
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] Not aware of any
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We only use datasets that publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No personal information is included.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendix

A Notations

In Table A1, we list the notions that are used throughout the paper.

Table A1: List of notations.

Symbol Description

x Input features.
y Output label.
S A support set.
Q A query set.
Sc The subset of examples in S that belong to class c: Sc = {(xi, yi) | (xi, yi) ∈

S, yi = c}
f The base model. We use a pretrained BERT model, insert bottleneck adapters

into each transformer layer and add a linear output layer.
θ Parameters of pretrained BERT model.
α Parameters of the bottleneck adapters.
ω Parameters of the linear output layer.
Θ Θ = {θ, α, ω}.
µc The centroid of Sc which is the average embedding of the examples in Sc.
p̂(x) The empirical distribution over x specified by a dataset.
∇Θ The gradients with regard to Θ.
FΘ The Fisher Information Matrix of Θ.
d The task embedding network.
φ Parameters of the task embedding network.
a The adaptation network.
ψ Parameters of the adaptation network.
γ Scaling parameters for adaptation.
β Shifting parameters for adaptation.

B ProtoNet Training

Algorithm A1 shows the pseudocode for training the base model during the first stage. The training
procedure follows Snell et al. [40] broadly. Different with regular episodic training where episodes
are sampled from a single large dataset, we have multiple meta-training datasets to sample episodes
from. Accordingly, we first sample a meta-training dataset with probability proportional to the square
root of its size and then sample an episode from that dataset. We repeat this process to generate
episodes for meta-training. We also make sure each episode contains equal number of examples for
all classes of the dataset it is sampled from.

C Experiment Datasets

Table A2 shows the datasets we use for meta-training, which are the same with the datasets used
by Bansal et al. [4] except for SST-2: Bansal et al. [4] used SST-2 as an entity typing task while
we used it as a sentence-level sentiment classification task. We use the average performance on the
validation sets of all meta-training tasks for hyperparameter searching and early stopping.

Table A3 lists the datasets we use for meta-testing. We consider 4-shot, 8-shot and 16-shot for each
task. For each task with a certain number of shots, we train on 10 different training sets and test on
the full testing set, and report the mean and standard deviation of the testing performance over the 10
runs. We reuse most of the meta-testing datasets used by Bansal et al. [4] but remove all the datasets
of which the average number of words per input sentence is larger than 100. In addition, we add three
new datasets to increase the diversity of the meta-testing tasks.

15

Algorithm A1: Training a prototypical network with BERT and bottleneck adapters as encoder.
Input : T : A set of text classification tasks for training. Di: The labeled dataset of each task i.

θ: Parameters of pretrained BERT.
Output :α: Parameters of the bottleneck layers. ω: Parameters of the linear layer after BERT.

1 while not converged do
2 Sample M episodes {ti}Mi=1, each episode ti = (Si,Qi),Si ⊆ Di,Qi ⊆ Di
3 for i← 1 to M do
4 µc = 1

|Sc|Σxj∈Scf(xj ; θ, α, ω), Sc = {(xj , yj) | (xj , yj) ∈ Si, yj = c} // build
// prototype of each class

5 p(y = c|xj) = softmax(cos(f(xj ; θ, α, ω), µc)), (xj , yj) ∈ Qi
6 `i = −

∑
xj∈Qi

log p(y = yj |xj), (xj , yj) ∈ Qi // calcualte loss on the
// query set

7 end
8 {α, ω} ← {α, ω} − lr · ∇{α,ω} 1

M

∑M
i=1 `i

9 end

Table A2: Meta-training datasets.

Dataset Task Labels #Training #Validation
MRPC [15] Paraphase "paraphase", "not paraphase" 3668 409

QQP [21] detection "paraphase", "not paraphase" 363846 40430
QNLI [51]

NLI

"entailment", "not entailment" 104743 5463
RTE [13] "entailment", "not entailment" 2490 277

SNLI [10] "contradiction", "entailment", "neutral" 549367 9824
MNLI [52] "contradiction", "entailment", "neutral" 392702 19647
SST-2 [41] Movie review

classification
"negative", "positive" 67349 872

Following Bansal et al. [4], we use several text classification datasets from crowdflower2, including
airline, disaster, emotion, political_audience, political_bias and political_message. We also use
product rating dataset from the Amazon Reviews dataset [8] but only keep rating_kitchen. We add
three different datasets to increase the diversity of the meta-testing tasks. We use a subset of the Yelp
dataset 3, named yelp in Table A3. We randomly sample 2000 examples for each class as the testing
set. For training, similar with other tasks, we randomly sample 10 training sets for each number of
shots. SNIPS [11] is a commonly used benchmarking dataset for intent detection and slot filling tasks.
We use the full test set of SNIPS and randomly sample few-shot datasets from its training set. The
HuffPost dataset [26] is about classifying categories of news posted on HuffPost4. The full dataset
contains 41 categories, from which we randomly select 10 categories and 400 examples for each
category as the testing set.

We only considered the 12 datasets in the main table of [4] and removed the two entity typing tasks,
because they are phrase-level classification tasks while we only focus on sentence-level classification
tasks. And we removed the other 3 tasks because they contain many sentences that exceed the max
sequence length of 128. Note that we use 128 as the max length for fair comparison with [6], since it
had the same restriction.

D Experiment details

D.1 Comparing our Leopard implementation with [4]

We compare the results of our implementation of ProtoNet (with BERT as encoder) and Leopard with
the results reported by Bansal et al. [4]. Note that here we use the same meta-testing datasets as Bansal
et al. [4] without removing the datasets that contain many long sentences, namely, rating_dvd,

2https://www.figure-eight.com/data-for-everyone/
3https://www.yelp.com/dataset
4https://www.huffpost.com/

16

https://www.figure-eight.com/data-for-everyone/
https://www.yelp.com/dataset
https://www.huffpost.com/

Table A3: Meta-testing datasets. Newly added datasets are marked with “*”.

Dataset Task #Test Size Labels

airline Sentiment classification on
tweets about airline

7319 "neutral", "negative", "positive"

rating_kitchen Product rating classification on
Amazon

7379 "4", "2", "5"

disaster Classifying whether tweets are
relavant to disasters

5430 "not relevant", "relevant"

emotion Emotion classification 20000 "enthusiasm", "love", "hate",
"neutral", "worry", "anger", "fun",
"happiness", "boredom", "sad-
ness", "surprise", "empty", "re-
lief"

political_audience Classifying the
audience/bias/message
of social media
messages from
politicians

996 "national", "constituency"
political_bias 1287 "partisan", "neutral"
political_message 428 "personal", "policy", "support",

"media", "attack", "other", "infor-
mation", "constituency", "mobi-
lization"

snips* Intent detection 700 "play music", "add to playlist",
"rate book", "search screening
event", "book restaurant", "get
weather", "search creative work"

huffpost_10* Category classification on news
headlines from HuffPost

4000 "politics", "entertainment",
"travel", "wellness", etc.

yelp* Business rating classification on
Yelp

10000 "1", "2", "3", "4", "5"

rating_electronics and rating_books, and without adding new tasks for fair comparison. Results are
shown in Table A4. The average accuracy of our Leopard implementation over all tasks is 47.59%,
which is close to the average accuracy reported by Bansal et al. [4] (48.22%). However, the average
accuracy of our ProtoNet implementation (51.22%) is much better than the performance reported
by Bansal et al. [4] (42.36%), and is even better than Leopard. See Table A4 for detailed results on
each task.

D.2 Implementation details

Our codes are publicly available on https://github.com/jixuan-wang/Grad2Task. During
meta-training, after sampling episodes with roughly the same number of examples as the total number
of examples in the meta-training datasets, we refer this as one epoch. For all models, we train them
on the meta-training datasets for 5 epochs and report results of the models with the best average
performance on the validation sets of all meta-training tasks. To calculate the ProtoNet loss, we tried
both Euclidean distance and cosine distance as the distance metric, and found that Euclidean distance
worked better and so used it for all experiments. The linear layer on top of BERT has the size of 256.
The task embedding network is a 2 layers GRU model, of which the input size is 24567 (i.e., the
parameter size in each bottleneck adapter) and the output size is task embedding size (we used 100).
The adaptation networks are single layer MLPs.

We use dropout rate [43] of 0.1 for all models. We choose learning rate for each model from
{1e−5, 2e−5, 5e−5, 1e−4} based on the validation performance. We use the Adam algorithm [23]
for optimization. We perform one optimization step after seeing 4 episodes. Note that our approach
does not require tuning any hyperparameters like the number of steps in inner loop as in MAML
based approches [4]. Each model is trained on 2 NVIDIA Tesla P100 GPUs.

Parameter size of the BERTBASE model is 110M but all of its parameters are kept fixed in our method.
We insert 24 bottleneck adapters into the BERTBASE model, which consume 7M parameters in total
and are only trained in the first stage. The task embedding network contains 7M parameters. The
adaptation network contains 1.3M parameters for each bottleneck adapter.

17

https://github.com/jixuan-wang/Grad2Task

Table A4: Comparison between [4] and our implementation. “#” refers to number of shots. “Leopard
ProtoNet” refers to the ProtoNet with BERT as encoder implemented by [4]. “Leopard” refers to the
MAML-based approach proposed and implemented by [4]. “Our ProtoNet” refers to the ProtoNet
with BERT as encoder implemented by us. “Our Leopard” refers to the Leopard model implemented
by us. Note in this table, we did not remove the datasets containing very long sentences, namely,
rating_dvd, rating_electronics and rating_books.

model Leopard ProtoNet Leopard Our ProtoNet Our Leopard

4

airline 40.27 ± 8.19 54.95 ± 11.81 65.39 ± 12.73 48.21 ± 17.99
disaster 50.87 ± 1.12 51.45 ± 4.25 54.01 ± 2.90 51.32 ± 4.11
emotion 9.18 ± 3.14 11.71 ± 2.16 11.69 ± 1.87 11.27 ± 3.92

political_audience 51.47 ± 3.68 52.60 ± 3.51 52.77 ± 5.86 53.54 ± 4.15
political_bias 56.33 ± 4.37 60.49 ± 6.66 58.26 ± 10.42 58.08 ± 9.19

political_message 14.22 ± 1.25 15.69 ± 1.57 17.82 ± 1.33 16.82 ± 1.79
rating_books 48.44 ± 7.43 54.92 ± 6.18 60.12 ± 8.05 56.94 ± 10.43

rating_dvd 47.73 ± 6.20 49.76 ± 9.80 56.95 ± 10.17 44.68 ± 11.29
rating_electronics 37.40 ± 3.72 51.71 ± 7.20 57.32 ± 7.61 51.61 ± 8.83

rating_kitchen 44.72 ± 9.13 50.21 ± 9.63 58.47 ± 11.12 48.77 ± 12.44
Average 40.06 ± 4.82 45.35 ± 6.28 49.28 ± 7.21 44.12 ± 8.41

8

airline 51.16 ± 7.60 61.44 ± 3.90 69.14 ± 4.84 65.68 ± 11.79
disaster 51.30 ± 2.30 55.96 ± 3.58 54.48 ± 3.17 50.37 ± 3.31
emotion 11.18 ± 2.95 12.90 ± 1.63 13.10 ± 2.64 13.03 ± 5.99

political_audience 51.83 ± 3.77 54.31 ± 3.95 55.17 ± 4.28 52.15 ± 5.57
political_bias 58.87 ± 3.79 61.74 ± 6.73 63.22 ± 1.96 62.69 ± 1.08

political_message 15.67 ± 1.96 18.02 ± 2.32 20.40 ± 1.12 17.38 ± 1.92
rating_books 52.13 ± 4.79 59.16 ± 4.13 62.59 ± 8.11 63.13 ± 8.08

rating_dvd 47.11 ± 4.00 53.28 ± 4.66 59.18 ± 7.00 53.42 ± 9.54
rating_electronics 43.64 ± 7.31 54.78 ± 6.48 61.57 ± 2.94 58.43 ± 3.08

rating_kitchen 46.03 ± 8.57 53.72 ± 10.31 57.08 ± 11.54 53.19 ± 12.05
Average 42.89 ± 4.70 48.53 ± 4.77 51.59 ± 4.76 48.95 ± 6.24

16

airline 48.73 ± 6.79 62.15 ± 5.56 71.06 ± 1.60 67.04 ± 8.06
disaster 52.76 ± 2.92 61.32 ± 2.83 55.30 ± 2.68 50.37 ± 4.27
emotion 12.32 ± 3.73 13.38 ± 2.20 12.81 ± 1.21 10.30 ± 2.86

political_audience 53.53 ± 3.25 57.71 ± 3.52 56.16 ± 2.81 54.94 ± 2.34
political_bias 57.01 ± 4.44 65.08 ± 2.14 61.98 ± 6.89 61.38 ± 5.03

political_message 16.49 ± 1.96 18.07 ± 2.41 21.36 ± 0.86 18.22 ± 1.88
rating_books 57.28 ± 4.57 61.02 ± 4.19 65.82 ± 4.65 63.98 ± 9.32

rating_dvd 48.39 ± 3.74 53.52 ± 4.77 61.86 ± 1.89 55.27 ± 8.91
rating_electronics 44.83 ± 5.96 58.69 ± 2.41 60.49 ± 4.86 58.05 ± 3.49

rating_kitchen 49.85 ± 9.31 57.00 ± 8.69 61.00 ± 9.17 57.34 ± 10.82
Average 44.12 ± 4.67 50.79 ± 3.87 52.78 ± 3.66 49.69 ± 5.70

Training PN-BERT and PN-BN took 9 and 7 hours, respectively, on two Tesla P100 GPUs. In the
second stage of our method, the task embedding network and adaptation network are trained together
for 5 epochs on the meta-training datasets, which took 4 hours on two Tesla P100 GPUs.

E Visualization of task embeddings

We visualize the task embeddings learned by the task embedding network in Figure A1. We show
the per-layer task embeddings of the meta-training tasks after being mapped into the 2D space
by t-SNE [47]. Each point in Figure A1 is corresponding to an episode or task sampled from a
meta-training dataset. For each episode, we first calculate the raw gradient information and then feed
it into the RNN-based task embedding network, which outputs the per-layer task embeddings. Note
that for the 12-layer BERTBASE model we inserted two adapters into each transformer layer, so there
are 24 task embeddings in total for each episode. Here we only visualize the first task embedding
at each transformer layer, resulting in 12 task embeddings for each episode. From Figure A1 we
observe that the task embeddings form better clusters at higher layers. At the last layer, the only
movie review classification task (SST-2) is separated clearly from other tasks, multiple NLI tasks are
mixed together in the top center, and the paraphrase detection tasks QQP and MRPC spread in the
center.

F Ablation results details

Details of the ablation study results are shown in Table A5. First, all variants under our framework
achieve better performance than previous work [4] and other baselines, i.e., ProtoNet [40]-based and
Hypernet [19]-based approaches. Second, overall, the model with gradients as task representation

18

−10 −5 0 5 10

−10

−5

0

5

10

−5 0 5 10

−10

0

10

−10 0 10

−10

0

10

−10 0 10

−10

0

10

−10 0 10
−10

−5

0

5

10

−10 0 10

−10

0

10

−10 0 10

−10

0

10

−10 0 10
−15

−10

−5

0

5

10

−10 0 10

−10

0

10

−10 0 10

−10

−5

0

5

10

15

−10 0 10

−10

0

10

−10 0 10

−10

0

10

20

RTE
QNLI
SNLI
MNLI
SST-2
MRPC
QQP

Layer 0 Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6 Layer 7

Layer 8 Layer 9 Layer 10 Layer 11

Figure A1: T-SNE visualization of the learned task embeddings. Each sub-figure is the task embed-
dings at a certain layer, e.g., “Layer 11” refers to the task embeddings at the last transformer layer of
BERTBASE. Each point is an episode or task sampled from a dataset. Each color is corresponding to a
dataset.

(shown as “Grad2Task w/ Gradients”) performs the best: for the ten meta-testing tasks being
considered, it achieves the best performance among all the variants for five 4-shot tasks, four 8-shot
tasks and four 16-shot tasks.

G Additional results

G.1 Results on all datasets

We did not report results on the datasets used by [4] for domain adaptation and ablations, since we
focus on evaluation generalization to tasks with different structure. However, we did run evaluation
on all datasets of [4] (except entity typing datasets since they are phrase-level classification tasks).
Table A6 shows the average accuracy under each shot, demonstrating that our conclusion holds.

G.2 Comparison with other fine-tuning baselines

The main disadvantage of fine-tuning approaches is that they require costly retraining on new tasks
and hand tuning and are more vulnerable to overfitting on few-shot problems. To illustrate this
we compare different fine-tuning approaches in the table below (FT: fine-tuning, BN: bottleneck
adapters, PN: ProtoNet, *: numbers reported in [4]). We show the average accuracy on a subset of
tasks from [4] with 4, 8 and 16 shots. For example, FT-PN-BN refers to only fine-tuning the BN
parameters of a trained ProtoNet. Results show all fine-tuning approaches perform much worse on
4-shot problems than our method, while some of them start to catch up with more shots, i.e., 16-shot.

19

Table A5: Detailed results of the ablation study. “#” refers to number of shots. We show both the
mean and standard deviation of the accuracy over 10 runs. For example, in “66.78 ± 6.27”, “66.78”
refers to the average accuracy and “6.27” refers to the standard deviation of accuracy. We further
average the results of each model for each number of shots, shown as the rows in grey color. All
models shown in this table are trained by starting from the same base model after the first training
stage. “PN Longer Training” refers to training the base model for more iterations without any
adaptation. “Grad2Task X” is similar with our proposed model but uses average input encoding as
task representation. “Grad2Task X&Y” is similar with our proposed model but uses average input
encoding and textual label encoding as task representation. “Grad2Task Adapt All” refers to our
proposed model but adapting the hidden representation of all input tokens instead of just the “[CLS]”
token. “Grad2Task w/ Pretrained Emb” refers to our proposed model but using task embedding
model pretrained on the same/different task. “Hypernet” is similar with our proposed approach but
generating whole parameters for the bottleneck adapters instead of adaptation parameters. “Grad2Task
w/ Gradients” refers to our proposed approach.

Model: PN Longer Grad2Task X Grad2Task Grad2Task Grad2Task w/ Hypernet Grad2Task w/
Training X&Y Adapt All Pretrained Emb Gradients

4

airline 66.78 ± 6.27 66.58 ± 11.92 66.88 ± 11.55 66.83 ± 12.17 67.76 ± 10.48 62.99 ± 7.54 70.64 ± 3.95
disaster 53.46 ± 3.64 54.97 ± 6.83 53.54 ± 4.34 54.22 ± 5.93 54.83 ± 6.19 54.84 ± 5.69 55.43 ± 5.89
emotion 12.64 ± 1.98 13.27 ± 1.90 12.80 ± 1.60 13.21 ± 2.27 12.80 ± 1.64 13.16 ± 1.17 12.76 ± 1.35
political_audience 52.78 ± 5.57 52.79 ± 6.99 51.32 ± 6.15 53.01 ± 7.00 52.27 ± 6.15 50.59 ± 4.80 51.28 ± 5.74
political_bias 63.52 ± 1.94 62.24 ± 6.50 59.63 ± 7.79 61.51 ± 7.07 60.30 ± 7.04 60.35 ± 6.72 58.74 ± 9.43
political_message 20.69 ± 1.26 20.87 ± 1.36 20.22 ± 1.81 19.69 ± 1.53 20.31 ± 1.65 17.18 ± 1.77 21.13 ± 1.97
rating_kitchen 55.29 ± 10.29 56.27 ± 9.19 57.22 ± 10.25 56.69 ± 10.75 56.88 ± 9.71 56.78 ± 8.12 57.09 ± 9.74
huffpost_10 17.59 ± 2.69 17.01 ± 1.80 17.14 ± 1.77 16.94 ± 1.88 17.67 ± 2.27 17.00 ± 2.63 18.50 ± 2.00
snips 47.77 ± 4.08 50.16 ± 2.89 47.46 ± 3.88 43.36 ± 2.39 49.09 ± 4.11 49.76 ± 4.67 52.51 ± 2.68
yelp 41.68 ± 3.07 43.04 ± 2.63 41.65 ± 2.90 42.45 ± 3.25 42.50 ± 3.48 42.20 ± 3.15 43.00 ± 3.55
Average 43.22 ± 4.08 43.72 ± 5.20 42.79 ± 5.20 42.79 ± 5.42 43.44 ± 5.27 42.48 ± 4.63 44.11 ± 4.63

8

airline 70.27 ± 2.11 71.86 ± 3.52 71.67 ± 3.31 71.49 ± 2.23 72.51 ± 2.25 68.44 ± 2.59 72.04 ± 2.58
disaster 54.75 ± 3.88 56.71 ± 6.55 56.59 ± 3.14 55.86 ± 3.99 55.34 ± 3.40 55.79 ± 4.16 57.49 ± 5.36
emotion 13.62 ± 1.79 14.14 ± 2.20 13.92 ± 1.60 14.15 ± 2.38 14.46 ± 2.08 14.33 ± 1.44 13.99 ± 1.90
political_audience 53.46 ± 5.05 53.65 ± 6.44 53.55 ± 6.19 54.56 ± 5.62 52.97 ± 5.79 52.39 ± 4.69 52.60 ± 5.55
political_bias 64.69 ± 0.73 65.07 ± 0.76 64.25 ± 0.96 64.32 ± 0.44 64.90 ± 1.12 63.68 ± 1.43 64.06 ± 1.12
political_message 21.76 ± 0.89 21.71 ± 1.77 21.13 ± 1.81 21.29 ± 1.03 21.04 ± 1.76 20.18 ± 2.05 21.31 ± 1.16
rating_kitchen 56.68 ± 10.99 57.50 ± 10.17 58.11 ± 9.77 56.62 ± 10.61 57.72 ± 10.41 55.46 ± 10.99 58.35 ± 9.83
huffpost_10 19.81 ± 2.53 19.97 ± 1.47 20.31 ± 1.74 19.07 ± 1.75 20.97 ± 1.54 18.93 ± 1.62 21.12 ± 1.69
snips 54.27 ± 3.11 53.81 ± 2.63 52.56 ± 2.23 48.49 ± 4.41 53.83 ± 2.30 56.41 ± 3.47 57.19 ± 2.77
yelp 43.26 ± 1.85 45.15 ± 1.61 44.20 ± 1.69 43.73 ± 1.73 44.26 ± 1.98 42.90 ± 3.19 43.66 ± 1.65
Average 45.26 ± 3.29 45.96 ± 3.71 45.63 ± 3.24 44.96 ± 3.42 45.80 ± 3.26 44.85 ± 3.56 46.18 ± 3.36

16

airline 70.20 ± 1.62 72.25 ± 1.94 72.09 ± 1.93 71.64 ± 1.63 72.79 ± 1.58 67.87 ± 1.62 72.30 ± 1.75
disaster 57.05 ± 4.46 57.46 ± 2.47 58.45 ± 2.92 56.73 ± 3.37 58.83 ± 5.32 58.94 ± 3.56 59.63 ± 3.11
emotion 14.28 ± 1.46 14.02 ± 0.93 14.04 ± 1.29 13.91 ± 0.78 14.23 ± 1.32 14.54 ± 0.90 13.72 ± 1.24
political_audience 56.86 ± 3.01 57.79 ± 4.02 56.71 ± 3.62 56.98 ± 4.15 56.99 ± 2.44 55.79 ± 2.72 55.46 ± 3.34
political_bias 64.67 ± 0.72 65.36 ± 0.77 64.06 ± 0.53 64.21 ± 0.18 64.29 ± 2.88 64.33 ± 0.60 63.83 ± 0.74
political_message 23.44 ± 0.91 23.64 ± 1.26 23.00 ± 1.19 22.31 ± 1.23 23.89 ± 1.11 22.29 ± 2.32 22.22 ± 1.20
rating_kitchen 59.64 ± 9.14 61.03 ± 6.64 60.72 ± 6.38 59.35 ± 8.78 61.68 ± 6.81 59.48 ± 7.01 61.72 ± 6.38
huffpost_10 21.96 ± 1.30 21.45 ± 1.87 21.98 ± 1.78 20.48 ± 1.73 22.56 ± 1.27 21.34 ± 2.19 23.57 ± 1.76
snips 56.21 ± 2.40 55.65 ± 1.55 55.16 ± 2.37 49.89 ± 2.96 57.19 ± 2.08 61.81 ± 1.45 59.47 ± 1.91
yelp 43.80 ± 2.17 44.43 ± 2.90 44.53 ± 2.23 44.25 ± 2.25 45.39 ± 1.35 43.85 ± 2.14 44.87 ± 2.09
Average 46.81 ± 2.72 47.31 ± 2.44 47.07 ± 2.42 45.97 ± 2.71 47.78 ± 2.62 47.02 ± 2.45 47.68 ± 2.35

Table A6: Average accuracy on all datasets used by Bansal et al. [4]. “*”: results reported by [4].

Model K4 K8 K16
Leopard* 52.61 56.02 57.97
PN-BN 56.5 57.94 59.69

Grad2Task 57.05 58.37 59.7

Table A7: Comparison with other fine-tuning approaches. “*”: results reported in [4].

model K4 K8 K16
FT-BERT* 37.79 37.05 46.28

FT-BERT-BN 37.29 36.96 37.92
FT-PT-BN-FILM 40.95 45.83 49.74

FT-PT-BN 41.68 46.33 49.27
FT-PT 41.52 47.24 49.85

FT-BERT 38.5 39.4 45.21
PN 45.49 47.51 48.52

PN-BN 45.98 47.64 49.63
Grad2Task 46.72 48.55 49.84

20

	Introduction
	Related Work
	Few-shot text classification
	Meta-learning
	Transfer learning

	Problem Definition
	Model Design
	Base Model: BERT & Bottleneck Adapters
	Task Embedding Network for Per-Layer Task Encoding
	Adaptation Network with Auto-Regressive Adaptation
	Model Training

	Experiments and Results
	Experiment setup
	Few shot text classification results

	Analysis and Ablations
	Same/different task classification and task embedding visualization
	Ablation Study

	Discussion and Conclusion
	Notations
	ProtoNet Training
	Experiment Datasets
	Experiment details
	Comparing our Leopard implementation with bansal2020learning
	Implementation details

	Visualization of task embeddings
	Ablation results details
	Additional results
	Results on all datasets
	Comparison with other fine-tuning baselines

