Next, we bound the term(
∑

ñ+
i=1 Z+

i
ñ+

+
∑

ñ−
i=1 Z−

i
ñ−

)
∼N

(
µ++µ−,σ

2(
1

ñ+
+

1
ñ−

)

)
. (26)

By using Gaussian concentration, we have that

P

(∣∣∣∣∣∑ñ+
i=1 Z+

i
ñ+

+
∑

ñ−
i=1 Z−

i
ñ−

− (µ++µ−)

∣∣∣∣∣> t

)
≤ 2exp

{
− t2

2σ2[1/ñ++1/ñ−]

}
. (27)

By triangle inequality,∣∣∣∣θ̂ − ∆(µ+−µ−)

2
− (µ++µ−)

2

∣∣∣∣ (28)

=

∣∣∣∣∣12
(

∑
ñ+
i=1 X̃+

i
ñ+

+
∑

ñ−
i=1 X̃−

i
ñ−

)
−
E(I+i )(µ+−µ−)

2
−
E(I−i )(µ−−µ+)

2
− µ++µ−

2

∣∣∣∣∣ (29)

≤

∣∣∣∣∣12 ∑
ñ+
i=1 I+i
ñ+

−
E(I+i )

2

∣∣∣∣∣ |µ+−µ−|+

∣∣∣∣∣12 ∑
ñ−
i=1 I−i
ñ−

−
E(I−i )

2

∣∣∣∣∣ |µ+−µ−| (30)

+

∣∣∣∣∣12
(

∑
ñ+
i=1 Z+

i
ñ+

+
∑

ñ−
i=1 Z−

i
ñ−

)
− µ++µ−

2

∣∣∣∣∣ . (31)
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Let δ > 0, we consider an event

E =

{∣∣∣∣∣∑ñ+
i=1 I+i
ñ+

−E(I+i )

∣∣∣∣∣ |µ+−µ−| ≤
2δ

3
and

∣∣∣∣∣∑ñ−
i=1 I−i
ñ−

−E(I−i )

∣∣∣∣∣ |µ+−µ−| ≤
2δ

3
and

(32)∣∣∣∣∣
(

∑
ñ+
i=1 Z+

i
ñ+

+
∑

ñ−
i=1 Z−

i
ñ−

)
− (µ++µ−)

∣∣∣∣∣≤ 2δ

3

}
.

(33)

Using union bound and the concentration inequalities

P(E)≥ 1−2exp
{
− 2δ 2

9σ2[1/ñ++1/ñ−]

}
−

9Var(I+i )

4δ 2 −
9Var(I−i )

4δ 2 . (34)

Equivalently, we write

P
(∣∣∣∣θ̂ − ∆(µ+−µ−)

2
− (µ++µ−)

2

∣∣∣∣≤ δ

)
≥ 1−2exp

{
− 2δ 2

9σ2[ 1
ñ+

+ 1
ñ−

]

}
−

9
[
Var(I+i )+Var(I−i )

]
4δ 2

(35)

where ∆ = |E(I+i )−E(I−i )|.

A.2 DERIVATION OF THE OPTIMAL TRANSPORT LINEAR PROGRAMING

We transform the original linear programming inequality in Eqs. (5,6,7,8) to optimal transport setup.
As used in Tai et al. (2021), we introduce non-negative slack variables u, v and τ to replace the
inequality constraints on the marginal distributions. We yield the following optimization problem:

minimizeQ,u,v,τ
〈
Q,C

〉
(36)

s.t. Qik ≥ 0,u ⪰ 0,v ⪰ 0,τ ≥ 0 (37)
Q1K +u = 1N (38)

QT 1N +v = w+N (39)

1T
NQ1K = τ +NρwT

−1K (40)

We substitute Eq. (40) into Eq. (38) to have:

uT 1N + τ = N(1−ρwT
−1K) (41)

Similarly, we substitute Eq. (40) into Eq. (39) to obtain:

vT 1K + τ = N(wT
+1K −ρwT

−1K) (42)

Thus, we yield Eqs. (11,12,13,14,15) and recognize them as an optimal transport problem (Cuturi,
2013; Tai et al., 2021) with row marginal distribution r = [1T

N ;N(wT
+1K −ρwT

−1K)]
T ∈ RN+1 and

column marginal distribution c = [w+N;N(1−ρwT
−1K)]

T ∈ RK+1.

A.3 SINKHORN OPTIMIZATION STEP

Given the cost matrix C ∈ RN×K , our original objective function is

minimizeQ∈RN×K ⟨Q,C
〉

(43)

where ⟨Q,C
〉

:= ∑ik QikCik. For a general matrix C, the worst case complexity of computing that
optimum scales in O

(
N3 logN

)
(Cuturi, 2013). To overcome this expensive computation, we can

utilize the entropic regularization to reduce the complexity to O
(

N2

ε2

)
(Dvurechensky et al., 2018) by

writing the objective function as:

L(Q) = minimizeQ∈RN×K ⟨Q,C
〉
− εH(Q) (44)
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where H(Q) is the entropy of Q. This is a strictly convex optimization problem (Cuturi, 2013) and
has a unique optimal solution.

Since the solution Q∗ of the above problem is surely nonnegative, i.e., Q∗
i,k > 0, we can thus ignore

the positivity constraints when introducing dual variables λ (1) ∈ RN ,λ (2) ∈ RK for each marginal
constraint as follows:

L(Q,λ (1),λ (2)) = ⟨Q,C
〉
+ εH(Q)+ ⟨λ (1),r−Q1K

〉
+ ⟨λ (2),c−QT 1N

〉
(45)

where r and c are the row and column marginal distributions. We take partial derivatives w.r.t. each
variable to solve the above objective. We have,

∂L(Q,λ (1),λ (2))

∂Qi,k
=Ci,k + ε

(
logQi,k +1

)
−λ

(1)
i −λ

(2)
k = 0 (46)

Q∗
i,k = exp

{
λ
(1)
i +λ

(2)
k −Ci,k

ε
+1

}
(47)

= exp

(
λ
(1)
i
ε

−1/2

)
exp
(
−

Ci,k

ε

)
exp

(
λ
(2)
k
ε

−1/2

)
. (48)

The factorization of the optimal solution in the above equation can be conveniently rewritten in
matrix form as diag(a)exp

(
−Ci,k

ε

)
diag(b) where a and b satisfy the following non-linear equations

corresponding to the constraints

diag(a)exp
(
−

Ci,k

ε

)
diag(b)1K = r (49) diag(b)exp

(
−

Ci,k

ε

)T

diag(a)1N = c. (50)

Now, instead of optimizing λ (1) and λ (2), we alternatively solve for the vectors

a = exp

(
λ (1)

ε
−1/2

)
(51) b = exp

(
λ (2)

ε
−1/2

)
. (52)

The above forms the system of equations with two equations and two unknowns. We solve this
system by iteratively updating for multiple iterations j:

• Initialize b( j) = 1T
K

• Update a( j+1) = r

exp
(
−

Ci,k
ε

)
b( j)

• Update b( j+1) = c

exp
(
−

Ci,k
ε

)T
a( j+1)

The division operator used above between two vectors is to be understood entry-wise. After J
iterations, we estimate the final assignment matrix for pseudo-labeling

Q∗ = diag(a(J))exp
(
−

Ci,k

ε

)
diag(b(J)). (53)

A.4 REPRESENTING THE TWO EMPIRICAL DISTRIBUTIONS FOR T-TEST

We interpret the confidence estimation using T-test in Fig. 6. We train XGB as the main classifier using
different sets of hyperparameters. Let denote the predictive probability using M classifiers across N
unlabeled data points over K classes as P ∈ RM×N×K in top Fig. 6. Given a data point i, we define
the highest score and second-highest score classes as follows: ⋄= argmaxk={1...K}

1
M ∑

M
m=0 Pm,i,k and

⊘= argmaxk={1...K}\⋄
1
M ∑

M
m=0 Pm,i,k where {1...K}\⋄ means that we exclude an index ⋄ from a set

{1...K}. Note that these indices of the highest ⋄ and second-highest score class ⊘ vary with different
data points and thus can also be defined as the function ⋄(i) and ⊘(i).
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Figure 6: The empirical distributions used for the T-test. We estimate a predictive probability for a
data point i = 0 using M classifiers across K classes, denoted as PM,i=0,K (bottom left). The highest
and second-highest score classes are denoted as ⋄ and ⊘, respectively, and their empirical distributions
N (µi,⋄,σ

2
i,⋄) in bottom middle and N (µi,⊘,σ

2
i,⊘) in bottom right. See Sec. A.4 for further details.

17



Under review as a conference paper at ICLR 2023

Table 4: Comparison with different choices for estimating the confidence scores. The performance
with total variance reflects the uncertainty choice used in UPS (Rizve et al., 2021). CSA using T-test
achieves the best performance. We also highlight that using CSA (either with Total variance of T-test)
will consistently outperform SLA.

Datasets SLA CSA Entropy CSA Total variance CSA T-test
Segment 95.82±1 95.74 (1.0) 95.70±1 95.90±1

Wdbc 90.64±3 89.50(4.3) 91.62±3 91.83±3
Analcatdata 90.43±3 92.00±3 92.40±2 94.79±2

German-credit 70.79±3 70.88(3.0) 71.75(2.8) 71.47±3
Madelon 55.96±3 57.50 (2.5) 55.56 (3.8) 57.51±2

Dna 87.86±2 88.23 (1.6) 87.12(2.2) 89.24±1
Agaricus Lepiota 59.01±1 57.67(1.0) 59.59(1.0) 59.53±1

Breast cancer 92.65±2 93.33(2.8) 93.25(2.6) 93.55±2
Digits 81.03±3 84.65(3.1) 84.37(3.1) 86.31±3

In bottom left Fig. 6, we consider a predictive probability of a data point i = 0, i.e., PM,i=0,K ∈ RM×K .
We then define two empirical distributions of predicting the highest N (µi,⋄,σ

2
i,⋄) and second-highest

class N (µi,⊘,σ
2
i,⊘), such as the empirical means are:

µi,⋄ =
1
M

M

∑
m=1

pm(y = ⋄ | xi) (54) µi,⊘ =
1
M

M

∑
m=1

pm(y =⊘ | xi) (55)

and the variances are defined respectively as

σ
2
i,⋄ =

1
M

M

∑
m=1

(
pm(y = ⋄ | xi)−µi,⋄

)2
(56) σ

2
i,⊘ =

1
M

M

∑
m=1

(
pm(y =⊘ | xi)−µi,⊘

)2
. (57)

We illustrate the estimated distributions N (µi,⋄,σ
2
i,⋄) in bottom middle Fig. 6 and N (µi,⊘,σ

2
i,⊘) in

bottom right Fig. 6. We also plot the empirical data samples used to estimate these distributions, i.e.,
a collection of [P1,i=0,k=⋄,P2,i=0,k=⋄, ...,PM,i=0,k=⋄] and [P1,i=0,k=⊘,P2,i=0,k=⊘...,PM,i=0,k=⊘].

B APPENDIX: ADDITIONAL ABLATION STUDIES

B.1 EXPERIMENTS WITH DIFFERENT UNCERTAINTY ESTIMATION CHOICES

We consider the entropy as another metric for estimating the confidence score for each data point. The
entropy across multiple ensembles is as known as the total uncertainty (Malinin, 2019; Malinin et al.,
2020), which is the sum of data and knowledge uncertainty. By considering the mutual information,
we can estimate the total uncertainty as follows:

H [p(y | x,D)]∼H

 1
M

M

∑
m=1

pm

(
y = 1, ...,K | x

)
︸ ︷︷ ︸

∈RK

 (58)

where pm(y | x) := p(y | x,θ (m)) for brevity. We compare this total uncertainty against the proposed
T-test and the total variance in Table 4. However, this entropy does not perform as well as the T-test
and total variance. The possible explanation is that this total uncertainty can not well capture the
variation in these class predictions, such as can not explicitly measure the gap between the highest and
second-highest classes. Additionally in Table 4, we also show that the proposed T-test outperforms
the total variance which is used in the existing UPS (Rizve et al., 2021). In addition, we highlight
that using CSA (either with Total variance of T-test) will consistently outperform SLA.

B.2 EXPERIMENTS WITH DIFFERENT NUMBER OF ITERATIONS T FOR PSEUDO-LABELING

Pseudo-labeling is an iterative process by repeatedly augmenting the labeled data with selected
samples from the unlabeled set. Under this repetitive mechanism, the error can also be accumulated
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Figure 7: Performance with different choices of the iterations T ∈ [1, ...,15] for pseudo-labeling.

during the PL process if the wrong assignment is made at an earlier stage. Therefore, not only the
choice of pseudo-labeling threshold is important, but also the number of iterations T used for the
pseudo-labeling process can affect the final performance.

Therefore, we analyze the performance with respect to the choices of the number of iterations
T ∈ [1, ...,15] in Fig. 7. We show an interesting fact that the best number of iterations is unknown in
advance and varies with the datasets. For example, the best T = 2 is for Analcatdata while T = 3
is for Synthetic control, T = 8 for Madelon and T = 2 for Digits. Our CSA is robust with different
choices of T for Synthetic control, Madelon and Digits that our method surpasses the Supervised
Learning (SL) by a wide margin. Having said that, CSA with T > 6 on Analcatdata can degrade the
performance below SL. Therefore, we recommend using T ≤ 5, and in the main experiment, we have
set T = 5 for all datasets.

B.3 EXPERIMENTS WITH DIFFERENT NUMBER OF XGB MODELS M FOR ENSEMBLING

To estimate the confidence score for each data point, we have ensembled M XGBoost models with
different sets of hyperparameters. Since we are interested in knowing how many models M should
we use for the experiments. We below perform the experiments with varying the number of models
M = [1, ...,30] in Fig. 8. We have shown on two datasets that using M ≥ 5 will be enough to estimate
the confidence score to achieve the best performance.

Additionally, we have demonstrated that making use of the confidence score (the case of CSA) will
consistently improve the performance against without using it (the case of SLA). This is because we
can ignore and do not assign labels to data points which are in low confidence scores, such as high
variance or overlapping between the highest and second-highest class. These uncertain samples can
be seen at the dark area in Fig. 2.

B.4 COMPUTATIONAL TIME

We analyze the computational time used in our CSA using Madelon dataset. As part of the ensembling
task, we need to train M XGBoost models. As shown previously in Appendix B.3, the recommended
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Figure 8: Experiments with different numbers of XGB models for ensembling. The results suggest
that using M ≥ 5 XGBoost models will sufficiently provide a good estimation for the confidence
level. Overall, we show that using the confidence score (CSA) will improve the performance than
without using it (SLA).
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Figure 9: The computational time per each component in CSA for Madelon dataset. We show that
the time used for computing both T-test and Sinkhorn is negligible as approximately within a second
while the time for XGBoost training takes longer.

number of XGBoost models is M ≥ 5 and we have used M = 10 in all experiments. Note that training
M XGBoost models can be taken in parallel to speed up the time.

We present in Fig. 9 a relative comparison of the computational times taken by each component
in CSA, including: time for training a single model of XGBoost, time for calculating T-test, and
time used by Sinkhorn’s algorithm. We show that the XGB training takes the most time, T-test
estimation and Sinkhorn algorithm will consume less time. Especially, Sinkhorn’s algorithm takes an
unnoticeable time, such as 0.1 sec for Madelon dataset.

We also observe that the XGBoost computational time used in each iteration will increase with
iterations because more data samples are augmented into the labeled set at each pseudo-label iteration.
On the other hand, the T-test will take less time with iteration because the number of unlabeled
samples reduces over time.

B.5 STATISTICS ON THE NUMBER OF POINTS REJECTED BY T-TEST AND ACCEPTED BY CSA

We plot the analysis on the number of samples accepted by CSA as well as rejected by the confidence
score w.r.t. iterations t = 1, ...,T in Fig. 10. We can see that the time used for training XGBoost model
is increasing over iterations because more samples are added into the labeled set which enlarges the
training set. Overall, the computational time for XGB and T-test is within a second.
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Figure 10: The statistic of the number of samples rejected by the confidence score (t-test), selected by
CSA and not selected. The remaining unlabeled data in the next iteration excludes the samples being
selected by CSA. Thus, the number of unlabeled samples is reduced across pseudo-label iterations.

Table 5: Comparison on the effect of introducing the lower bound constraint w− in the optimal
transport formulation. We show that adding the w− into the OT formulation will help the performance
slightly and adding the confident score will boost the performance significantly.

Datasets OT without w− OT with w− CSASLA (Tai et al., 2021) CSA without confidence
Segment 95.80±1 95.96±1 95.90±1

Wdbc 90.61±2 91.27±3 91.83±3
Analcatdata 90.98±2 91.38±3 96.60±2

German-credit 70.72±3 70.93±3 71.47±3
Madelon 56.53±4 56.87±4 57.51±3

Dna 88.09±2 89.14±2 89.24±1
Agar Lepiota 58.96±1 59.12±1 59.53±1
Breast cancer 92.76±2 92.81±2 93.55±2

Digits 81.51±3 81.68±3 88.10±2

Table 6: XGBoost hyperparameters range for ensembling.

Name Min Max
Learning rate 0.01 0.3

Max depth 3 20
Subsample 0.5 1

Colsample_bytree 0.4 1
Colsample_bylevel 0.4 1

n_estimators 100 1000
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Table 7: Dataset statistics including the number of classes K, number of feature d, number of test
samples, number of labeled, unlabeled and the ratio between labeled versus unlabeled (last column).

Datasets Domains #Classes #Feat #Test Train Ratio
K d #Labeled #Unlabeled Lab/Unlab

Single-label classification datasets
Segment image 7 19 462 739 1109 ||||||||/||||||||||||

Wdbc medical 2 30 114 45 410 ||/||||||||||||||||||
Analcatdata economic 4 70 169 67 605 ||/||||||||||||||||||

German-credit finance 2 24 200 160 640 ||||/||||||||||||||||
Madelon artificial 2 500 520 124 1956 |/|||||||||||||||||||

Dna biology 3 180 152 638 2,396 ||||/||||||||||||||||
Agaricus lepiota biology 7 22 1625 3,249 3,249 ||||||||||/||||||||||

Breast cancer image 2 30 114 91 364 ||||/||||||||||||||||
Digits image 10 64 360 287 1150 ||||/||||||||||||||||

Multi-label classification datasets
Yeast biology 14 103 726 845 846 ||||||||||/||||||||||

Emotions audio 6 72 178 207 208 ||||||||||/||||||||||
Category A retail 6 5,007 166 331 717 ||||||/||||||||||||||
Category B retail 6 5,010 213 263 1,207 |||/|||||||||||||||||
Category C retail 7 5,006 637 642 19,968 |/|||||||||||||||||||

B.6 EFFECT OF THE LOWER BOUND W− FOR THE OPTIMAL TRANSPORT ASSIGNMENT

In the proposed CSA, we have modified the original optimal transport formulation in Tai et al. (2021)
to introduce the lower bound w− to ensure that the proportion of the assign labels in each class
should be above this threshold. This design is useful in practice to prevent from being dominated by
the high-frequent class while low-frequent class receives low or zero allocation. We summarize the
comparison in Table 5 which shows that introducing the lower bound w− will improve marginally the
performance (middle column). Then, introducing the confident estimation in CSA will significantly
boost the performance (right column).

C APPENDIX: EXPERIMENTAL SETTINGS

We provide additional information about our experiments. We empirically calculate the label fre-
quency vector w∈RK from the training data, then set the upper w+ = 1.1×w and lower w− = 0.9×w
while we note that these values can vary with the datasets. We set the Sinkhorn regularizer ε = 0.01.
We use T = 5 pseudo-label iterations for the main experiments while we provide analysis with
different choices of the iterations in Appendix B.2.

We present the hyperparameters ranging for XGBoost in Table 6. Then, we summarize statistics for
all of the datasets used in our experiments in Table 7.

We design to allocate more data points at the earlier iterations and less at later iterations by setting a
decreasing vector over time ρt = (T − t +1)/(T +1) , where T is the maximum number of pseudo
iterations, which is then normalized ρt =

ρt
∑∀t ρt

.

D APPENDIX: ADDITIONAL EXPERIMENTS

We present a further comparison with the pseudo-labeling baselines in Fig. 11 using 6 additional
datasets.
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Figure 11: Additional experimental results in comparison with the pseudo-labeling methods on
tabular data. The results clearly demonstrate the efficiency of the proposed CSA against the baselines.
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