
A Methods

A.1 Network Model

We consider a discrete-time implementation of a rate-based recurrent neural network (RNN) similar
to the form in [56]. We denote the observable states, i.e. firing rates, as zt at time t, and the
corresponding internal states as st. The dynamics of those states are governed by

sj,t+1 = η sj,t + (1− η)

∑
l 6=j

Wjl zl,t +
∑
p

W IN
jm xm,t+1


zj,t = ReLU(sj,t), (S1)

where η = e−dt/τm denotes the leak factor for simulation time step dt and membrane time constant
τm, Wlj denotes the weight of the synaptic connection from neuron j to l, W IN

jm denotes the strength
of the connection between the mth external input and neuron j and xt denotes the external input at
time t. Threshold adaptation is not used here in order to focus on capacity of the temporal credit
propagation mechanism. We focused on ReLU activation due to its wide adoption in both deep
learning and computational neuroscience communities; as discussed, we leave extension to other
activation functions (spike-based in particular) for future work.

The readout y is a linear transformation of the hidden state

yk,t =
∑
j

WOUT
kj zj,t + bOUT

k , (S2)

where WOUT
kj denotes the strength of the connection from neuron j to output neuron k, bOUT

k denotes
the bias of the k-th output neuron.

We quantify how well the network output matches the desired target using loss function E:

E =

{
1
2

∑
k,t(y

∗
k,t − yk,t)2, for regression tasks

−
∑
k,t π

∗
k,tlogπk,t, for classification tasks

(S3)

where y∗k,t is the time-dependent target, π∗k,t is the one-hot encoded target and πk,t =

softmaxk(y1,t, . . . , yNOUT ,t) = exp(yk,t)/
∑
k′ exp(yk′,t) is the predicted category probability.

A.2 Gradient descent learning in RNNs

Notation for Derivatives: There are two types of computational dependencies in RNNs; direct and
indirect dependencies. We distinguish direct dependencies versus all dependencies (including indirect
ones) using partial derivatives (∂) versus total derivatives (d), respectively.

Without loss of generality, consider a function f(x, y), where y itself may depend on x. The partial
derivative ∂ of f at x0 considers y as a constant, and evaluates as ∂f(x,y)

∂x |x0,y(x0); i.e. the derivative
calculation only considers how x directly affects f . The total derivative d, on the other hand, may
not treat y as a constant and evaluates as df(x,y)

dx = ∂f(x,y)
∂x |x0,y(x0) + ∂f(x,y)

∂y |x0,y(x0)
∂y
∂x |x0 ; i.e. the

derivative calculation also takes into account how x can indirectly affect f through y.

As an example in our network, variable Wpq can impact state sp,t directly through Eq. S1, i.e.
∂sp,t
Wpq

= (1− η)zq,t−1. On the other hand, Wpq can also impact sp,t indirectly through other cells in
the network: i.e. the dependence of sp,t on Wpq and all sj,t′ (t′ < t, j ∈ {1, ..., N}) affected by Wpq

are taken into account for the derivative calculation, which leads to the recursive equation in Eq. S8.

Exact gradient computation and locality issue: In gradient descent learning, all weight parameters
(input weights W IN , recurrent weights W and output weights WOUT) are adjusted iteratively
according to the error gradient. This error gradient can be calculated with classical machine learning
algorithms, backpropagation through time (BPTT) and real time recurrent learning (RTRL) [42],
which uses different factorization but yield equivalent results. However, the BPTT factorization
depend on future activity, which poses an obstacle for online learning and biological plausibility. Our
learning rule derivation follows the RTRL factorization because it is causal.

16

RTRL factors the error gradient across time and space as

dE

dWpq
|t =

∑
j

∂E

∂sj,t

d sj,t
dWpq

(S4)

d zj,t
dWpq

= hj,t
d sj,t
dWpq

,where hj,t :=
∂zj,t
∂sj,t

(S5)

∂sj,t
∂Wpq

= δjp(1− η)zq,t−1 (S6)

∂sj,t
∂sl,t−1

=

{
η, j = l
∂sj,t
∂zl,t−1

∂zl,t−1

∂sl,t−1
= (1− η)Wjlhl,t−1, j 6= l

(S7)

d sj,t
dWpq

=
∂sj,t
∂Wpq

+
∑
l

∂sj,t
∂sl,t−1

d sl,t−1
dWpq

=
∂sj,t
∂Wpq

+ η
d sj,t−1
dWpq

+ (1− η)
∑
l 6=jWjl

∂zl,t−1

∂sl,t−1

d sl,t−1

dWpq︸ ︷︷ ︸
depends on all weights Wjl

. (S8)

following the derivative notation explained above. The factor ∂E
∂zj,t

in Eq. S4 can be interpreted as
the top-down learning signal, which is defined as Lj,t :=

∑
kW

OUT
kj (yk,t − y∗k,t) for regression

tasks [5]. It is straightforward to compute. However, the triple tensor d sj,t
dWpq

requires O(N3) memory
and O(N4) computation costs. It keeps track of all the paths that zj,t can affect Wpq (for every
j, p, q). Moreover, it poses a significant challenge to biological plausibility: updating each weight
Wpq requires knowing all other weights Wjl (for every j and l) in the network, and that information
should be inaccessible to neural circuits.

To address this, references [4] and [5] dropped the problematic terms so that the updates to weight
Wpq would only depend on pre- and post-synaptic activity, and applied this truncation to train rate-
and spike-based networks, respectively. However, such truncation results in limited performance.

A.3 Derivation of ModProp

We ask how intercellular neuromodulation might communicate the expensive spatiotemporal de-
pendency in the factor d sj,t

dWpq
. Along with the interpretation of Lj,t := ∂E

∂zj,t
as top-down learning

signal, let epq,t denote the eligibility trace of coincidental activation between presynaptic cell q and
postsynaptic cell p [5]. The following derivation leads to our learning rule. The leak factor is omitted
in the derivation below (η = 0) for readability, and we substitute Eq. S8 into Eq. S4 and repeatedly
expand the expensive d s

dW factor using Eq. S8:

dE

dWpq
|t =

∑
j

∂E

∂zj,t
hj,t

(
δjpzq,t−1 +

∑
l

Wjlhl,t−1
d sl,t−1
dWpq

)
(S9)

=
∂E

∂zp,t
hp,tzq,t−1 +

∑
j

∂E

∂zj,t
hj,t

∑
l

Wjlhl,t−1
d sl,t−1
dWpq

(S10)

=
∂E

∂zp,t
epq,t +

∑
j

∂E

∂zj,t
hj,t

∑
l

Wjlhl,t−1

(
δlpzq,t−2 +

∑
k

Wlkhk,t−2
d sk,t−2
dWpq

)
(S11)

= . . .

17

dE

dWpq
|t =

∂E

∂zp,t
epq,t +

∑
j

∂E

∂zj,t
hj,tWjp

 epq,t−1+

∑
j

∂E

∂zj,t
hj,t

S∑
s=2

∑
i1,...,is−1

Wji1Wi1i2 . . .Wis−1phi1,t−1 . . . his−1,t−s+1epq,t−s (S12)

(a)
≈ ∂E

∂zp,t
epq,t +

∑
j

∂E

∂zj,t
hj,tWjp

 epq,t−1

+
∑
j

∂E

∂zj,t
hj,t

S∑
s=2

(W s)jp epq,t−s
1

Ns−1

∑
i1,...,is−1

hi1,t−1hi2,t−2 . . . his−1,t−s+1(S13)

=
∂E

∂zp,t
epq,t +

∑
j

∂E

∂zj,t
hj,t

S∑
s=1

(W s)jpH(t, s) epq,t−s, (S14)

where H(t, 1) = 1, H(t, s) = 1
Ns−1

∑
i1,...,is−1

hi1,t−1hi2,t−2 . . . his−1,t−s+1 for s = 1, . . . , S and
S, as explained later, is the number of filter taps. Again, we neglected the leak factor in the derivation
for readability but included in the actual simulations. The only approximation step above, (a), is
made by using a point estimate assuming that the W and h chains are uncorrelated and the central
limit theorem applies. We note that in a linear network, all the activation derivatives h would be 1,
making the approximation exact.

We expand on our explanation for step (a) approximation. We define a W -chain (of length l) as

l∏
φ=1

Wiφiφ+1
, (S15)

for any indices i1, . . . , il+1 ∈ {1, ..., N}. Similarly, we define an h-chain (of length l′) as

l′∏
θ=1

hjθ,t−θ, (S16)

for any indices j1, . . . , jl′ ∈ {1, ..., N}. With these definitions, we call the W -chain Wi1,...,is−1 =
Wji1Wi1i2 . . .Wis−1p and the h-chain hi1,...,is−1 = hi1,t−1 . . . his−1,t−s+1 uncorrelated if

Ei1,...,is−1Wi1,...,is−1hi1,...,is−1 = Ei1,...,is−1Wi1,...,is−1Ei1,...,is−1hi1,...,is−1 . (S17)

Considering Wi1,...,is−1
and hi1,...,is−1

as random i.i.d. samples indexed by i1, . . . , is−1, the central
limit theorem states that∑
i1,...,is−1

Wi1,...,is−1hi1,...,is−1 ∼ N (Ns−1E[Wi1,...,is−1hi1,...,is−1], Ns−1Var(Wi1,...,is−1hi1,...,is−1))

(S18)
as the sum tends to infinity. Here, we simply use the i.i.d. assumption even though stronger versions
of the Central Limit Theorem need weaker assumptions than i.i.d. When the W - and h-chains are
uncorrelated, we take the mean of this distribution as a point estimate (note, however, the growing
variance) to arrive at the following approximation:∑
i1,...,is−1

Wi1,...,is−1
hi1,...,is−1

≈ Ns−1EWi1,...,is−1
hi1,...,is−1

= Ns−1EWi1,...,is−1
Ehi1,...,is−1

.

(S19)

Since EWi1,...,is−1 = 1
Ns−1 (W s)jp (by the same application of central limit theorem as above) when

i1, . . . , is−1 are distributed uniformly over valid index ranges, we conclude that∑
i1,...,is−1

Wi1,...,is−1
hi1,...,is−1

≈ (W s)jp
1

Ns−1

∑
i1,...,is−1

hi1,...,is−1
, (S20)

18

where the expectation of the h-chain is replaced by its empirical estimate.

To put this derivation in terms of biological components, we make the following further approxima-
tions. First, we link modulatory weights to type-specific GPCR efficacies, which means they are
type-specific, i.e. (W s)jp ≈ (W s)αβ , for type-indices α and β in a set of possible classes C. Second,
H(t, s) should be time-invariant, i.e. H(t, s) = H(s), since biological filter properties should not
vary rapidly across time.

Interestingly, we observe that H(s) is an average of activation history across time and cells (Eq. S14).
In particular, when the activation function is ReLU, one can think of H(s) as approximating the
number of activation chains with length s (divided by the total number of possible chains). Thus, a
crude starting point would be to assume first-order stationarity, i.e., assume the average activity level
remains invariant (1

N

∑
i hi,t := µt ≈ µ,∀t). Then

H(t, s) =
1

Ns−1

∑
i1,...,is−1

hi1,t−1 . . . his−1,t−s+1

(a)
=

1

N

∑
i1

hi1,t−1
1

N

∑
i2

hi2,t−2 . . .
1

N

∑
is−1

his−1,t−s+1

≈ µs−1, (S21)

where µ is a scalar constant and represents global average neuron activation. (a) is because in the case
of ReLU activation (where activation derivative h is binary), total number of different activation chain
combinations,

∑
i1,...,is−1

hi1,t−1 . . . his−1,t−s+1, would equal to the product of number of activation
at each time step,

∑
i1
hi1,t−1

∑
i2
hi2,t−2 . . .

∑
is−1

his−1,t−s+1. This is because to choose a chain
of activated neurons from all possible combinations, the number of possible indices to choose from
for each step is equal to the number of activated neuron at that step. Indeed, intercellular signaling
level is activity-dependent [26]. For implementation, µ can be treated as a hyperparameter or adapted
on a separate timescale. It is also important to note that this activation derivative approximation is
only applied to the term (in the equation below) additional to the e-prop term, ∂E

∂zp,t
epq,t, for which

the exact activation derivative is still used.

By substituting these further approximations into Eq. S14, the approximated gradient becomes:

dE

dWpq
|t ≈

∂E

∂zp,t
epq,t +

∑
α∈C

∑
j∈α

∂E

∂zj,t
hj,t

 S∑
s=1

(W s)αβ µ
s−1 epq,t−s, (S22)

and this leads to the ModProp update:

∆Wpq|ModProp ∝ Lp × epq + (
∑
α∈C

∑
j∈α

Ljhj

× Fαβ) ∗ epq,

Fαβ,s = µs−1(W s)αβ , (S23)

where cell j is of type α, cell p is of type β and C denotes the set of cell types. L and e denote top-
down learning signal and eligibility trace, respectively. Again, activation derivative hj is closely linked
to activity level of neuron j. F represents the modulatory filter, Fαβ ∗ epq =

∑S
s=1 Fαβ,sepq,t−s is

the convolution operation with S as the number of filter taps, and scaling factor µ is a hyperparameter.
For calculating the modulatory weights, the weights were calculated using matrix powers for s > 1.
(See beginning of Theorem 1 proof.) For s = 1, we first examined W 1

αβ =< W 1
jp >j∈α,p∈β in the

main text. This assumes modulatory weights and synaptic weights co-adapt throughout training and
to what extent they co-adapt in neural circuits is unclear. Thus, we also set modulatory weights to
fixed random type-specific values and demonstrate the resulting learning performance in Appendix
Figure S1. These fixed random type-specific modulatory weights were generated randomly from the
distribution of averages of random initial weights. Thus, these fixed random type-specific modulatory
weights would be close to the initial synaptic weight averages and could stay close depending on how
much these synaptic weight averages change throughout training.

19

Eligibility trace implementation: We here explain the implementation of eligibility trace epq,t:

epq,t :=
∂zp,t
∂sp,t

εpq,t, (S24)

εpq,t =
∂sp,t
∂wpq

+
∂sp,t
∂sp,t−1

εpq,t−1, (S25)

which tracks the coincidence of postsynaptic activity hp,t =
∂zp,t
∂sp,t

and a low pass filtering of

presynaptic activity stored in εpq,t (∂sp,t∂wpq
= zq,t−1 and ∂sp,t+1

∂sp,t
= η following Eq. S1). Reference [5]

provides a comprehensive discussion on how eligibility traces can be interpreted as derivatives.

20

B Additional simulations

BA

Figure S1: Effective learning is achievable with fixed random synapse-type-specific modulatory
weights. Figure 4 computes type-specific modulatory weights by averaging forward weight entries in
the corresponding pre- and postsynaptic cell group. This assumes that modulatory weights co-adapt
with synaptic weights. To what extent they are linked in the brain is unclear. Thus, to test the
generality of our learning rule, we re-train using fixed random type-specific modulatory weights
and show that leads to negligible performance degradation. Note, sequential MNIST task is not
considered in figures that involve synapse-type-specific modulatory weights, as cell types were not
considered in that task. Plotting convention follows that of previous figures.

B CA

Figure S2: Restoring neuron specificity in the activation derivative does not lead to significant
improvements. Here, ModProp_global is the basic form of ModProp investigated in the main text,
where the activation derivative exhibited no spatiotemporal specificity. ModProp_nSpecific (Eq. S26)
takes into account the neuron specificity of the activation derivative and only averages across time
steps. This comparison is done for the A) pattern generation task, B) delayed XOR task and C)
sequential MNIST task. Plotting convention follows that of previous figures.

We discussed how the basic form of ModProp completely neglects any spatiotemporal specificity in
the activation derivative. We ask how much performance gain could we get if we lose only temporal
specificity, i.e. only average activation derivative across time points. This would see different neurons
as having different average activity. To put this more concretely, we approximate the corresponding
factor in Eq. S12 as ∑

i1,...,is−1

Wji1hi1,t−1Wi1i2hi2,t−2 . . .Wis−1phis−1,t−s+1

≈Wji1hi1Wi1i2hi2 . . .Wis−1phis−1 = (W)sjp, (S26)

where W := W � h with h — a 1 − by − N vector with each entry corresponding to a neuron-
specific mean activation — broadcasted for the element-wise multiplication with W . In other words,
this restores spatial specificity and the only approximation being made here is to remove temporal
specificity of activation derivative. As a practical note, by the famous AM-GM inequality, the
estimation (Πshs ≈ h) would yield an upper bound of the actual. Thus, we multiply a dampening

21

Figure S3: Delayed XOR task with a longer delay period. We simulate the delayed XOR task with
1.5 times the delay period used in Figure 3B. Although ModProp (with cell-type approximation) still
outperforms other bio-plausible learning rules, the performance degrades (compared to ModProp_Wab
in Figure 4B). Moreover, we found all rules (including BPTT) struggle to learn if we increased the
delay period to twice of that in Figure 3 without changing other task or network parameters (e.g. cue
width and intensity). This connects nicely to our discussion point on the limitation of ModProp in
addressing very long temporal credit assignment problems in the absence of a long-term memory
mechanism. Solid lines/shaded regions: mean/standard deviation of loss curves across five runs.

B C

A Input: 1 0 1 - - -

Output: - - - 1 0 1

Input: 0 1 0 1 0 0 1

Output: - - - - - - - 0 1 0 1 0 0 1

100ms

Figure S4: Copy task with fixed random synapse-type-specific modulatory weights. Sequences
of binary cues are presented to an RNN. For each sequence, once the full sequence has been presented,
the network should output the original sequence (with the same value and duration) without any
further information [59]. A) Examples of input/output pairs at different sequence lengths. Instead of
having each cue lasting just 1 step, we have each cue lasting 100 steps (100ms) to mimic the duration
of a quick cue flash in biological settings. Superior performance of ModProp even with fixed and
random modulatory weights (compared to other biologically plausible rules) is demonstrated for the
copy task with a sequence length of B) five cues (nc = 5) and C) seven cues (nc = 7). Average loss
denotes the binary cross entropy loss computed on target and actual output averaged across time steps.
Solid lines/shaded regions: mean/standard deviation of loss curves across five runs.

factor µ to everyW for stability, and treat µ as a hyperparameter. We name this variant of ModProp as
"ModProp_nSpecific", and the most basic form we investigated in the main text as "ModProp_global".

22

Figure S2 shows that this restoration of neuron-specificity in activation derivative did not lead to
significant performance improvement.

23

C Further discussion on related algorithms

For efficient online learning in RNNs, approximations to RTRL have been proposed [4, 17, 50–54].
For biological realism (use only local information for local updates) and reduced computational cost,
e-prop [5] and RFLO [4] proposes severe truncation such that the weight update would only depend
on pre- and postsynptic neuron activity as well as a top-down error signal that only tells how a neuron
directly contributes to the overall network outcome. MDGL [6, 63] proposes a less severe truncation
than e-prop and RFLO, but it only addresses the contributions to the task error of neurons that are at
most 2 synapses away (note, Ref [6] can be considered as a special case of our work, where the filter
length is constrained to a single tap). ModProp shows a way of removing this significant limitation
and enables the communication and calculation of credit from neurons that can be arbitrarily many
synapses away. It also experimentally demonstrates the benefit of this key contribution.

Along the approach of truncations, reference [53] proposed the SnAp-n algorithm that allows the
user to customize the amount of truncation by deciding on n. SnAP-n stores d sj,t

dwpq
(seen in Eq. S8)

only for j such that parameter wpq influences the activity of unit j within n time steps. SnAp-1
is closely related to e-prop/RFLO (assuming no autapses). However, starting at n = 2 (SnAp-2),
d sj,t
dwpq

will be stored for every {j, p, q} such that wpq influences j in two steps. This would require
the storage of kN3 traces, where k is a constant that equals the connection density squared. To our
knowledge, there is no evidence on how neural circuits can accommodate such O(kN3) storage.
Therefore, SnAp-n (n ≥ 2) still poses a significant biological plausibility issue while SnAp-1 reduces
to e-prop/RFLO in certain circumstances.

Moving from temporal truncation, KeRNL [52] approximates long term dependencies by assuming
the dependency to be first order low-pass and learn the parameters using node perturbation. However,
the algorithm poses significant implementation and biologically plausibility issues: (1) it uses node
perturbation to find the meta-parameters (e.g. the first order decay constant), which is not scalable;
(2) meta-parameters are updated per step on the same timescale as synaptic weight update. Their
idea of approximating long term dependencies by assuming it follows a certain structure rather
than truncating it is what partially inspired our rule. Unlike KeRNL, our approximation can lead to
successful learning with fixed meta parameters that are likely updated on the evolutionary timescale
in biology (Figure S1).

24

D Cost analysis and biological implementation

D.1 Cost and interpretation for biologically-plausible implementation of ModProp in Eq. 6

Recall for ModProp, the eligibility trace is combined with total modulatory signals detected:

∆Wpq ∝ ETpq × TDp + ETpq ∗
∑
α∈C

LMαβ

ETpq ∗
∑
α∈C

LMαβ =

S∑
s=1

ETpq,t−s ×
∑
α∈C

LMαβ,s

LMαβ,s = (affinity W s
αβ)×

∑
j∈α

TDj × (activity j)︸ ︷︷ ︸
modulatory signal j

. (S27)

We see that the eligibility trace (ET) is brought outside of the double summation of local modulatory
(LM) signals. A biological interpretation is that secretion of top-down (TD) learning signals can
selectively activate a biochemical process at the post-synaptic neuron, which can then act as a
temporal filter on the eligibility trace. The number of filter taps for the underlying biochemical
process, S, determines the number of steps for credit information propagation.

Here is the computational cost breakdown for Remark 3.2:

• aj,t = TDj × (activity j) for all j = 1, .., N has O(N) operations.

•
∑
j∈α aj,t for j = 1, ..., Nα has O(Nα) operations (assuming aj,t already available, from

the last step), where Nα is the number of cells in type α.

• LMβ,s :=
∑
α∈CW

s
αβ(
∑
j∈α aj,t) for all α, β = 1, ...C and s = 1, ..., S has O(SC2)

operations. Note, this step is the modulatory communication step, where type-specific-
approximation of weights can reduce the cost.

•
∑S
s=1 ETpq,t−s × LMβ,s for all p, q = 1, ..., N has N2 element-wise multiplications per

s = 1, ..., S, leading to a total of O(SN2). Since β can be determined from p, there is no
need to loop over β in this step.

Since the cost of the last item dominates, the computational cost scales as O(SN2). For storage
cost, ModProp stores epq,t−S , . . . epq,t for every (pq), leading to a storage cost of O(SN2).

D.2 Cost for biologically-implausible implementation of ModProp

We prove Proposition 1 next, where we discussed a potentially biologically-implausible in silico
implementation with lower computational and storage costs than the biologically-plausible version
above.

Proof. Let us first introduce the following notations:

• Nα denotes the number of cells in type α

• [(W s)αβ] ∈ RNα×Nβ is a matrix repeating the value of scalar (W s)αβ

• Thus, [(W 1)αγ][(W s)γβ] = [Nγ(W 1)αγ(W s)γβ]

• Gtα,pq :=
∑t
s=1(W s)αβ µ

s−1 epq,t−s

25

By properties of block matrix product:

[(W s+1)αβ] =
∑
γ

[(W 1)αγ][(W s)γβ] = [
∑
γ

Nγ(W s)αγ(W s)γβ]

→ (W s+1)γβ =
∑
γ

Nγ(W 1)αγ(W s)γβ . (S28)

Now, let’s find a recursive expression to calculate Zt+1
α,pq online:

Gt+1
α,pq =

t+1∑
s=1

(W s)αβ µ
s−1 epq,t+1−s

=

t∑
s=0

(W s+1)αβ µ
s epq,t−s

=

t∑
s=1

(W s+1)αβ µ
s epq,t−s + (W 1)αβepq,t

=

t∑
s=1

(
∑
γ

Nγ(W 1)αγ(W s)γβ)µs epq,t−s + (W 1)αβepq,t

=
∑
γ

Nγ(W 1)αγµ

t∑
s=1

(W s)γβ µ
s−1 epq,t−s + (W 1)αβepq,t

=
∑
γ

Nγ(W 1)αγµG
t
γ,pq + (W 1)αβepq,t (S29)

And the overall update is:

∆Wpq|ModProp =
∂E

∂zp,t
epq,t +

∑
α

Gtα,pq
∑
j∈α

∂E

∂zj,t
hj,t (S30)

The second term dominates the cost, for which we need to store Gtα,pq for every α, p, q. This amounts
to O(CN2) storage cost. To update and attain Gt+1

α,pq , we need O(C) summations and multplications
per Gt+1

α,pq, which amounts to O(C2N2) computational cost. The final step of combining G and∑
j∈α

∂E
∂zj,t

hj,t, requires O(CN2) computational cost, which does not dominate the cost.

We note that the specific implementation outlined in the proof of Proposition 1 can significantly
reduce the implementation cost, but is likely biologically-implausible, because each synaptic weight
update requires the knowledge of all modulatory weights in the network (Appendix D). Moreover,
it reduces the cost compared to RTRL (O(N3) storage and O(N4) computational complexity) as
well as SnAP-2 (O(d2N3) storage and O(d2N4) computational complexity for connection density
d) [53] significantly if only a few cell types are used. In this work, we used only two cell types
(C = 2) that map onto the two main cell classes: excitatory and inhibitory. However, ModProp is
more expensive (by a constant factor) than e-prop, RFLO and MDGL, which all have O(N2) storage
and O(N2) computational complexity. However, as mentioned, the performance of these rules are
limited due to their severe temporal truncation.

26

E Unreasonable effectiveness of synapse-type-specific modulatory
backpropagation (through time) weights

We provide the proof for Theorem 1 below:

Proof. We first show that E[(εs)ij] = 0 for all s ≥ 1. Note (W s)αβ =
∑
γ Nγ(W s−1)αγWγβ and

(W s)ij =
∑
k(W s−1)ikWkj can be calculated recursively.

The base case s = 1 is already given in the condition. Suppose E[(εs)ij] = 0, for s+ 1:

E[(εs+1)ij] = E[(W s+1)ij − (W s+1)αβ]

= E

[∑
k

(W s)ikWkj

]
−
∑
γ

Nγ(W s)αγWγβ

= E

∑
γ

∑
k∈γ

((W s)αγ + (εs)ik)(Wγβ + εkj)

−∑
γ

Nγ(W s)αγWγβ

=
∑
γ

Nγ(W s)αγWγβ +
∑
γ

∑
k∈γ

E[(εs)ik]Wγβ +
∑
γ

∑
k∈γ

(W s)αγE[εkj]

+
∑
γ

∑
k∈γ

E[(εs)ikεkj]−
∑
γ

Nγ(W s)αγWγβ

=
∑
γ

∑
k∈γ

E[(εs)ik]Wγβ +
∑
γ

∑
k∈γ

(W s)αγE[εkj] +
∑
γ

∑
k∈γ

E[(εs)ik]E[εkj]

= 0. (S31)

We now prove the Theorem statement for the scalar output case. The extension to multiple output
signals follows identically. Consider the loss decrement after one update, under the (locally) first
order loss assumption:

E
[

∆E|pq,t
]

= −ηE

[
d̂E

dWpq

dE

dWpq

]

= −ηE

[
(yt − y∗t)2

[
WOUT
p epq,t +

∑
s,α

∑
j∈α

WOUT
j (W s)αβepq,t−s

]

×
[
WOUT
p epq,t +

∑
u,α′

∑
j′∈α′

WOUT
j′ [(Wu)α′β + (εu)j′p]epq,t−u

]]

= −E[Γ2
pq]− ηE

[
(yt − y∗t)2

[
WOUT
p epq,t +

∑
s,α

∑
j∈α

WOUT
j (W s)αβepq,t−s

]

×
[∑
u,α′

∑
j′∈α′

WOUT
j′ (εu)j′pepq,t−u

]]
= −E[Γ2

pq]− η
∑
u,α′

∑
j′∈α′

WOUT
j′ WOUT

p E
[
(εu)j′p(yt − y∗t)2epq,tepq,t−u

]
− η

∑
s,u,α,α′

∑
j∈α,j′∈α′

(W s)αβW
OUT
j WOUT

j′ E
[
(εu)j′p(yt − y∗t)2epq,t−sepq,t−u

]
(a)
= −E[Γ2

pq]− η
∑
u,α′

∑
j′∈α′

WOUT
j′ WOUT

p E [(εu)j′p]E
[
(yt − y∗t)2epq,tepq,t−u

]
− η

∑
s,u,α,α′

∑
j∈α,j′∈α′

(W s)αβW
OUT
j WOUT

j′ E [(εu)j′p]E
[
(yt − y∗t)2epq,t−sepq,t−u

]
(b)
= −E[Γ2

pq] ≤ 0, (S32)

27

where (a) follows from the uncorrelatedness condition and (b) follows from the result of (S31). Here,
we defined Γpq := η(yt − y∗t)

[
WOUT
p epq,t +

∑
s

∑
α

∑
j∈αW

OUT
j (W s)αβepq,t−s

]
. Then,

E[∆E|t] = −ηE
[
∇̂E

T
∇E

]
= −η

∑
p,q

E

[
d̂E

dWpq

dE

dWpq

]
≤ 0. (S33)

Moreover, if gradient descent is possible for a network N̂ with weight Wij = Wαβ , ∀i ∈ α, j ∈ β,
then E[

∑
p,q Γpq] < 0 by definition and E[∆E|t] < 0.

We note that with the linear RNN assumption in Theorem 1, Approximation 1 becomes exact when
µ = 1 because the activation derivative is a constant 1 for linear networks. Thus, the proof only only
examines the effect of Approximation 2 (type-specific feedback weight approximation). Also, the
Theorem assumes uncorrelatedness for residual weights ε, which may not be the case for networks
that are not Erdős–Rényi [64]. Despite that, ModProp still leads to performance improvement over
existing rules for the tasks examined. Nevertheless, it is important to investigate ModProp across a
broad range of tasks in the future.

BA Pattern generation Delayed XOR

Figure S5: Alignment angle comparison shows that gradients approximated by ModProp
(with or without type-specific modulatory weights) are more similar (than MDGL) to the exact
gradients. We quantify the similarity between approximated and exact gradients via the alignment
angle, which describes the similarity in the direction of the two update vectors (Appendix F) for
various tasks. In all top-panels, the alignment angles between approximate rules and BPTT are
less than 90◦, which indicate that the approximated gradients are aligned with the exact gradient,
despite the high-dimensionality of the update vectors. All bottom panel plots show that ModProp
variants achieve smaller alignment angles (hence better alignment) with BPTT than MDGL does.
To ensure a fair comparison, we examine the statistics of pairwise differences, so that the point on
the loss landscape — where the comparison is done — is matched. This is achieved by training
the network using BPTT across seven different runs and sampling the approximated gradient once
every 50 training iterations. Alignment analysis illustrated here is for recurrent weight gradients, and
similar trends are observed for the input weights as well.

28

F Simulation details

All weight updates were implemented using Adam with default parameters [65]. All Adam learning
rates are optimized by picking the best one within {5e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3, 5e−3}
for every learning rule and task. For ModProp, the best value of hyperparameter µ (Eq. 3) was picked
within {0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. For every learning rule and task, we removed the worst
performing run quantified by area under the learning curve. We note that while input, recurrent
and output weights are all being trained, the nonlocality issue (Eq. S8) only applies to training
input and recurrent weights. Thus, all approaches update output weights using backpropagation,
and approximations apply to training input and recurrent weights. As stated, we repeated runs with
different random initialization to quantify uncertainty and weights were initialized similarly as in [66].

We used alignment angle to quantify the similarity between two vectors. The alignment angle θ
between two vectors, a and b, was computed by θ = acos(‖aT b‖/‖a‖‖b‖). The alignment between
two 2D matrices was computed by flattening the matrices into vectors.

For the pattern generation task, our network consisted of 400 neurons described in Eq. S1. All neurons
had a membrane time constant of τm = 30ms. Input to this network was provided by 50 units each
producing a different random Gaussian input. The fixed target signal had a duration of 2000ms
and given by the sum of five sinusoids, with fixed frequencies of 0.5Hz, 1Hz, 2Hz, 3Hz and 4Hz.
For learning, we used mean squared loss function and for visualization, we used normalized mean

squared error NMSE =
∑
k,t(y

∗
k,t−yk,t)

2∑
k,t(y

∗
k,t)

2 for zero-mean target output y∗k,t. For the delayed XOR task,
our implementation of the task involved the presentation of two sequential cues, each lasting 100ms
and separated by a 700ms delay. There was only one input unit involved and two cue alternatives
were presented by setting the input unit to 1 or 0, and the unit was set to to 0 during the delay period.
In addition, a Gaussian noise with σ = 0.01 was added to the input. The network was trained to
output 1 (resp. 0) at the last time step when the two cues have matching (resp. non-matching) values.
Our network consisted of 120 neurons. All neurons had a membrane time constant of τm = 100ms.
For learning, we used cross-entropy loss function and the target corresponding to the correct output
was given at the end of the trial. A batch size of 32 was used and the gradients were accumulated
during those trials additively.

For the copy task, we presented a input sequence of seven binary cues (taking on the value of 0 or
1) on one set of runs and five cues on another. Each cue lasts 100ms to mimic duration of a quick
cue flash in biological setting. After the full sequence presentation, the network is tasked to output
the same sequence (same value and duration) without further instruction. Our network consisted of
120 neurons. All neurons had a membrane time constant of τm = 100ms. For learning, we used
cross-entropy loss function and the target corresponding to the correct output was given at the end of
the trial. We used full batch training: a batch size of 8 (resp. 128) was used for the three (resp. seven)
cue sequence runs due to 8 (resp. 128) possible permutations.

For the pixel-by-pixel MNIST task [58], our network consisted of 200 neurons. All neurons had
a membrane time constant of τm = 20ms. Input to this network was provided by a single unit
that represented the grey-scaled value of a single pixel, with a total of 784 steps and the network
prediction was made at the last step. For learning, we used the cross-entropy loss function and the
target corresponding to the correct output was given at the end of the trial. A batch size of 256 was
used and the gradients were accumulated during those trials additively.

We used TensorFlow [67] version 1.14 and based it on top of [66]. 1 We performed simulations
on a computer server with x2 6-core Intel Xeon E5-2640, 2.5GHz, 32 GB RAM. Regardless of
the learning rule, our implementation takes approximately one hour to complete one run of pattern
generation or delayed XOR task training (for Figures 3 and 4) on the server.

1Our code is available: https://github.com/Helena-Yuhan-Liu/ModProp.

29

https://github.com/Helena-Yuhan-Liu/ModProp

	Methods
	Network Model
	Gradient descent learning in RNNs
	Derivation of ModProp

	Additional simulations
	Further discussion on related algorithms
	Cost analysis and biological implementation
	Cost and interpretation for biologically-plausible implementation of ModProp in Eq. 6
	Cost for biologically-implausible implementation of ModProp

	Unreasonable effectiveness of synapse-type-specific modulatory backpropagation (through time) weights
	Simulation details

