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Table 5: 12 simplified atomic operations of reasoning steps.

Operation Semantic
Select Select a specific class of objects
Relate Relate objects by their relations
Query Query a specific attribution of an object
Exist Check the existence of an object
Filter Filter objects by a specific attribution
Verify Check if the object has a specific attribution

Common Search the common attribution of multiple objects
Same Check if multiple objects have the same specific attribution

Different Check if multiple objects have different specific attributions
Compare Compare a specific attribution of multiple objects
And Logical and operation of specific previous results
Or Logical or operation of specific previous results

A MORE INFORMATION OF DATASET
More Details of Explanation ConstructionWe follow [4] to cat-
egorize 127 operations in the GQA dataset into 12 atomic operations
that cover the essential semantics. For example, “same color", “same
material", and “same shape" are merged into the “same" operation
while “color", “material", and “shape" become their arguments. The
semantics of these simplified operations are shown in Table 5.

Data Splits Since the GQA dataset does not release the scene
graph annotations of their test sets, we can only leverage their
training and validation set. Specifically, we adopt balanced training
set with 943,000 samples and balanced validation set with 132,062
samples of GQA. After constructing explanations and removing low-
quality samples, we obtain 901,203 training samples and 127,027
validation samples. Then, we further randomly select 30,000 valida-
tion samples to form the test set and the rest to form the validation
set. Considering the balanced test-dev set of GQA only contains
12,578 samples, our test samples are already sufficient. Further-
more, to keep costs reasonable for researchers utilizing OpenAI
APIs to conduct experiments on our test set, we believe that expand-
ing the test set significantly would not be suitable. For example,
our method costs around $200 to call OpenAI APIs for a single com-
plete run, not to mention the entire set of experiments. However,
researchers can also utilize our validation set of the larger size to
evaluate their methods, if the costs are not a problem for them.

Word Distribution Figure 9 shows the distribution of the first
four words in our explanations. The arc lengths of the words rep-
resent their occurrence frequencies. Specially, all words with less
than 1.5% frequencies are merged into gray regions (since they
are hard to display). While the majority of our explanations begin
with “The" or “There", the gray region significantly expands at the
following positions. This highlights the diversity of our constructed
explanations in the SME dataset.

Figure 9: Distribution of first four words in the SME dataset.
Gray regions denote all other words of less than 1.5% fre-
quencies.

Figure 10: A formatted example of ground truth explanation
and predicted explanation.While our ground truth annotates
the names of all boxes, the prediction simply needs to link
values to boxes by their order.

B DISCUSSION OF EVALUATION AND
METRICS

While REX [4] makes the very first attempt at multimodal expla-
nations for VQA, its adopted metrics have several problems. Ac-
cordingly, we improve the evaluation metrics in this work. We
show a formatted example of the ground truth explanation and the
predicted explanation in Figure 10 to facilitate comprehension.
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B.1 Improving Textual Evaluation
In explanations constructed in REX [4], the visual objects are rep-
resented by #𝑖 that is the 𝑖-th object predicted by a Faster RCNN
trained on MS-COCO. When using language metrics (i.e., BLEU-4
[10], METEOR [3], ROUGE-L[7], CIDEr [12], and SPICE [2]), the
evaluation is sensitive to the number of visual objects. For example,
for the token “#i" in the ground truth explanation, the token “#j"
(𝑖 ≠ 𝑗 ) in the generated explanation is considered as wrong, even
though “#j" may represent almost the same grounding box as “#i".
Moreover, when the Faster R-CNN does not predict the needed
visual objects, their annotated “#i" is thereby inaccurate, which also
reduces the reliability of textual metrics.

To overcome these problems, we separate the evaluation of text
generation and visual grounding. We use the [𝐵𝑂𝑋 ] token in expla-
nations to represent grounding boxes. Therefore, while adopting
the same language metrics (i.e., BLEU-4 [10], METEOR [3], ROUGE-
L[7], CIDEr [12], and SPICE [2]), our textual evaluation only re-
quires the model to generate [𝐵𝑂𝑋 ] tokens in the correct positions,
leaving the evaluation of grounded boxes in visual metrics.

Figure 11: Comparison of the grounding metric in REX [4]
and the detection metric in our SME after shuffling tokens
in the generated explanations.

B.2 Improving Visual Evaluation
For a ground truth explanation 𝐸𝑔𝑡 and a reference explanation
𝐸𝑟𝑒 , REX [4] directly compute the IoU score between all boxes in
𝐸𝑔𝑡 and all boxes in 𝐸𝑟𝑒 . Their grounding score can be written as
follows:

𝐺𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 = 𝐼𝑜𝑈 ({𝑏𝑜𝑥𝑒𝑠 𝑖𝑛 𝐸𝑔𝑡 }, {𝑏𝑜𝑥𝑒𝑠 𝑖𝑛 𝐸𝑟𝑒 }), (1)

which is insensitive to the position of boxes and their corresponding
names in the explanation. For example, for a question “What’s the
color of the apple to the left of the pear?", two explanations “#i to
the left of #j is green" and “#j to the left of #i is green" have the
same grounding score, though #𝑖 is apple and # 𝑗 is pear.

To address this problem, in our explanations, [𝐵𝑂𝑋 ] follows the
name of the corresponding object and we annotate the grounding
boxes with their names mentioned in the explanation, based on
scene graphs annotated by humans. Then, for every object name
𝑠 annotated in a ground truth explanation (e.g., “cucumber" and

“tomato"), we match the [𝐵𝑂𝑋 ] token following 𝑠 in the reference
explanation. Then, we compute the IoU (intersection of union)
score of the ground truth boxes 𝐵𝑠𝑔𝑡 of 𝑠 and the reference boxes 𝐵

𝑠
𝑟𝑒

related to this [𝐵𝑂𝑋 ] token, evaluating the detection precision of
this object. The final detection score of one explanation is averaged
over all object names, as follows:

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
1
𝑁

∑︁
𝑠

𝐼𝑜𝑈 (𝐵𝑠𝑔𝑡 , 𝐵𝑠𝑟𝑒 ), (2)

where 𝑁 is the number of object names that occur in the ground
truth and reference explanations. Therefore, the redundant boxes
in the reference explanation and the missing boxes can punish the
final detection score. Our visual metric relates object boxes and
their names for a more precise evaluation. We conduct a simple
random shuffle experiment to compare the effectiveness of two
visual metrics. We randomly shuffle the generated explanation
tokens and compute the visual scores, as shown in Figure 11. After
shuffling the tokens, the grounding score adopted in REX remained
the same, while our proposed detection score significantly drops.
These results verify that our metric is sensitive to the position of
grounding tokens in the generated explanations.

Figure 12: Few-shot program prompt in our method. [𝑄]
denotes the input question.

C MORE DETAILS OF METHOD
Multimodal Programming. In our Multimodal Programming
(MulProg), we implement 16 program modules, as shown in Table 6.
Specially, 𝐿𝑂𝐶 and 𝑉𝑄𝐴 are implemented based on neural models.
These models do not use MEVQA or GQA as training data, avoiding
data leaks. Moreover, though we adopt a 𝑉𝑄𝐴 module, it is not
an end-to-end module in our method and we construct complex
reasoning steps for reasoning. For example, for the question “What
is the bathtub made of?", instead of directly calling the𝑉𝑄𝐴module
to solve the question, our method first calls the 𝐿𝑂𝐶 module to find
the bathtub and then calls the𝐶𝑅𝑂𝑃 module to crop the bathtub in
the image. Finally, we input the cropped image and the question into
the 𝑉𝑄𝐴 module for answering. These complex steps facilitate the
multimodal explanation for VQA in our method. These program
modules are combined to form the programs for solving visual
questions.

After defining the program modules, we construct a few-shot
program prompt based on 𝑁 (= 16) training samples, as shown in

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: Few-shot Multimodal Explanation for Visual Question Answering ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 6: Program modules in our Multimodal Programming.

Definition Smantic Backbone
LOC(image, object) Detect all boxes of the visual object in a image OWL-ViT [9]

COUNT(box) Count the number of boxes Python
CROP(image, box) Crop the box in the image Python

CROP_RIGHTOF(image, box) Crop the image right of the box Python
CROP_LEFTOF(image, box) Crop the image left of the box Python
CROP_RIGHTOF(image, box) Crop the image right of the box Python
CROP_FRONTOF(image, box) Crop the image in front of the box Python
CROP_INFRONTOF(image, box) Crop the image in front of the box Python
CROP_BEHIND(image, box) Crop the image behind of the box Python
CROP_AHEAD(image, box) Crop the image ahead of the box Python
CROP_BELOW(image, box) Crop the image below the box Python
CROP_ABOVE(image, box) Crop the image above the box Python

VQA(image, question) Answer the question about the image BLIP [6]
EVAL(expression) Evaluate the expression Python

SIZE(box) Evaluate the size of the box Python
RESULT(variable) Return the value of the variable Python

Figure 12. By exemplifying the correspondence between questions
and programs, the prompted GPT-3.5 can generate the program
for the input question 𝑄 . Then, our MEAgent utilizes multimodal
open-world tools to execute the multimodal program and infer the
answer to the question.

D MORE DETAILS OF EXPERIMENTS
D.1 More Implementation Details
We adopt gpt-3.5-turbo-instruct as our backbone LLM, which is
an instruct LLM needed for following the prompt instructions in
our method. Since it is currently the only running OpenAI API of
instruct LLMs, we do not experiment with other LLMs. Another
important reason for not adopting GPT-4 is that we do not know if
GPT-4 uses GQA data in its training, which can cause data leaks in
our few-shot learning experiments.

For the GPT-4V [1] baseline, we adopt the gpt-4-1106-vision-
preview version, since it is currently the most powerful version of
GPT-4V, claimed by OpenAI.

In experiments of REX [4] and VCIN [13], we use the official
code and carefully tune the hyper-parameters. However, we have
found that the training processes of these traditional MEVQA meth-
ods may collapse with very few training samples. To address this,
we simply discard these collapsed results and only adopt the con-
verged results. We have to acknowledge that this can cause an
overvaluation of these baselines.

D.2 Implementation Details of GPT-4V
Different from GPT-3.5 adopted in our method, GPT-4V [1] is a mul-
timodal LLM that can input text, images, and videos. Since GPT-4V
can generate text and detect visual objects, we construct a prompt
based on the same 𝑁 (= 16) examples in our method, to facilitate
question answering and multimodal explanation generation via
GPT-4V. As shown in Figure 13, we construct a few-shot prompt
based on the same 𝑁 (= 16) in-context examples in our method for
GPT-4V. In the prompt, we exemplify the correspondence between

Figure 13: Few-shot prompt for GPT-4V. [𝑄] denotes the input
question and [𝐼 ] denotes the input image.

a question to its answer, explanation, and key object boxes. Then,
by inputting the test question and its related image, GPT-4V can
output the answer, explanation, and key object boxes. We further
replace the box variables (i.e. {𝐵𝑂𝑋𝑖}) in the generated explanation
with [𝐵𝑂𝑋 ] linked to the corresponding variable values follow-
ing “Boxes:", to form the multimodal explanation. Notably, GPT-4V
sometimes cannot find the key visual objects in the image and re-
fuses to answer the question, outputting text such as “I’m sorry, but
I cannot provide an answer to your question as there is no visible
trashcan in the provided image.".
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E POTENTIAL RISK
A key potential risk in few-shot learning with trained models is
data leak. Since our dataset is based on the public GQA dataset
(a VQA dataset) [5], some models that share the training data in
GQA should not be considered in few-shot learning. As we have
checked, program modules in our MEAgent do not share the train-
ing data in our dataset. The GPT-3.5 used in our method, which is
a language-only model, also does not use our multimodal data for
training. For our baselines REX and VCIN, we utilize the backbone
VisualBERT pretrained on MS-COCO [8] to avoid data leaks. An-
other backbone LXMERT [11] is pre-trained on GQA and we only
adopt it in non-few-shot experiments. For GPT-4V, since there is no
public information about its training data. We are not sure if GQA
is used in its training. Therefore, GPT-4V may be overestimated
in few-shot experiments. This is also an important reason for not
using GPT-4 as the backbone of our method.
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