

GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data

Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik University of Cambridge, UK

UNIVERSITY OF CAMBRIDGE

Introduction

D >> N

D features

N samples

Tabular datasets in medicine and bioinformatics are usually:

- high-dimensional (5,000 20,000 features)
- small size (~100s samples/datapoints) (D >> N)

Problem: Neural networks tend to overfit on such small datasets, partially because the networks have too many degrees of freedom.

Research question: How to reduce overfitting and improve the accuracy of neural networks on tabular datasets with D >> N?

We propose a general method for D >> N

GCondNet improves neural networks by: extracting the "implicit relationships" between samples

- performing "soft parameter-sharing" to constrain the 2 model's parameters
 - simple & general improved accuracy robust to incorrect relationships

Key idea: use the implicit sample-wise relationships

Setup: Any tabular dataset, where each row $x^{(i)}$ is a sample/datapoint.

Standard methods capture the relationships between features. across each feature.

Key idea: GCondNet *additionally* leverages the implicit relationships between samples

D features

Represent the sample-wise relationships as graphs

A Generate a graph for each feature in the dataset (resulting in *D* graphs), with each node representing a sample (totalling *N* nodes per graph).

B Use a Graph Neural Network (GNN) to extract graph embeddings $w^{(j)}$ from each of the *D* graphs.

Concatenate all graph embeddings into matrix $W_{ ext{GNN}} = \left[w^{(1)}, w^{(2)}, \dots, w^{(D)}
ight]$

Performing soft-parameter-sharing

Use $W_{\rm GNN}$ to parameterise the first layer of a standard MLP as a convex combination

$$M_{\mathrm{MLP}}^{[1]} = \alpha W_{\mathrm{GNN}} + (1 - \alpha) W_{\mathrm{scratch}}$$

 \uparrow

 $\min_{\substack{\text{mixing \\ \text{coefficient}}}}$
 $\min_{\substack{\text{initialised } \\ \text{to zero}}}$

$$\hat{y}_i$$

Predicted

label

End-to-end training.

The impact of GCondNet's inductive bias

Experiment: Compare the loss curves on MLP and an equivalent GCondNet (averaged over 25 runs)

GCondNet outperforms other methods

- We evaluate on 9 real-world biomedical datasets
- GCondNet outperforms 15 standard and modern methods, including specialised methods for tabular datasets with D >> N

Dataset	lung	toxicity	metabric-p50	metabric-dr	prostate	cll	smk	tcga-survival	tcga-tumor	Avg. rank
MLP	94.20 ± 4.9	93.21 ± 6.1	94.31 ± 5.3	5956 ± 55	$\frac{1}{8876 \pm 55}$	78.30 ± 8.9	$64\ 42 + 8\ 4$	56.28 ± 6.7	$\frac{1}{4819+77}$	6 88+
DietNetworks	90.43 ± 6.2	82.13 ± 7.4	94.01 ± 0.0 95.02 ± 4.7	56.98 ± 8.7	81.71 ± 11.0	68.84 ± 9.2	62.71 ± 9.3	50.20 ± 0.1 53.62 ± 5.4	46.69 ± 7.1	10.62*
FsNet	91.75 ± 3.0	60.26 ± 8.1	83.86 ± 8.1	56.92 ± 10.1	84.74 ± 9.8	66.38 ± 9.2	56.27 ± 9.2	53.83 ± 7.9	45.94 ± 9.8	11.75*
DNP	92.83 ± 5.6	93.50 ± 6.1	93.56 ± 5.5	55.79 ± 7.0	90.25 ± 5.9	85.12 ± 5.4	66.89 ± 7.6	58.13 ± 8.2	44.71 ± 5.9	7.38
SPINN	92.26 ± 6.6	93.50 ± 4.8	93.56 ± 5.5	56.13 ± 7.2	89.27 ± 5.9	85.34 ± 5.4	68.43 ± 7.9	57.70 ± 7.0	44.28 ± 6.8	7.19
WPFS	94.83 ± 4.2	88.29 ± 5.2	95.96 ± 4.1	59.05 ± 8.6	89.15 ± 6.7	79.14 ± 4.4	66.89 ± 6.2	59.54 ± 6.9	55.91 ± 8.5	4.00
TabNet	77.65 ± 12.9	40.06 ± 11.3	83.60 ± 11.4	49.18 ± 9.6	65.66 ± 14.7	57.81 ± 9.9	54.57 ± 8.7	51.58 ± 9.9	39.34 ± 7.9	14.88*
TabTransformer	94.03 ± 4.7	87.67 ± 6.1	93.82 ± 4.7	52.49 ± 9.0	85.96 ± 11.5	76.81 ± 6.8	64.00 ± 9.2	56.91 ± 5.6	40.70 ± 6.9	9.62*
CAE	85.00 ± 5.0	60.36 ± 11.2	95.78 ± 3.6	57.35 ± 9.3	87.60 ± 7.8	71.94 ± 13.4	59.96 ± 10.9	52.79 ± 8.3	40.69 ± 7.3	9.31*
LassoNet	25.11 ± 9.8	26.67 ± 8.6	48.81 ± 10.8	48.88 ± 5.7	54.78 ± 10.5	30.63 ± 8.6	51.04 ± 8.5	46.08 ± 9.2	33.49 ± 7.5	16.00*
ElasticNet	95.19 ± 3.7	94.32 ± 4.8	95.98 ± 2.6	58.23 ± 9.6	91.36 ± 6.1	84.35 ± 7.3	70.36 ± 8.5	55.88 ± 5.7	50.73 ± 7.9	4.06
Random Forest	91.81 ± 6.9	80.75 ± 6.7	89.11 ± 6.5	51.38 ± 3.7	90.78 ± 7.1	82.06 ± 6.5	68.16 ± 7.5	61.30 ± 6.0	50.93 ± 8.4	6.62
LightGBM	93.42 ± 5.9	82.40 ± 6.4	94.97 ± 5.1	58.23 ± 8.5	91.38 ± 5.7	85.59 ± 6.5	65.70 ± 7.4	57.08 ± 7.8	49.11 ± 10.3	5.06
GCN	93.29 ± 4.6	76.13 ± 7.0	91.12 ± 8.6	58.28 ± 7.3	82.59 ± 12.4	71.99 ± 8.3	65.62 ± 8.0	58.31 ± 5.7	51.01 ± 8.1	7.75*
GATv2	93.33 ± 6.2	76.65 ± 11.2	86.95 ± 8.2	54.71 ± 7.1	83.23 ± 10.5	57.74 ± 14.1	66.06 ± 8.2	53.60 ± 6.8	45.45 ± 9.3	$ 11.25 \star$
GCondNet (ours)	95.34 ± 4.4	95.25 ± 4.5	96.37 ± 3.9	59.34 ± 8.9	90.37 ± 5.5	80.69 ± 5.4	68.08 ± 7.3	56.36 ± 9.4	51.69 ± 8.8	3.62

Applying GC ond Net to TabTransformer

GCondNet is a *general* framework for injecting graph-regularisation into various types of neural networks beyond an MLP

toxicity metabric-p50 metabric-dr prostate

Applying GCondNet to TabTransformer leads to consistent performance improvements by up to 14%

tcga-survival tcga-tumor

TabTransformer: Tabular data modeling using contextual embeddings. arXiv:2012.06678 (2020)

Summary

GCondNet improves neural networks by extracting the "*implicit* relationships" between samples and performing "soft parameter-sharing" to constrain the model's parameters.

Scan for PDF

Feel free to reach out am2770@cam.ac.uk

GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data

Andrei Margeloiu, Nikola Simidjievski, Pietro Lio, Mateja Jamnik

University of Cambridge, UK [am2770, ns779, pl219, mj201]@cam.ac.uk

UNIVERSITY OF

CAMBRIDGE

Overview

Motivation: Tabular datasets in medicine and bioinformatics are high-dimensional but usually small in size. Neural networks tend to overfit on such datasets, partially because they have too many degrees of freedom for such small datasets.

Question: How to reduce overfitting and improve the performance of neural networks on tabular datasets with D >> N?

Observation: Current weight initialisation methods assume independence between weights, which can be problematic when there are insufficient samples to accurately estimate the model's parame

This work: We propo task-agnostic method for im, networks training on datasets

The method is gen

GCondNet is versatile and can various models beyond just MLF applied to TabTransformer, it co improves performance by up to 1

Model: GCondNet

Key innovation: Exploit the "*implicit* relationships" between samples (in tabular data), which represent potential associations not explicitly provided in the dataset. We extract these implicit relationships using Graph Neural Networks (GNNs) and perform "soft parameter-sharing" to constrain the predictor's parameters in a principled manner.

onacomounon acouracy

We compute the balanced accuracy for each dataset over 25 runs and rank the methods across 9 datasets (smaller rank implies higher accuracy). **Our method outperforms 15 standard and modern methods**.

Dataset	lung	toxicity	metabric-p50	metabric-dr	prostate	cll	smk	tcga-survival	tcga-tumor	Avg. rank
MLP	94.20 ± 4.9	93.21 ± 6.1	94.31 ± 5.3	59.56 ± 5.5	88.76 ± 5.5	78.30 ± 8.9	64.42 ± 8.4	56.28 ± 6.7	48.19 ± 7.7	6.88*
DietNetworks	90.43 ± 6.2	82.13 ± 7.4	95.02 ± 4.7	56.98 ± 8.7	81.71 ± 11.0	68.84 ± 9.2	62.71 ± 9.3	53.62 ± 5.4	46.69 ± 7.1	$10.62 \star$
FsNet	91.75 ± 3.0	60.26 ± 8.1	83.86 ± 8.1	56.92 ± 10.1	84.74 ± 9.8	66.38 ± 9.2	56.27 ± 9.2	53.83 ± 7.9	45.94 ± 9.8	$11.75 \star$
DNP	92.83 ± 5.6	93.50 ± 6.1	93.56 ± 5.5	55.79 ± 7.0	90.25 ± 5.9	85.12 ± 5.4	66.89 ± 7.6	58.13 ± 8.2	44.71 ± 5.9	7.38
SPINN	92.26 ± 6.6	93.50 ± 4.8	93.56 ± 5.5	56.13 ± 7.2	89.27 ± 5.9	85.34 ± 5.4	68.43 ± 7.9	57.70 ± 7.0	44.28 ± 6.8	7.19
WPFS	94.83 ± 4.2	88.29 ± 5.2	95.96 ± 4.1	59.05 ± 8.6	89.15 ± 6.7	79.14 ± 4.4	66.89 ± 6.2	59.54 ± 6.9	55.91 ± 8.5	4.00
TabNet	77.65 ± 12.9	40.06 ± 11.3	83.60 ± 11.4	49.18 ± 9.6	65.66 ± 14.7	57.81 ± 9.9	54.57 ± 8.7	51.58 ± 9.9	39.34 ± 7.9	$14.88 \star$
TabTransformer	94.03 ± 4.7	87.67 ± 6.1	93.82 ± 4.7	52.49 ± 9.0	85.96 ± 11.5	76.81 ± 6.8	64.00 ± 9.2	56.91 ± 5.6	40.70 ± 6.9	9.62*
CAE	85.00 ± 5.0	60.36 ± 11.2	95.78 ± 3.6	57.35 ± 9.3	87.60 ± 7.8	71.94 ± 13.4	59.96 ± 10.9	52.79 ± 8.3	40.69 ± 7.3	$9.31 \star$
LassoNet	25.11 ± 9.8	26.67 ± 8.6	48.81 ± 10.8	48.88 ± 5.7	54.78 ± 10.5	30.63 ± 8.6	51.04 ± 8.5	46.08 ± 9.2	33.49 ± 7.5	$16.00 \star$
ElasticNet	95.19 ± 3.7	94.32 ± 4.8	95.98 ± 2.6	58.23 ± 9.6	91.36 ± 6.1	84.35 ± 7.3	70.36 ± 8.5	55.88 ± 5.7	50.73 ± 7.9	4.06
Random Forest	91.81 ± 6.9	80.75 ± 6.7	89.11 ± 6.5	51.38 ± 3.7	90.78 ± 7.1	82.06 ± 6.5	68.16 ± 7.5	61.30 ± 6.0	50.93 ± 8.4	6.62
LightGBM	93.42 ± 5.9	82.40 ± 6.4	94.97 ± 5.1	58.23 ± 8.5	91.38 ± 5.7	85.59 ± 6.5	65.70 ± 7.4	57.08 ± 7.8	49.11 ± 10.3	5.06
GCN	93.29 ± 4.6	76.13 ± 7.0	91.12 ± 8.6	58.28 ± 7.3	82.59 ± 12.4	71.99 ± 8.3	65.62 ± 8.0	58.31 ± 5.7	51.01 ± 8.1	7.75×
GATv2	93.33 ± 6.2	76.65 ± 11.2	86.95 ± 8.2	54.71 ± 7.1	83.23 ± 10.5	57.74 ± 14.1	66.06 ± 8.2	53.60 ± 6.8	45.45 ± 9.3	$11.25\star$
GCondNet (ours)	95.34 ± 4.4	95.25 ± 4.5	96.37 ± 3.9	59.34 ± 8.9	90.37 ± 5.5	80.69 ± 5.4	68.08 ± 7.3	56.36 ± 9.4	51.69 ± 8.8	3.62

What is the inductive bias?

Inductive bias: Two highly correlated features will have similar graphs embeddings, leading to similar weights in the MLP's first layer $W_{\rm MLP}^{[1]}$

