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Abstract

Data augmentation (DA) is a crucial technique for enhancing the sample efficiency
of visual reinforcement learning (RL) algorithms. Notably, employing simple
observation transformations alone can yield outstanding performance without extra
auxiliary representation tasks or pre-trained encoders. However, it remains unclear
which attributes of DA account for its effectiveness in achieving sample-efficient
visual RL. To investigate this issue and further explore the potential of DA, this work
conducts comprehensive experiments to assess the impact of DA’s attributes on its
efficacy and provides the following insights and improvements: (1) For individual
DA operations, we reveal that both ample spatial diversity and slight hardness
are indispensable. Building on this finding, we introduce Random PadResize
(Rand PR), a new DA operation that offers abundant spatial diversity with minimal
hardness. (2) For multi-type DA fusion schemes, the increased DA hardness and
unstable data distribution result in the current fusion schemes being unable to
achieve higher sample efficiency than their corresponding individual operations.
Taking the non-stationary nature of RL into account, we propose a RL-tailored
multi-type DA fusion scheme called Cycling Augmentation (CycAug), which
performs periodic cycles of different DA operations to increase type diversity while
maintaining data distribution consistency. Extensive evaluations on the DeepMind
Control suite and CARLA driving simulator demonstrate that our methods achieve
superior sample efficiency compared with the prior state-of-the-art methods.

1 Introduction

Visual reinforcement learning (RL) has shown great potential in various
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domains, enabling decision-making directly from high-dimensional visual . | o puaswenonazon
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inputs [1]. However, the dual requirements of simultaneously learning
compact state representations and optimizing task-specific policies lead
to prohibitive sample complexity and massive environment interactions, s
hindering its practical deployment [2]. Enhancing sample efficiency isa  «
critical and inevitable challenge faced by the entire visual RL community, =
and data augmentation (DA) has emerged as a remarkably effective ap-
proach to tackle this issue [3—7]. As illustrated in Figure 1, even simple o
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random shift transformations applied to input observations can lead to
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significant performance improvements in previously unsuccessful algo- Figure 1: Benefit of DA
rithm [5]. Moreover, it has been proven that DA alone can lead to more 1n visual RL.
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efficient performance compared with meticulously crafting self-supervised learning tasks [8] or
pre-training representation encoders with extra data [9]. The substantial effectiveness of DA in
improving sample efficiency has established it as an essential and indispensable component in the
vast majority of visual RL methods [4, 5, 7, 10-12].

However, recent research has predominantly concentrated on integrating DA with other comple-
mentary techniques to enhance performance [7, 13—17], while ignoring the opportunity to fully
explore and harness the intrinsic potential of DA operations themselves. There is a notable absence
of actionable guidelines for designing more effective DA operations specifically tailored to visual RL
scenarios. Motivated by this imperative requirement, it is crucial to undertake a thorough investigation
and in-depth analysis to explore a fundamental question:

Which attributes enable effective DA for achieving sample-efficient visual RL?

Hence, this study begins with comprehensive experiments in order to assess the essential attributes
of DA for enhancing sample efficiency in visual RL. Specifically, we unpack the attributes of
DA operations in terms of hardness and diversity, which are two main dimensions that previous
studies leveraged to deconstruct DA in other domains [18—21]. The extensive experiments provide
strong support for the following key findings, which highlight the distinctive requirements of visual
RL: e The training performance of visual RL is highly sensitive to the increase of DA’s hardness.
e Sufficient spatial diversity is an indispensable attribute for achieving effective DA. e Unlimited
increases in strength diversity can harm visual RL performance. e Despite the increased type diversity,
naively applying multi-type DA to visual RL training can lead to decreased performance.

Drawing upon these findings, we propose two actionable guidelines and corresponding strategies for
enhancing the effectiveness of DA in visual RL. (1) For individual DA operations, we reveal that
effective operations should exhibit sufficient spatial diversity with minimal hardness. Building on
this insight, we introduce Random PadResize (Rand PR), a new DA transformation that satisfies the
essential attributes required for visual RL. Rand PR alleviates the hardness of DA by preventing the
loss of information in observations, which is inevitable in the conventional PadCrop transformation
that widely used in previous methods such as DrQ-v2 [5]. Additionally, it provides significant spatial
diversity by randomly scaling and positioning the original content within the final input space. (2) For
multi-type DA fusion schemes, it is imperative to take the data-sensitive nature of RL training into
account when designing appropriate fusion schemes in visual RL. Inspired by this guideline, we
propose a RL-tailored multi-type DA fusion scheme called Cycling Augmentation (CycAug), which
leverages the diversity benefits of multiple DAs by cyclically applying different transformations while
mitigating the negative impact on training stability caused by the excessively frequent changes in
data distribution. With Rand PR as a key component, CycAug achieves superior sample efficiency on
various tasks of the DeepMind Control suite [22]. Moreover, in the challenging low data regime of
CARLA [23], CycAug outperforms the previous SOTA algorithm by a substantial margin of 43.7%.

In the end, our main contributions can be summarized as following three-fold:

1. We conduct extensive experiments to investigate the essential DA attributes for achieving
sample-efficient visual RL and highlight the unique requirements of visual RL for DA.

2. We present two actionable guidelines to further exploit the potential of DA, specifically
focusing on individual DA operations and multi-type DA fusion schemes. Building upon
these guidelines, we propose Rand PR and CycAug as corresponding improvement strategies.

3. CycAug, incorporating Rand PR as a key component, achieves state-of-the-art sample
efficiency in extensive benchmark tasks on DM Control and CARLA.

2 Related Work

In this section, we provide a succinct overview of prior research conducted in sample-efficient visual
RL, as well as DA methods utilized in the broader domain of deep learning.

2.1 Sample-Efficient Visual RL

Visual RL entails learning compact state representations from high-dimensional observations and
optimizing task-specific policies at the same time, resulting in a prohibitive sample complexity [2].
To enhance sample efficiency, the first widely adopted approach is leveraging self-supervised learning
to promote agent’s representation learning. Specifically, various auxiliary tasks have been designed



in previous studies, including pixel or latent reconstruction [2, 14], future prediction [24, 7, 13]
and contrastive learning for instance discrimination [16, 17, 15] or temporal discrimination [25—
28]. Another approach aimed at facilitating representation learning is to pre-train a visual encoder
that enables efficient adaptation to downstream tasks [29-34]. Additionally, a number of model-
based methods explicitly construct a world model of the RL environment in either pixel or latent
spaces to enable planning [35—41]. Orthogonal to these methods, DA has demonstrated astonishing
effectiveness in improving the sample efficiency of visual RL algorithms [10, 4, 5]. Moreover,
recent research has focused on effectively integrating DA with other representation learning methods
to further enhance sample efficiency [7, 13, 16, 25, 14]. However, the intrinsic potential of DA
operations has been inadequately explored. To address this research gap, this study conducts thorough
experiments to investigate the fundamental attributes that contribute to the effectiveness of DA and
subsequently provide actionable guidelines for DA design. Furthermore, we illustrate that developing
more effective DA methods alone can result in a substantial improvement in sample efficiency.

2.2 Data Augmentation (DA)

Over the past decades, DA has achieved widespread recognition and adoption within the deep
learning community [42—48]. For clarity, we classify previous studies on DA into two distinct aspects:
individual DA operations, which utilize single-type data transformations, and multi-type DA fusion
methods, which combine diverse DA operations through specific fusion schemes.

Individual DA Operations. Numerous studies have shown that the adoption of more effective DA
techniques can result in substantial improvements across various tasks [49-51], such as Mixup [42]
for image classification, DiffAugment [52] for GAN training, and Copy-Paste [53] for instance
segmentation, among others. However, there has been a lack of investigation into the design of
DA operations that specifically align with the requirements of sample-efficient visual RL. Only
the early studies, RAD [10] and DrQ [4], conducted initial ablations and suggested that geometric
transformations, exemplified by PadCrop, can achieve the best sample efficiency performance. More
details regarding the previous DA design are in Appendix A.2. To achieve more precise design of
DA operations, our study delves into an in-depth analysis of the essential DA attributes required for
sample-efficient visual RL. Based on this analysis, we propose two actionable guidelines along with
corresponding specific improvement strategies to enhance the effectiveness of DA methods.

Multi-Type DA Fusion Methods. The commonly employed multi-type DA fusion schemes can be
categorized into three types: composing-based fusion [54, 55], mixing-based fusion [46, 48] and
sampling-based fusion [56, 45]. Due to space constraints, we provide an expanded exposition of
previous fusion schemes and their illustrations in Appendix A.3. While these fusion methods have
proven effective in improving training accuracy and robustness in supervised and self-supervised
learning [44, 18, 20, 57], our experiments in Section 3.2 indicate that they cannot result in improved
sample efficiency in visual RL. Our proposed RL-tailored fusion scheme, CycAug, adopts individual
operations during each update to prevent excessive increases in the hardness level, in contrast
to composition-based and mixing-based fusion schemes [54, 55, 46, 19]. Additionally, CycAug
performs periodic cycles of different DA operations at predetermined intervals, avoiding the instability
caused by frequent switching of DA types between each update, unlike the sampling-based fusion
approach [56, 45]. This way, CycAug can benefit from the type diversity brought by different
operations while avoiding the aforementioned drawbacks.

3 Rethinking the Essential Attributes of DA for Sample-Efficient Visual RL

In this section, we analyze the attributes of DA, focusing on hardness and diversity, and thoroughly
investigate their impact on DA’s effectiveness in achieving sample-efficient visual RL.

3.1 Unpacking the Attributes of DA

Hardness. Hardness is a model-dependent measure of distribution shift, which was initially defined
as the ratio of performance drop on augmented test data for a model trained in clean data [ 18, 20].
Considering the RL paradigm, the definition of hardness can be adapted to:

Hardness = R (7, M) /R (7, M*"8), ()

where 7 denotes the policy trained in the original Markov Decision Process (MDP) M without DA.
R (mw, M) and R (7, M?"8) represent the average episode return of policy = achieved in M and



M1 respectively. The only difference between the original MDP M = (O, A, P, R, ~, dy) and
the augmented MDP M?1'¢ = (0248 A P, R, ~,dy) lies in the observation space where 08 is
obtained by applying DA to O. Consistent with previous studies [18, 20], we observe a strong linear
positive correlation between the hardness level and strength of individual DA operations in visual RL
(refer to Appendix B.1 for further details). This implies that precise control of the hardness level of
DA can be achieved by adjusting the strength of individual transformations.

Diversity. Another critical attribute of DA is diversity, which quantifies the randomness (degrees
of freedom) of the augmented data [20, 18]. Typically, DA’s diversity can be achieved through the
following three approaches that we will investigate separately in Section 3.2: e Strength Diversity
refers to the variability of strength values, and a wider range indicates greater diversity [18]. In our
experiments, we manipulate the strength diversity by expanding the range of hardness values while
maintaining a constant average hardness. e Spatial Diversity denotes the inherent randomness in the
geometric transformations [20]. For example, the spatial diversity of the Translate operation can
be characterized by the number of possible directions allowed for translations. e Type Diversity is
widely employed in numerous state-of-the-art DA methods by combining multiple types of operations.
Enhancing type diversity is widely recognized as an effective strategy to explore the potential of
DA. We provide a visual illustration in Appendix B.2 to facilitate a better understanding of the three
different categories of diversity.

3.2 Investigating the Impact of DA’s Attributes on Sample Efficiency

This section aims to comprehensively evaluate how hardness, strength diversity, spatial diversity,
and type diversity impact the effectiveness of DA in sample-efficient visual RL. To conduct this
investigation, we introduce three individual DA operations, namely PadResize-HD, CropShift-HD
and Translate-HD. These operations provide precise control over the hardness level through mean
strength, the strength diversity level through the range of strength, and the spatial diversity level
through the degree of freedom. Meanwhile, each individual operation possesses a fixed level of type
diversity. Implementation details and example demonstrations can be found in the Appendix C.1.
Following experiments are conducted in the DeepMind Control (DMC) suite [22], where we apply
diverse DA operations across various tasks to robustly assess the essential attributes. For each given
scenario, we perform 10 random runs with 10 testing evaluations per seed and report the interquartile
mean (IQM) of these 10 evaluation episode returns [58]. Detailed setup is in Appendix C.2.

How Hardness Affects the Effectiveness of DA? We investigate the impact of hardness on
individual DA by varying the level of hardness while maintaining a constant level of diversity. As
illustrated in Figure 2, the agent’s performance exhibits a steep decline with the increase of hardness.
In additional, DA can even lead to a deleterious impact once the hardness level goes beyond a certain
threshold. Compared with other domains such as supervised learning [19, 21], our experiments reveal
that the training process of visual RL is significantly sensitive to the hardness level of DA.

—e— CropShift-HD (Strength D=2, Spatial D=2) =~ PadResize-HD (Strength D=3, Spatial D=2) ~ —4- Translate-HD (Strength D=2, Spatial D=2)
CropShift-HD (Strength D=2, Spatial D=8) -4+ PadResize-HD (Strength D=3, Spatial D=8) -+ Translate-HD (Strength D=2, Spatial D=8)
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Figure 2: The impact of hardness on individual DA effectiveness. We present the IQM scores of 6
distinct individual DA operations, with fixed diversity levels while varying their hardness level. The
maximum environment interactions is limited to 5 x 105 steps (consistently throughout this section).
"Strength D" and "Spatial D" are abbreviations for Strength Diversity and Spatial Diversity. The
gray line denotes the performance without DA. Further comparative results are in Appendix C.3.

Finding 1: Maintaining a low level of DA hardness is a crucial priority in visual RL, as even
minor increases in hardness can have a significant negative impact on training performance.




How Strength Diversity Affects the Effectiveness of DA?  Strength diversity is a readily modifiable
attribute that can improve the overall diversity of DA, for instance, by enlarging the range of rotation
permitted in Rotate. We manipulate the range of strength while maintaining spatial diversity and a
constant average hardness/strength level. The trends depicted in Figure 3 suggest that a moderate
level of strength diversity can yield the most favorable enhancement effect. Insufficient strength
diversity fails to meet the randomness demand of RL training, particularly when the individual DA’s
spatial diversity is constrained. Meanwhile, excessive strength diversity can also lead to a drastic
decrease in the DA effect. This is attributed to the high sensitivity of RL to hardness, as increasing
strength diversity unavoidably amplifies the highest hardness of the DA.
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Figure 3: The impact of strength diversity on individual DA effectiveness. Strength diversity is
generated by defining five gradual ranges of strength with a fixed mean hardness level. During
training, the specific strength applied to different batches is randomly sampled from the given range.
For detailed settings regarding the strength ranges, please consult Appendix C.4.

Finding 2: In contrast to supervised learning and adversarial training scenarios [20, 18], unlim-
ited increases in strength diversity can harm visual RL performance.

How Spatial Diversity Affects the Effectiveness of DA? The PadCrop operation (also named
Random Shift in the original paper [4, 5]) has shown outstanding effectiveness in improving the
sample efficiency of visual RL algorithms. The subsequent studies further revealed that this individual
PadCrop operation can provide significant smoothness and randomness, thus preventing unfavorable
self-overfitting [59, 60]. Compared to other DA operations such as Translate and Rotate, PadCrop
exhibits greater diversity in spatial randomness. As such, spatial diversity is highly regarded as a
crucial determinant of whether DA can effectively enhance the sample efficiency of visual RL. We
evaluate the influence of spatial diversity on the DA effect by incrementally loosening the restriction
on it while maintaining a consistent level of hardness. The experimental trends consistently indicate
that spatial diversity plays a crucial role in achieving effective DA.
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Figure 4: The impact of spatial diversity on individual DA effectiveness. We provide a thorough
analysis of the correlation between sample efficiency and spatial diversity of 3 individual DA
operations at varying levels of hardness. Training curves are provided in the Appendix C.5.

Finding 3: Spatial diversity is a crucial attribute to achieve effective DA. When designing
individual DA techniques, we should make every effort to increase their spatial diversity.




How Type Diversity Affects the Effectiveness of DA? Multi-type DA fusion methods have
been widely adopted as a paradigm for overcoming the limitations of individual DA operations.
This implies that enhancing type diversity is an effective approach to improve the effectiveness of
DA [46, 45]. In this part, we conduct a comprehensive evaluation of the impact of type diversity
by testing three main fusion schemes with six different DA operations. Surprisingly, none of the
fusion schemes outperformed their corresponding individual operations. This abnormal failure can
be attributed to the increased data hardness caused by the complex transformations (in the case
of composition-based and mixing-based fusion [46]) or to the dynamic fluctuations in the data
distribution that result from frequent switching between different types of DA operations (in the case
of sampling-based fusion [45, 55]). These adverse effects are further compounded when transferring
the fusion schemes from supervised learning to RL, mainly due to the non-stationary nature of the
RL training process and its high sensitivity to the hardness of the DA [61, 62].
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Figure 5: The impact of combining two distinct DA operations using three widely employed fusion
schemes. The reported performances are the average scores evaluated after 1.5 x 10° interactions on
Quadruped Run. The entries along the main axis correspond to using only one individual operation.
Additional experimental results and analysis can be found in Appendix C.6 for further reference.

Finding 4: Applying multi-type DA to visual RL training following general schemes from
computer vision fields [46, 55, 45] can actually lead to decreased performance. Effective multi-
type DA fusion schemes for achieving sample efficiency in visual RL must take the data-sensitive
and non-stationary nature of RL training into consideration.

Overall, the aforementioned findings provide two key insights for further harnessing the potential
of DA in sample-efficient visual RL: e For individual DA operations, maintaining a minor level of
hardness and maximizing its spatial diversity are two crucial measures to enhance the effectiveness
of DA. On the contrary, indiscriminately increasing strength diversity may not always be a prudent
approach, as it inevitably amplifies the highest level of hardness. e For multi-type DA fusion
schemes, exploring RL-tailored fusion schemes that leverage the advantages of diverse DA types is a
promising approach to maximize the effectiveness of DA. However, adaptive fusion schemes must
avoid introducing extra hardness of DA and ensure data stability during training.

4 Methodologies for Enhancing the Effectiveness of DA

Drawing on the insights gained in the previous rethinking, this section presents our corresponding
improvement measures. Firstly, we propose a novel individual DA operation, Random PadResize
(Rand PR), that ensures slight hardness by preserving content information while providing ample
spatial diversity through random scaling and location. Secondly, we introduce Cycling Augmentation
(CycAug), a multi-type DA fusion scheme tailored to the unstable nature of RL training.

4.1 Random PadResize (Rand PR): A Diverse yet Hardness-Minimal DA Operation

As recommended in the previous section, an individual DA operation for enhancing the sample
efficiency of visual RL should provide as ample spatial diversity as possible while ensuring a low
level of hardness. This insight reveals the key factors behind the previous impressive success of
PadCrop (Shift) augmentation [10, 4, 5]. It offers greater spatial diversity than common Translate
and Rotate operations due to its increased degree of freedom in shift, while also introducing lower
augmentation hardness than Cutout and Color Jitter. However, the crop operation in PadCrop



inevitably leads to a loss of observation information. Although such loss may not have severe
consequences in the DM Control suite [22] due to the agent always being in the center of the
image with fixed camera position [59], it can lead to high hardness in real-world scenarios where
task-relevant information near the observation boundaries will be reduced.
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Figure 6: (Left) Illustration of the Random PadResize operation. The four augmented observations
exhibit substantial spatial diversity through differentiated scaling ratios and locations, while fully
retaining the observation information. (Right) The hardness comparison between PadResize and
PadCrop. We train 10 agents without DA in the Cartpole Balance task and evaluate their performance
on augmented observations generated by PadCrop and PadResize. The results indicate that PadResize
achieves lower hardness. For fairness, we set pad=4 in PadCrop and strength=16 in PadResize.

Motivated by aforementioned weakness of the original PadCrop operation, we introduce a modified
version, Random PadResize (Rand PR), which offers increased diversity while minimizing augmenta-
tion hardness. As illustrated in Figure 6 (Left), Rand PR randomly adds a specified number of pixels
in each direction of the image and then resizes it back to the original size. The sum of pixels padded
in each direction (i.e., top, bottom, left, and right) is defined as the strength of this operation. Rand
PR offers sufficient spatial diversity through its large degrees of freedom in scaling ratio and content
location while avoiding the high hardness introduced by information reduction. The comparative
experiment conducted in the Cartpole Balance task demonstrated that our Rand PR can achieve lower
hardness than the original PadCrop operation, as shown in Figure 6 (Right).

4.2 Cycling Augmentation (CycAug): A Multi-Type DA Scheme Tailored to RL

As demonstrated in Section 3.2, generic multi-type DA fusion paradigms utilized in other fields cannot
improve the sample efficiency of visual RL algorithms. Consequently, our second improvement
measure focuses on devising a multi-type DA fusion scheme tailored for visual RL tasks.
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Figure 7: Ilustration of the CycAug scheme: (a) The CycAug pipeline consists of a simple workflow
optimized for the RL objective, without the need for complex auxiliary representation tasks. (b)
CycAug achieves multi-type DA fusion by cyclically switching between different types of operations.

We argue that the failure of generic multi-type DA fusion methods is mainly due to the struggle
nature of RL training, which makes it highly sensitive to both the hardness and distribution evolving
of the training data. Considering the inherent instability of the RL training process, we provide
two recommendations: (1) to apply only one type of individual operation in each update to avoid
introducing additional hardness, and (2) to appropriately reduce the frequency of switching between
different operations to maintain the data distribution consistency during training. Based on these
recommendations, we propose a multi-type DA fusion scheme specifically tailored for RL training,
called Cycling Augmentation (CycAug). CycAug enables visual RL to benefit from type diversity
while ensuring the adequate stability during the learning process. Specifically, CycAug applies
individual operations during each update and cyclically switches between different types of operations
after a certain number of steps. In addition, the experiments in Section 3.2 indicate that the efficacy
of individual operations strongly influences the performance of their fusion. Consequently, in this
paper, we adopt PadCrop and Random PR as two individual DA components for CycAug.



5 Empirical Evaluation

In this section, we evaluate the effectiveness of Rand PR and CycAug in enhancing the sample
efficiency of visual RL algorithms. We conduct extensive experiments on both the DeepMind control
suite [22] and the challenging autonomous driving simulator, CARLA [23] The code is accessible
athttps://github.com/Guozheng-Ma/CycAug. Furthermore, we provide empirical evidence to
demonstrate the effectiveness of CycAug in ensuring training stability, as well as its scalability across
an expanded range of augmentation quantities and types destined for fusion.

5.1 Evaluation on DeepMind Control Suite

Setup. We first evaluate our methods on continuous control tasks in the DM Control suite. Concretely,
we integrate Rand PR and CycAug into the training procedure and network architecture of DrQ-V2 [5],
while modifying its DA operation. We also compare our results with A-LIX [59], which achieved
superior efficiency on this benchmark by using adaptive regularization on the encoder’s gradients.
Additionally, we include the performance of the original DrQ [4], CURL [16], and SAC [63]
to demonstrate the significant improvement in sample efficiency achieved by our methods. For
evaluation, we have chosen a collection of 12 challenging tasks from the DMC that showcase various
difficulties such as complex dynamics, sparse rewards, and demanding exploration requirements. To
assess sample efficiency, we limit the maximum number of training frames to 1.5 x 10°, which is half
of the value employed in DrQ-V2. The cycling interval of CycAug is set to 10° steps, i.e, 2 x 10°
frames with 2 action repeat. More setup details are placed in Appendix D.1 due to page limit.

Table 1: Evaluation of Sample Efficiency on the DeepMind Control Suite. We report the average
episode return over 10 random seeds and 10 evaluation runs after training for 1.5M frames. The
results of previous methods are sourced from the A-LIX [59] report.

Tasks SAC CURL DrQ DrQ-v2 A-LIX Rand PR CycAug
Acrobot Swingup 8+9 6+5 24 +27 256 £ 47 270 £ 99 240 £ 37 274+ 93
Cartpole Swingup Sparse 118 +233 479 £329 318 +389 4854+396 718 =250 549+ 125 682+ 297
Cheetah Run 9+8 507+ 114 788 £59 792 £+ 29 806 + 78 745 £ 28 799 + 62
Finger Turn Easy 190 £137 297 +150 199+132 854+73 546 +101 846+ 112 889 £ 97
Finger Turn Hard T9£73 174 £106 100 £ 63 491 + 182 587+109 6194289 829 4217
Hopper Hop 0+0 184 £127 268 £ 91 198 £ 102 287 £+ 48 285+ 122 344 4+ 154
Quadruped Run 68 =72 164 £ 91 129 + 97 419 + 204 528 +107 543+ 131 634+ 151
Quadruped Walk 75 £ 65 134 £53 144 £149 591 £ 256 776 + 37 689+99 812493
Reach Duplo 1+1 8£10 8+£12 220+ 7 212+3 217+13 22545
Reacher Easy 52 £ 64 707+ 142 600+201 971+4 887+ 19 965 £ 8 971+ 9
Reacher Hard 3+2 463 +£196 320233 727+£172 T720+83 725 £ 91 697 + 179
Walker Run 26 +4 3794234 474+£148 571 £ 276 691 + 10 642 + 141 702 4+ 219
Average score 52.28 291.73 281.03 547.96 585.67 588.75 654.83
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Figure 8: Training Curves of 4 Representative Challenging Tasks in DMC: Finger Turn Hard, Hopper
Hop, Quadruped Run and Walker Run. The curves of DrQ-V2 are adopted from its original paper.

Results. The evaluation results are exhibited in Table 1, along with the training curves of four
representative tasks, presented in Figure 8. Overall, Rand PR achieves competitive sample efficiency
compared to the original PadCrop operation, while CycAug outperforms all previous methods in both
efficiency and final performance by a significant margin. In particular, CycAug demonstrates more
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substantial performance improvements in several challenging tasks, including Finger Turn Hard with
sparse rewards and Quadruped Run with a large action space. This confirms that cycling-based fusion
of multi-type DA operations effectively mitigates catastrophic self-overfitting, which prior works
identified as a critical limitation to visual RL performance [59, 64, 65, 60].

5.2 Evaluation on Autonomous Driving in CARLA

Setup. We conduct a second round of evaluation on more challenging tasks using the autonomous
driving simulator CARLA [23]. We adopt the reward function and task setting from prior work [66],
where the objective of the agent is to drive along a winding road for as long as possible within limited
time-steps while avoiding collisions with other vehicles. We set the maximum number of allowed
environment interactions to 2 x 10° steps, and configure the CycAug cycling interval to be 2 x 10*
steps. To demonstrate the efficacy of our proposed augmentation methods, we compare Rand PR and
CycAug against the original DrQ-V2 with random shift (PadCrop) and the baseline without DA. We
include a detailed account of the experimental setup and hyperparameters in Appendix D.2.

Table 2: Evaluation of sample efficiency on CARLA with 4 different weathers. The average episode
returns are averaged over 5 seeds and 20 evaluation runs after 100k and 200k training steps.

100k Steps 200k Steps
Weather w/o DA DrQ-Vv2 Rand PR CycAug w/o DA DrQ-v2 Rand PR CycAug
Default 62.6+15 94.7+£34 99.5+13 142.9 + 12 90.3+29 213.7+£27 2329+8 251.0 £15
WetNoon 65.4+11 106.8+12 118.8+20 147.5+9 106.5+26 2085+13 2154418  263.6 £ 16

SoftRainNoon 46.7+£30 939+£21 121247 140.7 £ 13 90.6 £62 219.6+24 221.9+40 286.9 + 39
HardRainSunset  52.24+35 103.5+7 103.9 + 18 142.1+£15 82.7+60 229.4+£16 240.5+15 277.2 £ 37

Average Score 56.7 99.7 110.8 143.3 (+43.7%) 92.5 217.8 227.7 269.7 (+23.8%)

Default WetNoon SoftRainNoon HardRainSunset

Aug Type
w/o Augmentation

200

Episode Return

Episode Return
Episode Return
Episode Return
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Figure 9: Training Curves of CycAug, Rand PR, original DrQ-V2 [5] and the baseline without DA
across 4 CARLA environments. The model architecture follows that of DrQ-V2, while we focus on
manipulating the DA operations. The line plots denote the average episode returns across 5 seeds.

Results. The evaluation results presented in Table 2 and Figure 9 further validate the efficacy of our
proposed improvements in enhancing DA for more sample-efficient visual RL. Different weather
conditions not only provide a rich set of realistic observations but also introduce diverse dynamics
within the environments. In general, Rand PR outperforms the original DrQ-V2 with PadCrop as DA,
indicating that preserving boundary information can effectively reduce the hardness of DA and thus
improves sample efficiency in realistic environments. Furthermore, CycAug outperforms the previous
SOTA algorithm by substantial margins 23.8% in final performance and 43.7% in low data regime.

5.3 Ablation Study and Detailed Analysis.

Training Stability. RL training is highly sensitive to data stability [67]; hence, when fusing various
DA operations to enhance diversity, it is imperative to minimize frequent distribution shifts to
ensure stability. To quantitatively assess training stability, we measure the Q Variance and Q-Target
Variance during the training process, adhering to the experimental methodology outlined by [68].
The results presented in Figure 10 demonstrate that CycAug can optimally preserve training stability
in comparison to other fusion approaches.

Expanded DA Quantities and Types. We primarily demonstrate the performance of CycAug when
fusing PadCrop and Rand PR as components. However, as a multi-type DA fusion scheme, CycAug
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Figure 10: Comparison of Q Variance and Q-Target Variance during the training process with CycAug
and other multi-type DA fusion schemes. Variance is consistently assessed through 4 forward passes,
employing random data augmentation on identical observations. CycAug demonstrates notably
superior data stability, which is crucial during the training process of visual RL.

can integrate a wider variety of DA operations in greater quantities, provided these DA operations
are individually effective. We illustrate the scalability of CycAug in Figure 11. Three-component
CycAug utilizing PC, PR, and CS attains superior sample efficiency versus the dual-component
CycAug with PC and PR, exhibiting the capacity for additional expansion of CycAug.
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Figure 11: Expanded DA components integrated by CycAug. (Left) More Types. Employing
CycAug to fuse the commonly employed DA approach of PadCrop (PC) with other DA operations
reveals varied performance outcomes. (Right) More Quantities. The effect of further integrating the
original CycAug (PC+PR) with the third DA operation depends on the effectiveness of using that DA
alone. PC+PR+CS surpasses PC+PR, highlighting CycAug’s potential for further enhancement.

6 Conclusion

In conclusion, this work investigates the critical DA attributes for improving sample efficiency in
visual RL and proposes two methods to enhance its effectiveness. We find that both spatial diversity
and slight hardness are crucial for individual DA operations, and introduce Random PadResize (Rand
PR) as a new transformation that satisfies these attributes. We also propose a multi-type DA fusion
scheme, referred to as Cycling Augmentation (CycAug), which employs a cyclic application of
different DA operations to enhance type diversity while ensuring data distribution consistency for
stability. The evaluations on the DeepMind Control suite and CARLA demonstrate the superior
sample efficiency of CycAug with Rand PR as a key component, surpassing previous SOTA methods.
Furthermore, this work demonstrates the potential of enhancing sample-efficient visual RL through
more effective DA operations, without modifying the underlying RL algorithm or network architecture.
Therefore, we advocate for a greater emphasis on data-centric methods in the visual RL community.

Limitations. We investigate the essential attributes of DA for sample-efficient visual RL. However,
further research is needed to understand how these attributes impact visual RL training fundamentally.

Acknowledgements. This work is supported by STI 2030—Major Projects (No. 2021ZD0201405).
We thank Yunjie Su, Zixuan Liu, and Zexin Li for their valuable suggestions and collaboration. We
sincerely appreciate the time and effort invested by the anonymous reviewers in evaluating our work,
and are grateful for their valuable and insightful feedback.

10



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems, 31, 2018.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sam-
ple efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 10674—-10681, 2021.

Guozheng Ma, Zhen Wang, Zhecheng Yuan, Xueqian Wang, Bo Yuan, and Dacheng Tao. A comprehensive
survey of data augmentation in visual reinforcement learning. arXiv preprint arXiv:2210.04561, 2022.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Sicong Liu, Xi Sheryl Zhang, Yushuo Li, Yifan Zhang, and Jian Cheng. On the data-efficiency with
contrastive image transformation in reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-efficient reinforcement learning with self-predictive representations. arXiv preprint arXiv:2007.05929,
2020.

Xiang Li, Jinghuan Shang, Srijan Das, and Michael Ryoo. Does self-supervised learning really improve
reinforcement learning from pixels? Advances in Neural Information Processing Systems, 35:30865-30881,
2022.

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe Xu,
and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-from-scratch baseline.
arXiv preprint arXiv:2212.05749, 2022.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data. Advances in neural information processing systems, 33:19884-19895, 2020.

Haoning Xi, Yi Zhang, and Yi Zhang. Detection of safety features of drivers based on image processing.
In 18th COTA International Conference of Transportation Professionals, pages 2098-2109. American
Society of Civil Engineers Reston, VA, 2018.

Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, and Yonghong Tian. Spectrum random masking
for generalization in image-based reinforcement learning. Advances in Neural Information Processing
Systems, 35:20393-20406, 2022.

Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvirtual: Aug-
menting cycle-consistent virtual trajectories for reinforcement learning. Advances in Neural Information
Processing Systems, 34:5276-5289, 2021.

Tao Yu, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo Chen. Mask-based latent reconstruction for
reinforcement learning. Advances in Neural Information Processing Systems, 35:25117-25131, 2022.

Jiameng Fan and Wenchao Li. Dribo: Robust deep reinforcement learning via multi-view information
bottleneck. In International Conference on Machine Learning, pages 6074—6102. PMLR, 2022.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pages 5639-5650. PMLR,
2020.

Chenyu Sun, Hangwei Qian, and Chunyan Miao. Cclf: A contrastive-curiosity-driven learning framework
for sample-efficient reinforcement learning. arXiv preprint arXiv:2205.00943, 2022.

Lin Li and Michael W. Spratling. Data augmentation alone can improve adversarial training. In The
Eleventh International Conference on Learning Representations, 2023.

Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, and Zhangyang Wang.
Augmax: Adversarial composition of random augmentations for robust training. Advances in neural
information processing systems, 34:237-250, 2021.

11



[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

[39]

Raphael Gontijo-Lopes, Sylvia Smullin, Ekin Dogus Cubuk, and Ethan Dyer. Tradeoffs in data augmenta-
tion: An empirical study. In International Conference on Learning Representations, 2021.

Jaehyung Kim, Dongyeop Kang, Sungsoo Ahn, and Jinwoo Shin. What makes better augmentation
strategies? augment difficult but not too different. In International Conference on Learning Representations,
2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open
urban driving simulator. In Conference on robot learning, pages 1-16. PMLR, 2017.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio Guadarrama.
Predictive information accelerates learning in rl. Advances in Neural Information Processing Systems,
33:11890-11901, 2020.

Jinhua Zhu, Yingce Xia, Lijun Wu, Jiajun Deng, Wengang Zhou, Tao Qin, Tie-Yan Liu, and Hougiang
Li. Masked contrastive representation learning for reinforcement learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Thanh Nguyen, Tung M Luu, Thang Vu, and Chang D Yoo. Sample-efficient reinforcement learning
representation learning with curiosity contrastive forward dynamics model. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3471-3477. IEEE, 2021.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon Hjelm.
Deep reinforcement and infomax learning. In Advances in Neural Information Processing Systems, 2020.

Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A data-driven framework for visual deep
reinforcement learning. arXiv preprint arXiv:2202.10324, 2022.

Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In International
Conference on Machine Learning, pages 9465-9476. PMLR, 2021.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for motor
control. arXiv preprint arXiv:2203.06173, 2022.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In International Conference on Machine Learning,
pages 17359-17371. PMLR, 2022.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with prototypical
representations. In International Conference on Machine Learning, pages 11920-11931. PMLR, 2021.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter Abbeel.
Masked world models for visual control. In Conference on Robot Learning, pages 1332-1344. PMLR,
2023.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Fei Deng, Ingook Jang, and Sungjin Ahn. Dreamerpro: Reconstruction-free model-based reinforcement
learning with prototypical representations. In International Conference on Machine Learning, pages
4956-4975. PMLR, 2022.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023.

12



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(501

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Haoning Xi, Liu He, Yi Zhang, and Zhen Wang. Differentiable road pricing for environment-oriented
electric vehicle and gasoline vehicle users in the bi-objective transportation network. Transportation
Letters, 14(6):660-674, 2022.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer: World
models for physical robot learning. In Conference on Robot Learning, pages 2226-2240. PMLR, 2023.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412,2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 6023-6032, 2019.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 113-123, 2019.

Samuel G Miiller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 774-782, 2021.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan.
Augmix: A simple data processing method to improve robustness and uncertainty. arXiv preprint
arXiv:1912.02781, 2019.

Huan Wang, Suhas Lohit, Michael N Jones, and Yun Fu. What makes a "good" data augmentation in
knowledge distillation-a statistical perspective. Advances in Neural Information Processing Systems,
35:13456-13469, 2022.

Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Steinhardt.
Pixmix: Dreamlike pictures comprehensively improve safety measures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16783-16792, 2022.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, and Timothy A
Mann. Data augmentation can improve robustness. Advances in Neural Information Processing Systems,
34:29935-29948, 2021.

Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, and Mu Li. Mixgen: A
new multi-modal data augmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 379-389, 2023.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv preprint arXiv:2105.03075, 2021.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for data-
efficient gan training. Advances in Neural Information Processing Systems, 33:7559-7570, 2020.

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret
Zoph. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2918-2928, 2021.

Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learning
to compose domain-specific transformations for data augmentation. Advances in neural information
processing systems, 30, 2017.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 702-703, 2020.

Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari, Mina Rafi Nazari, Jaspreet Singh Sambee, and
Mario A Nascimento. Uniformaugment: A search-free probabilistic data augmentation approach. arXiv
preprint arXiv:2003.14348, 2020.

Teppei Suzuki. Teachaugment: Data augmentation optimization using teacher knowledge. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10904-10914, 2022.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304-29320, 2021.

13



(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Edoardo Cetin, Philip J Ball, Stephen Roberts, and Oya Celiktutan. Stabilizing off-policy deep reinforce-
ment learning from pixels. In International Conference on Machine Learning, pages 2784-2810. PMLR,
2022.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, pages 16828—16847.
PMLR, 2022.

Byungchan Ko and Jungseul Ok. Efficient scheduling of data augmentation for deep reinforcement learning.
arXiv preprint arXiv:2206.00518, 2022.

Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke Zhu, and Anima Anandkumar.
Secant: Self-expert cloning for zero-shot generalization of visual policies. arXiv preprint arXiv:2106.09678,
2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

Jiaxian Guo, Mingming Gong, and Dacheng Tao. A relational intervention approach for unsupervised
dynamics generalization in model-based reinforcement learning. In International Conference on Learning
Representations, 2022.

Ziheng Wang and Justin Sirignano. Global convergence of the ode limit for online actor-critic algorithms
in reinforcement learning. arXiv preprint arXiv:2108.08655, 2021.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant
representations for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, Timur Garipov, Pavel
Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson. Improving stability in deep reinforcement
learning with weight averaging. In Uncertainty in artificial intelligence workshop on uncertainty in Deep
learning, 2018.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep g-learning with convnets and vision
transformers under data augmentation. Advances in neural information processing systems, 34:3680-3693,
2021.

14



Supplementary Material for

Learning Better with Less: Effective Augmentation for
Sample-Efficient Visual Reinforcement Learning

In this material, we provide additional information on previous related work and background knowl-
edge, as well as detailed experimental setup and results. Appendix A provides an extensive review of
relevant literature, offering a comprehensive background that helps contextualize the significance
and positioning of this paper. In Appendix B, we present a comprehensive analysis of decoupling
and accurately controlling the hardness and diversity of DA, forming the basis for our experimental
framework and further investigations. In Appendix C and Appendix D, we present comprehensive
information regarding the experimental setup, hyperparameters, and detailed results for the rethinking
and evaluation parts, respectively.

A Extended Related Work

A.1 What Characterizes Good DA

DA has become a ubiquitous technique in the whole deep learning community [42, 46, 43]. After
decades of rapid development, there has been recently increasing attention focused on reevaluating
which properties contribute to the effectiveness of DA [18-21, 47]. Rethinking "what makes good
DA" not only enhances our understanding of how DA works but also guides the development of
more effective techniques. [20] first introduced two easy-to-compute metrics, affinity (the inverse
of hardness) and diversity, to decompose the attributes of DA and revealed that augmentation
performance is determined by both affinity and diversity. Following this analytical framework, [18]
demonstrated that diversity has the capacity to improve both accuracy and robustness. Contrarily,
hardness can enhance robustness at the expense of accuracy, up to a certain threshold, beyond which
both accuracy and robustness may be compromised. This paper conducts a comprehensive analysis
to investigate the specific requisites of hardness and diversity in DA for sample-efficient visual RL.
It unveils fundamental distinctions compared to other domains: (1) Visual RL training is highly
sensitive to improvements in hardness, which is distinct from the fact that a certain level of hardness
is necessary to improve robustness in supervised learning scenarios [19, 18]. (2) Increasing strength
diversity and type diversity without considering the data-sensitive nature of RL training may not
effectively enhance DA’s performance in visual RL.

Apart from examining the essential attributes of good DA methods in terms of hardness and diversity,
there have been studies dedicated to identifying additional indicators that can assess the effectiveness
of DA in specific scenarios. In natural language processing (NLP) tasks, DND [21] recommends
that good DA operations should generate diverse and challenging samples to provide informative
training signals, while preserving the semantics of the original samples. In knowledge distillation
(KD) scenarios, [47] conducted a statistical investigation and found that an effective DA scheme
should minimize the cross-entropy variance between the teacher and student models. Exploring
the RL-tailored metrics to assess the effectiveness of DA in sample-efficient visual RL represents a
promising direction for future research.

A.2 DA Design in Sample-Efficient Visual RL

There are two primary works that compare the impact of different DA operations on the sample
efficiency of visual RL. DrQ [4] evaluates the effectiveness of 6 popular augmentation techniques,
including random shifts, vertical and horizontal flips, random rotations, cutouts and intensity jittering.
RAD [10] investigates and ablates crop, translate, window, flip, rotate, grayscale, cutout, cutout-
color, random convolution, and color jitter augmentations. Following the classification criteria for
DA operations in survey [3], the conclusions derived from the analysis of DrQ and RAD can be
summarized as follows: (1) The photometric transformations, such as color jitter, and the random
erasing operations, such as cutout, are generally found to be ineffective for sample-efficient visual
RL. (2) Geometric transformations, represented by crop and shift operations, exhibit the strongest
efficacy in significantly improving the sample efficiency. Despite the recognized effectiveness of
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geometric transformations, there remains a scarcity of research dedicated to exploring the fine-tuning
of operation details and parameters in DA. This study aims to derive actionable guidelines for the DA
design by investigating the essential attributes of DA required for achieving sample-efficient visual RL.
Based on our thorough analysis, we propose a more effective DA operation called Random PadResize
(Rand PR). Compared with the shift operation in DrQ [4] and the crop operation in RAD [10], Rand
PR exhibits higher spatial diversity by introducing randomness not only in positioning/translation but
also in the scaling factor. Meanwhile, Rand PR effectively mitigates the DA hardness by preserving
edge information in observations.

Additionally, [8] provides evidence supporting the assertion that employing DA alone achieves higher
sample efficiency compared to jointly learning additional self-supervised losses. To substantiate this
claim, the authors conduct ablation experiments to analyze the distinct effects brought about by various
DA. The observed phenomena in the DM Control tasks can be explained by the conclusions drawn
from our study: In the case of the crop operation, where large-sized original rendered observations are
randomly cropped to 84 x 84 images as augmented data, it is evident that the augmentation effect is
noticeably superior when the original size is 100 x 100 as opposed to 88 x 88. This can be attributed
to the fact that in DM Control tasks, where edge information is largely task-irrelevant, a slightly
larger original size can promote higher spatial diversity, thereby improving the DA effectiveness.

A.3 Multi-Type DA Fusion Schemes

Beyond individual transformations, recent research has shifted towards combining different DA
operations to achieve a more diverse and powerful augmentation, which is termed as multi-type DA
fusion. The common fusion schemes can be categorized into three types: (1) Composing-based
fusion is a fundamental fusion scheme that combines different types of DA operations sequentially,
either in a fixed or random order [54, 55]. (2) Sampling-based fusion applies a single augmentation
to each image, with the DA operation and strength (uniformly) sampled from the corresponding
spaces [56]. TrivialAugment [45] serves as a strong representative example of this scheme. (3)
Mixing-based fusion, exemplified by AugMix [46], randomly combines diverse augmented data
generated by different operations to produce the final augmented data [19, 48]. Figure 12 illustrates
the visual representation of the flow process for these three fusion schemes.

Composing-based Sampling-based Mixing-based

Fusion Fusion
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ate i Translate
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Figure 12: Illustration of composing-based, sampling-based and mixing-based fusion schemes.

Automatic DA Combined with Multi-Type DA Fusion The aforementioned fusion methods
can be further improved by combined with automatic DA techniques, such as adversarial training
(AugMax [19]) and hyper-parameter search (AutoAugment [44]). However, automatic DA comes with
additional computational costs, which can be unfriendly to RL training that is already computationally
expensive. Moreover, recent studies indicate that increased type diversity and randomness appear to
be crucial attributes for superior DA performance [45, 18, 55]. Therefore, this paper focuses on the
random fusion of multi-type DA.



B Hardness and Diversity in Visual RL

In this section, we provide supplementary details on the decomposition of DA into hardness and
diversity components. We demonstrate the existing linear correlation between the hardness level and
transformation strength of individual DA operations; and introduce the specific methodologies for
manipulating the strength diversity and spatial diversity of DA.

B.1 The Relationship between Hardness and Strength

Hardness was initially introduced as a metric to quantify the data distribution shift caused by DA [20].
It is defined as the ratio of performance drop on augmented test data for a model trained on clean
data. In contrast to supervised learning, where DA is employed to enhance the robustness and
generalization of models, in many visual RL scenarios, it is simply not possible to obtain effective
policies without DA. Hence, except for exceptionally simple tasks like Cartpole Balance, the initial
definition is not applicable for measuring the hardness level of DA operations.

Cartpole Balance (TranslateX) B Cartpole Balance (TranslateY) Cartpole Balance (Rotate)

Correlation = 0.85 Correlation = 0.75 ° o

-
. Iy
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Figure 13: Relationship between Hardness and Strength of DA

It is necessary to identify a controllable variable that can approximate the control over the hardness
level of DA operations. Inspired by previous research [ 18], demonstrating the strength of a transfor-
mation affects its hardness, we aim to investigate the relationship between the strength of individual
DA operations and their corresponding hardness. We perform validation experiments in the Cartpole
Balance task, where the visual RL algorithm can achieve satisfactory performance even in the absence
of DA. As depicted in Figure 13, we observe a strong linear correlation between the strength and
hardness of different DA operations. Therefore, it is reasonable to manipulate the strength of DA
operations in order to control their hardness level and thereby investigate the impact of hardness on
the effectiveness of DA for sample-efficient visual RL.

B.2 Strength Diversity and Spatial Diversity

Diversity of the strength can be achieved by defining distinct ranges of hardness, as illustrated in
Figure 14 (left). During the training process, each image is augmented with a randomly sampled
strength value from the specified range. Similarly, spatial diversity is manipulated by defining a set
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Figure 14: Illustration of the manipulation of strength diversity and spatial diversity in DA.
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of allowable spatial operations, with the size of the set determining the level of spatial diversity. As
depicted in Figure 14 (right), a spatial diversity of 1 indicates that only the Translate operation is
allowed to move the observation in a single pre-determined direction.

C Detailed Experiment Results of the Rethinking Part

In this section, we present a more detailed description of the experimental setup implemented in
Section 3.2 and provide comprehensive results from comparative experiments.

C.1 Customized DA with Controllable Hardness and Diversity

To investigate the impact of DA attributes on the sample efficiency of visual RL, it is necessary to
rigorously control variables, ensuring that while one attribute is changed, the other attributes remain
constant. For individual DA operations with predetermined type diversity, it is important to accurately
control their level of hardness and spatial diversity. Inspired by the experimental design in [18], we
propose PadResize-HD, CropShift-HD, and Translate-HD, which enable precise control over
the hardness level through strength and the spatial diversity level through degree of freedom.

e CropShift-HD operates by randomly selecting a region in the image and subsequently
shifting it to a random position within the input space. The shape of the cropped region can
be square or rectangular. The strength of CropShift-HD is determined by the parameter
H, which represents the total number of cropped rows and columns. For instance, when
setting the strength to 8, CropShift-HD removes lines from the left, right, top, and bottom
borders of the image, where the total number of removed lines is equal to 8. This strength
parameter allows for precise control over the hardness level and strength diversity of the
operation. Furthermore, during initialization, we pre-sample D sets of operation parameters
for crop and shift to control the spatial diversity of CropShift-HD. Subsequently, during
the actual operations, the parameters are randomly selected from the pre-initialized D sets.

* PadResize-HD starts by adding a specified number of pixels in each direction of the image
and then resizes the image back to its original size. Its hardness level is determined by the
cumulative number of pixels added in each direction (i.e., top, bottom, left, and right). Given
the hardness level, we pre-sample D sets of pad parameters for each direction to control
the spatial diversity of PadResize-HD. Note that when employing Rand PR, as proposed in
Section 4, which offers unrestricted spatial diversity, there is no requirement to pre-sample
D sets of pad parameters. Instead, the parameters for each operation are randomly sampled
from the entire sets of possibilities each time the operation is executed.

* Translate-HD involves shifting the observations by a certain number of pixels in both
the horizontal and vertical directions. The strength of the Translate-HD is defined as the
total number of pixels moved in both directions, while its spatial diversity is determined by
the allowed directions of movement. Specifically, all the allowed directions include top T,
bottom |, left <—, right —, top-left \, top-right *, bottom-left ,/, and bottom-right \,
providing eight degrees of freedom. We randomly select D directions from these options to
control the spatial diversity.

C.2 Experimental Setup of the Rethinking Part

We conduct the investigation in the DeepMind Control (DMC) suite [22] and based on the previously
superior DrQ-V2 algorithms [5]. We maintain all hyperparameters from DrQ-V2 [5] unchanged
and solely manipulate its DA operations. For a detailed network architecture and hyperparameter
configuration, please refer to Appendix D.1.

C.3 Additional Results of Hardness Investigation
We present the detailed training curves for different hardness levels of DA operations and the

corresponding trend of final performance variation with respect to hardness levels in Figure 15 for
the Cup Catch task, Figure 16 for the Finger Spin task, and Figure 17 for the Cheetah Run task.
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Figure 15: Detailed comparison of training sample efficiency and final performance across different
hardness levels using three individual DA operations on the Cup Catch task.
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Finger Spin (CropShift-HD, Strength D=2, Spatial D=1) Finger Spin (CropShift-HD, Strength D=2, Spatial D=2)
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Figure 16: Detailed comparison of training sample efficiency and final performance across different
hardness levels using three individual DA operations on the Finger Spin task.
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Figure 17: Detailed comparison of training sample efficiency and final performance across different
hardness levels using three individual DA operations on the Cheetah Run task.
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C.4 Additional Results of Strength Diversity Investigation

We present additional comparative results across varying strength diversity in Figure 18 for the Cup
Catch, Finger Spin and Cheetah Run tasks.
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Figure 18: Detailed comparison of the sample efficiency across different strength diversity levels.
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C.5 Additional Results of Spatial Diversity Investigation

Detailed training curves depicting the performance for various levels of spatial diversity in DA
operations, along with the corresponding trend of final performance with increasing spatial diversity,
are presented in Figure 19 for the Cup Catch task, Figure 20 for the Finger Spin task, and Figure 21
for the Cheetah Run task.
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Figure 19: Detailed comparison of training sample efficiency and final performance across different
spatial diversity levels on the Cup Catch tasks.
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Figure 20: Detailed comparison of training sample efficiency and final performance across different

spatial diversity levels on the Finger Spin tasks.
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Figure 21: Detailed comparison of training sample efficiency and final performance across different
spatial diversity levels on the Cheetah Run tasks.
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C.6 Additional Results of Type Diversity Investigation

We present additional results in Table C.6 to showcase the detailed performance of employing
multi-type DA operations with three different fusion schemes.

Table 3: Detailed results of employing three different fusion methods in the Quadruped Run task,
including the mean and standard deviation of performance across 10 random seeds.

Composing-based PC+PR PC+CS PC+Tr PC+Ro PC+Co PR+CS PR+Tr
Fusion Scheme 504.7 £ 141 461.7+105 354.0+221 419.6 £221 350.7£158 468.2+ 165 399.2+ 240
PR+Ro PR+Co CS+Tr CS+Ro CS+Co Tr+Ro Tr+Co Ro+Co

409.8 £ 173 369.7 £ 140 395.24+ 168 463.1+157 331.5+146 382.54+215 302.6+164 263.6+173

Sampling-based PC+PR PC+CS PC+Tr PC+Ro PC+Co PR+CS PR+Tr
Fusion Scheme 525.7+£58  490.8 £143 487.7+£145 492.8+126 351.7+149 475.8=£159 497.1+113
PR+Ro PR+Co CS+Tr CS+Ro CS+Co Tr+Ro Tr+Co Ro+Co
491.6 £ 98 3573+ 172 446.6 £ 113 417.5+149 298.0+ 166 430.14+161 349.0£149 256.7 + 159
Mixing-based PC+PR PC+CS PC+Tr PC+Ro PC+Co PR+CS PR+Tr
Fusion Scheme 406.1 £164 391.8+156 374.2+215 4134+£198 3344173 411.14+97  388.4+£213
PR+Ro PR+Co CS+Tr CS+Ro CS+Co Tr+Ro Tr+Co Ro+Co

401.3 £177 331.7+£165 366.3+173 400.4+143 339.9+171 341.3+131 312.24+161 288.1+112

D Detailed Experimental Setup of the Evaluation Part

In this section, we provide comprehensive implementation details of our experimental setup for
evaluating the performance in both DMC and CARLA environments. This includes the introduction
of benchmarks, network architecture, and hyperparameters.

D.1 Setup of DeepMind Control Suite

Benchmarks. We conduct evaluations on 12 challenging continuous control tasks, following the
task setting of DrQ-V2 [5]. These tasks cover different types of tasks and various challenging
elements. A detailed description is presented in Table D.1.

Table 4: Detailed descriptions of the 12 DMC tasks leveraged for evaluation.

Task Traits dim(S) dim(.A)
Acrobot Swingup diff. balance, dense 4 1
Cartpole Swingup Sparse swing, sparse 4 1
Cheetah Run run, dense 18 6
Finger Turn Easy turn, sparse 6 2
Finger Turn Hard turn, sparse 6 2
Hopper Hop move, dense 14 4
Quadruped Run run, dense 56 12
Quadruped Walk walk, dense 56 12
Reach Duplo manipulation, sparse 55 9
Reacher Easy reach, dense 4 2
Reacher Hard reach, dense 4 2
Walker Run run, dense 18 6

Hyper-parameters. To demonstrate the general applicability of our method, we keep all
environment-specific hyperparameters from DrQ-V2 [5] unchanged and solely replace the orig-
inal DA operations with Rand PR and CycAug. The hyper-parameters of DA operations are also
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presented in Table 5. While we aim to maintain consistent settings across all tasks, we observe that
the cycling interval of CycAug needed to be adjusted for more challenging tasks. Consequently,
we set the cycling interval to 2 x 10° steps for the Quadruped Walk, Quadruped Run and Hopper
Hop tasks. CycAug, a naive attempt guided by the insights that effective multi-type DA fusion
in sample-efficient visual RL should consider the data-sensitive nature of RL, demonstrates the
effectiveness of reducing the frequency of DA operation switching for training stability. This aligns
with our rethinking conclusions. Our attempt provides preliminary validation of the feasibility of
employing multi-type DA operations in sample-efficient visual RL, surpassing the limitations of
individual DA approaches. There is still significant potential for future research to explore and refine
more suitable fusion schemes.

Table 5: A default set of hyper-parameters used in DMC evaluation.

Algorithms Hyper-parameters

Replay buffer capacity 106
Action repeat 2

Seed frames 4000
Exploration steps 2000
n-step returns 3
Mini-batch size 256
Discount vy 0.99
Optimizer Adam
Learning rate 10~*
Agent update frequency 2

Critic Q-function soft-update rate 7 0.01
Features dim. 50
Repr. dim. 32 x 35 x 35
Hidden dim. 1024
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 500000)

DA Operations Hyper-parameters

Strength range of Rand PR [0, 16]
Cycling interval of CycAug 1 x 10° steps

D.2 Setup of CARLA Simulator

Benchmarks. Our experimental setup in CARLA is adapted from the work of [66]. Specifically,
we employ three cameras mounted on the roof of the vehicle, with each camera capturing a 60-degree
field of view, as illustrated in Figure 22. These cameras are utilized for both training the agent and
evaluating the final performance of the different methods. The reward function is defined as:

Ty = V;rgoﬁhighway - At — \; - impulse — \; - |steer|, 2)

where v, represents the velocity vector of the ego vehicle projected onto the unit vector Uinighway
that aligns with the highway direction. It is multiplied by the time discretization At = 0.05 to measure

3x84x84 3Xx84x84

84

Network

Figure 22: Pipeline of DrQ-V2, Rand PR and CycAug in CARLA. The size of the original observa-
tions is 84 x 252, and we first resize them to 3 x 84 x 84 before applying DA operations. After DA
operations, we resize the observations back to their original size and then input them to the network.
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the progress of the vehicle on the highway in meters. Collisions are quantified in terms of impulses,
measured in Newton-seconds. Additionally, a steering penalty is imposed, with steer € [—1,1]. The
reward function incorporates weights \; = 10~% and A\, = 1.

To adapt the DrQ-V2 algorithms to CARLA tasks, we partition the original observations, which are
of size 84 x 252, into three square images of size 84 x 84, each corresponding to the content captured
by a different camera. These individual images are then subjected to DA operations, as shown in
Figure 22. We evaluate our proposed Rand PR and CycAug methods against the PadCrop operation
originally used in DrQ-V2 in four different weather settings. These varied weather conditions not
only offer a diverse range of realistic observations but also introduce different dynamics within the
environments. The Figure 23 illustrates the diverse and realistic observations obtained from the four
weather settings we leveraged in our evaluation.

p / N\
Default WetNoon SoftRainNoon HardRainSunset

Figure 23: Illustration of realistic observations captured in CARLA under various weather conditions.
Hyper-parameters. We adopt various hyperparameter settings from DrQ-V2 in the DMC tasks,
only modifying the dimensions of the intermediate layers in the network to accommodate the

observation size of CARLA. The complete hyperparameter settings are presented in Table 6.

Table 6: A default set of hyper-parameters used in CARLA evaluation.

Algorithms Hyper-parameters

Replay buffer capacity 108
Action repeat 4
Exploration steps 100
n-step returns 3
Mini-batch size 512
Discount vy 0.99
Optimizer Adam
Learning rate 1074
Agent update frequency 2

Critic Q-function soft-update rate 7 0.01
Features dim. 50

Repr. dim. 32 x 35 x 119
Hidden dim. 1024
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 100000)

DA Operations Hyper-parameters

Strength range of Rand PR [0, 16]
Cycling interval of CycAug 2 x 10% steps
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