
Figure 1: Density vs. LID estimates for flows trained on various datasets against ran-
dom noise.
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(a) Convolution of the first mode (b) Convolution of the second mode

(c) Convolution of the third mode (d) Convolution of the fourth mode

Figure 2: The estimated convolution log ρr(xi) for different modes of the Gaussian
mixture.
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1 On the Quality of the Linear Approximation
In this section, we mathematically assess the accuracy of the approximation to ρr, as
discussed in subsection 4.1, by establishing error bounds. To advance our discussion,
we first introduce two key mathematical operators essential for deriving these bounds.

Definition 1.1. For positive scalars σ and δ, the constrained Gaussian convolution
operator ϕδ

σ : F → F on the family of smooth functions F mapping from Rd to R+

takes in an arbitrary function h and outputs g as follows:

ϕδ
σ(h) = g s.t. g(x) :=

∫
Bσδ(x)

h(x− u) · N (u;x, σ2 · I) · du. (1)

Here, the integral is on the ℓ2 ball of radius σ · δ. The unconstrained Gaussian convo-
lution operator is also defined similarly with the exception that the integration is over
the complement of the ball:

ϕ̄δ
σ(h) = g s.t. g(x) :=

∫
Rd\Bσδ(x)

h(x− u) · N (u;x, σ2 · I) · du. (2)

Note that ϕδ
σ + ϕ̄δ

σ results in the normal convolution operator, and when the in-
put of the operator is the density function pθ, we have that ρr(x0) = ϕδ

σ(pθ)(x0) +
ϕ̄δ
σ(pθ)(x0) for σ = er and any δ. Now we will provide an upper bound for the un-

constrained convolution operator which will help us provide a global error margin for
ρ̂r(x0):

Lemma 1.1. Given a bounded function h : Rd → R+ where M := supx∈Rd(h(x)),
we have that

ϕ̄δ
σ(h)(x0) ≤ M ·

[
(δ/d)e1−(δ/d)

]d/2
, (3)

when δ > d.

Proof.

ϕ̄δ
σ(h)(x0) =

∫
Rd\Bσδ(x0)

h(x0 − u) · N (u;x0, σ
2 · I) · du

≤
∫
Rd\Bδ(x0)

M · N (v;0, I) · dv Change of variables v := (u− x0) · σ−1

= M · P (χ2
d > δ2) ≤ M ·

[
(δ/d)e1−(δ/d)

]d/2
,

where χ2
d denotes a Chi-squared random variable with d degrees of freedom. The last

inequality is a well-known Chernoff bound on the survival function of the Chi-squared
distribution.

Given a flow matching function fθ which is diffeomorphic, a high-quality local
approximation to fθ around x0 would result in a high-quality approximation of pθ
via the change of variables formula. Now we will present error bounds for our core
estimator ρ̂r(x0).
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Theorem 1.2. Assume R specifies a region in which an approximation p̂θ is accurate
up to a small error margin: ∀x ∈ BR(x0) : |p̂θ(x) − pθ(x)| ≤ e(R). If M ′ :=
supx∈supp(pθ)

(|pθ(x)−p̂θ(x)|) is finite and er = σ < R/d, then the total error between
ρr(x0) and ρ̂r(x0) is bounded as follows:

|ρr(x0)− ρ̂r(x0)| ≤ e(R) +M ′ ·
[
R

dσ
e1−

R
dσ

]d/2
(4)

Proof.

|ρr(x0)− ρ̂r(x0)| ≤ ϕR/σ
σ (|pθ − p̂θ|)(x0) + ϕ̄R/σ

σ (|pθ − p̂θ|)(x0)

≤
∫
BR(x0)

|pθ(x0 − u)− p̂θ(x0 − u)| · N (u;x0, σ
2 · I) · du+M ′ ·

[
(R/dσ)e1−(R/dσ)

]d/2
≤ e(R) +M ′ ·

[
(R/dσ)e1−(R/dσ)

]d/2

Therefore, for a sufficiently small σ (translating to a sufficiently negative r) the total
error bound of ρ̂r is as small as the bound e(R) obtained from the linearization. This
analysis demonstrates that even though ρr(x0) concerns taking a convolution over the
entire support of pθ, a high-quality local approximation of the density directly yields a
high-quality approximation ρ̂r(x0).
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