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A INDUCING AND EXECUTING OPERATORS

In the main text, we examplify the induction and the execution process using a binary operator. Here,
we discuss other details regarding the formulation for all three types of operators, i.e., unary, binary,
and ternary.
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where the indexing follows the row / column major. By taking the derivative with respect to T and
setting it to be 0, we have the following solution,
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Note that as long as λau ą 0, A is a symmetric positive definite matrix and hence is invertible.
Compared to the binary case, the unary operator can be regarded as a special binary operator where
one of the operand is a constant, absorbed into operator learning, and jointly solved.

To predict the answer representation, we solve another optimization problem, i.e.,
yMa

u “ argmin
M

`aupMq “ E
”

›

›Mpbao,8qT a
u ´M

›

›

2

F

ı

. (5)

Taking its derivative and setting it to 0, we have
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Note that this is exactly the execution of the learned operator.

Binary Operator The optimization problem for the binary case can be expanded as

T a
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We note that, assuming independence, the solution satisfies
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This is a linear matrix equation and can be turned into a linear equation by vectorization. Using
vecpAT Bq “ AbB vecpT q (Lancaster, 1970), where b denotes the Kronecker product, we have

vecpT a
b q “ A´1B, (9)
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Note that A is also symmetric positive definite given positive λab and hence invertible.

The predicted answer representation is given by
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which can be solved by executing the induced binary operator yMa
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Ternary Operator A ternary operation can be regarded as an unary operation on elements defined
on rows / columns. Specifically, we propose to construct the algebraic representation of a row /
column by concatenating the algebraic representation of each panel in it, i.e.,

Mpbao,i, b
a
o,i`1, b

a
o,i`2q “ rMpb

a
o,iq;Mpb

a
o,i`1q;Mpb

a
o,i`2qs. (13)

Then the ternary operator can be solved by
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Similar to the unary case discussed above,
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Correspondingly, the answer representation can be obtained by first executing the ternary operator
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To compute the operator distribution, we model it based on the fitness of each operator type,
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B INSTANCES OF OPERATORS

In the original work of Zhang et al. (2019) and Hu et al. (2020), there are four operators: Con-
stant, Progression, Arithmetic, and Distribute of Three. Progression is parameterized by its step size
(˘1{2). Arithmetic includes addition and subtraction. And Distribute of Three is implemented as
shifting and can be either a left shift or a right one. Note that Constant can be regarded as special
Progression with a step size of 0. In this work, we group all four operators into three types: unary
(Constant and Progression), binary (Arithmetic), and ternary (Distribute of Three).

To study systematic generalization in abstract relation learning, we use the Raven’s Progressive
Matrices (RPM) generation method proposed in (Zhang et al., 2019; Hu et al., 2020) and carefully
split data into three regimes:

• Systematicity: The training set and the test set contain all three types of operators but disjoint
instances. Specifically, the training set has Constant, Progression of ˘1, addition in Arithmetic,
and left shift in Distribute of Three, while in the test set there are Progression of ˘2, subtraction
in Arithmetic, and right shift in Distribute of Three.

• Productivity: The training set contains only unary operators and the test set only binary operators.
Specifically, the training set has Constant and all instances of Progression, while the test set all
instances of Arithmetic.

• Localism: The training set contains only binary operators and the test set only unary operators.
Specifically, the training set has all instances of Arithmetic and the test set Constant and all in-
stances of Progression.
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Table 1: The network architecture used for each branch of the object CNN.

Operator Parameters

Convolution r6, 5, 1s
BatchNorm 6
SoftPlus
MaxPool 2
Convolution r16, 5, 1s
BatchNorm 16
SoftPlus
MaxPool 2
Linear 120
SoftPlus
Linear 84
SoftPlus
Linear m
LogSoftMax

C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURE

We use a LeNet-like architecture (LeCun et al., 1998) for each branch of the object CNN. See
Table 1 for the design. Note that the object CNN consists of four branches, including objectiveness,
type, size, and color. The parameters for Convolution denote the output channel size, kernel size,
and stride, respectively. A BatchNorm layer is parameterized by the number of channels, whereas a
MaxPool layer by its stride. An output size is used to specify a Linear layer’s parameter. m equals
2, 5, 6, 10 for objectiveness, type, size, and color, respectively. For numerical stability, we use
LogSoftMax to turn a probability simplex into its log space.

C.2 OTHER HYPERPARAMETERS

For the inner regularized linear regression, we set different regularization coefficients for different
attributes but, for the same attribute, we keep them the same across all three types of operators. For
position, λ “ 10´4. For number, λ “ 10´6. For type, λ “ 10´6. For size, λ “ 10´6. For color,
λ “ 5 ˆ 10´7. All of the regularization terms in Eq. (9) in the main text are set to be 1 and tMa

0 u

and tMau are initialized as 2ˆ 2 square matrices.

For training, we first train for 10 epochs parameters regarding objectiveness, including the objective-
ness branch, and the representation matrices on position and number. We then perform 2 rounds of
cyclic training on parameters regarding type, size, and color, each of which experiences 10 epochs
of updates in a round. Finally, we fine-tune all parameters for another 10 epochs, totaling up to 80
training epochs. The entire system is optimized using ADAM (Kingma & Ba, 2014) with a learning
rate of 9.5ˆ 10´5.
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