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Abstract

Long-tailed learning has garnered increasing at-
tention due to its practical significance. Among
the various approaches, the fine-tuning paradigm
has gained considerable interest with the advent
of foundation models. However, most existing
methods primarily focus on leveraging knowledge
from these models, overlooking the inherent bi-
ases introduced by the imbalanced training data
they rely on. In this paper, we examine how such
imbalances from pre-training affect long-tailed
downstream tasks. Specifically, we find the im-
balance biases inherited in foundation models on
downstream tasks as parameter imbalance and
data imbalance. During fine-tuning, we observe
that parameter imbalance plays a more critical
role, while data imbalance can be mitigated us-
ing existing re-balancing strategies. Moreover,
we find that parameter imbalance cannot be ef-
fectively addressed by current re-balancing tech-
niques, such as adjusting the logits, during train-
ing, unlike data imbalance. To tackle both im-
balances simultaneously, we build our method on
causal learning and view the incomplete semantic
factor as the confounder, which brings spurious
correlations between input samples and labels. To
resolve the negative effects of this, we propose a
novel backdoor adjustment method that learns the
true causal effect between input samples and la-
bels, rather than merely fitting the correlations in
the data. Notably, we achieve an average perfor-
mance increase of about 1.67% on each dataset.
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1. Introduction

Real-world data often follows a long-tailed distribution,
where the majority of instances are concentrated in head
classes, leaving only a small number of instances for each
tail class. This scarcity of samples makes generalization
on them challenging, and naive learning on such data tends
to introduce an undesirable bias toward dominant labels.
Recently, with the advent of foundation models, downstream
performance can be significantly improved by fine-tuning
these models on labeled data, often yielding superior results
compared to training from scratch, while also minimizing
training costs (Wang et al., 2022b;a). Consequently, there
has been considerable interest in exploring how to fine-tune
foundation models and leverage their strong generalization
capabilities to enhance learning at downstream tasks.

Recent works such as LIFT (Shi et al., 2024), LPT (Dong
etal., 2022), and VL-LTR (Tian et al., 2022) demonstrate
that properly fine-tuning foundation models like CLIP (Rad-
ford et al., 2021) can significantly enhance long-tail learning
performance. VL-LTR improves visual recognition, particu-
larly for tail classes, by collecting class descriptions from
the internet and jointly learning both visual and text repre-
sentations. LIFT, on the other hand, reveals that heavy fine-
tuning hurts and Parameter-Efficient Fine-Tuning (Chen
et al., 2022a; Jia et al., 2022) (PEFT) based methods can
preserve as much information from the foundation model as
possible, which is important for the downstream imbalanced
learning. However, these methods tend to overemphasize
the use of foundation models to solve downstream data im-
balance while overlooking their inherent biases, as shown in
Fig. 1. Large-scale datasets used to train foundation models,
such as LAION (Schuhmann et al., 2021), also follow a
long-tailed distribution, which can negatively impact down-
stream tasks (Zhu et al., 2024; Wen et al., 2024). Therefore,
fine-tuned models are influenced by dual long-tailed distri-
butions (upstream and downstream), and only considering
data imbalance is insufficient.

In this paper, we explore how the imbalance of foundation
models impacts downstream imbalanced tasks in PEFT-
based methods. Since the pre-training data is often inacces-
sible, its influence is primarily reflected in the pre-trained
weights, or parameters, which we refer to as parameter
imbalance. In contrast, downstream data is accessible and
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Figure 1. Previous methods focus on using the downstream data to
fine-tune the foundation model while ignoring that the pre-training
data has a potential influence of bias (dashed line).

directly affects the downstream task, which we define as
data imbalance. Through fine-tuning, we find that both
types of imbalance influence downstream tasks, but param-
eter imbalance plays a more significant role, as shown in
Fig. 3 and Fig. 2. In addition, we locate that samples be-
longing to the tail classes grouped by the data and parameter
imbalance at the same time are influenced extremely. Due to
the inaccessibility of pre-training data, we estimate the label
prior and extend the current Generalized Logit Adjustment
(GLA) (Zhu et al., 2024) into the training phase and named
the method GLA-Train. Unlike Logit Adjustment (Menon
et al., 2020)(LA), which effectively addresses data imbal-
ance, we find that GLA-Train cannot be used to alleviate
parameter imbalance, as shown in Tab. 3. After measuring
the quality of feature representation via K-Nearest-Neighbor
(KNN) (Cover & Hart, 1967) accuracy, we surprisingly find
that LA slightly enhances the feature representation of tail
classes with the improvement mostly coming from the clas-
sifier, as shown in Tab. 4. When the imbalance is integrated
into the parameter, it is difficult to alleviate it by solely
adjusting the logit. Therefore, we conclude that parameter
imbalance is fundamentally distinct from data imbalance,
presenting a critical challenge that cannot be effectively
addressed through re-balancing methods.

To tackle both parameter and data imbalances simultane-
ously, we build a causal structure graph and find that the
incomplete semantic factor is the confounder, encouraging
the model to learn spurious correlations between input sam-
ples and labels, thus restricting its generalization ability.
For instance, if the class “dog” belongs to the tail classes
due to parameter imbalance, the foundation model may lack
sufficient semantic information, causing it to capture only
partial features, such as the dog’s head, to represent the class.
When this model is adapted to a downstream task where
“dog” is also a tail class due to data imbalance, fine-tuning
struggles to learn the complete set of relevant semantic fea-
tures, further limiting its generalization. We denote the
dog’s head as a typical example of an incomplete semantic
factor. To inhibit the confounding effect, we adopt the back-
door criterion in causal inference to realize our backdoor
adjustment. After applying our method, we achieve a more
balanced performance over all the classes across different

downstream datasets.

Our contributions are summarized as follows:

* We address a practical challenge where both the data
used to train the foundation model and the data for
downstream tasks exhibit imbalance, referred to as pa-
rameter imbalance and data imbalance, respectively.
During fine-tuning, we observe that parameter imbal-
ance has a more significant impact than data imbalance,
and existing re-balancing methods are ineffective at
addressing it. Furthermore, attempts to mitigate pa-
rameter imbalance provide limited improvement to the
quality of representations.

* We find that the incomplete semantic factor encourages
the model to learn spurious correlations between input
samples and labels, which restricts its generalization
ability. To solve that, we construct a causal graph and
propose a backdoor adjustment method to eliminate
the confounder negative impact.

e We achieve at least 1.5%, 1.5%, 2.0% performance
gains on ImageNet-LT (Deng et al., 2009), Places365-
LT (Liu et al., 2019), and iNaturalist2018 (Van Horn
et al., 2018) compared with state-of-the-art methods.

2. Preliminary

Notation. We aim to solve a C-way classification prob-
lem with instances £ € X and labels y € Y = [C] =
{1,...,C}, where X and Y denote the input space and
output space. For pre-training, we denote Dp as the dis-
tribution of the training set and we cannot access it at the
fine-tuning phase. For downstream tasks, we denote Dg and
Dr as the distribution for training and test, respectively. In
the context of long-tailed learning, the number of samples
varies across classes, i.e., Pg(Y = 1) # Pg(Y = 2) #
... ZPs(Y = (), where Pg(Y) denotes the class prior
of Dg. In contrast, the test set 1" is sampled from the dis-
tribution Dp, where each class ¢ has an equal probability,
ie., Pp(Y =¢) =1/C. Our target is to learn a hypothesis
f: X = Ytoestimate Ps(Y =y | ) from the training
set and generalize it to the test set.

Logit adjustment (LA). Under the label shift assumption,
wehave Pg(z | Y = y) =Pr(x | Y = y) but Pg(Y =
y | ) # Pr(Y = y | @) for each class y. LA (Menon
et al., 2020) bridges the gap between the posterior of the
imbalanced training set and the balanced test set. As shown
in Eq. 1, we can get the posterior of the test set from the
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Table 1. The Zero-Shot (ZS) performance of different type of CLIPs on different benchmarks.

ImageNet-LT Places365-LT iNaturalist2018
D-Many D-Medium D-Few | D-Many D-Medium D-Few | D-Many D-Medium D-Few
CLIP 67.87 66.27 66.03 36.59 38.01 45.53 3.60 4.38 4.10
OpenCLIP | 67.15 65.02 64.31 41.40 38.06 40.28 2.45 2.80 2.38
MetaCLIP 70.98 68.70 68.57 38.79 37.93 40.44 5.07 6.37 6.00
traini t by introduci ling factor.
fAIning set by Mroducing a scaiing factor Table 2. The Average Accuracy Gap between different foundation
Pe(Y = y | 2) = Pr(z|Y = y)Pr(Y =) models on Places365-LT with ZS, CE, and LA.
’ Pr(x) f—g | 7S | CE LA
x Ps(z | Y =y)Pr(Y =y) (1) | |  Adaptformer
Pr(Y =) CLIP—OpenCLIP 1038 | 319 349
x mPs(Y =y| =) CLIP—MetaCLIP 1156 | 322 332
S OpenCLIP—MetaCLIP 12.03 3.03 3.40
There are two types of LA, either applied post-hoc to a \ \ VPT
trained model or enforced in the loss during training, and CLIP—OpenCLIP 10.38 3.6 3.94
the latter can achieve better performance. When integrating CLIP—MetaCLIP 11.56 3.42 3.87
it to the criterion, we get the final LA loss, as shown in Eq. 2, OpenCLIP—MetaCLIP 12.03 3.10 3.53
where fy(z | 0,¢) x P(Y =y | «), 0, and ¢ denote the
output logit of class y, the parameter of the foundation downstream data, respectively.
model, and the additional fine-tuned parameter, respectively. , —~
If not specified, we freeze the 8 and only optimize the ¢. fy(®) = fy(x | 8) —log Pp(Y = y)
GLA-ZS @)
Lea(f(@]0.6).y) = log 1 +fu(@ ] 6.9) ~logPs(¥ =)
GLA-FT

Ps(Y =y/)\ efv@08); (2)
> (IP’S(Y =) ) el (@]0.9) }

y'#y

Generalized logit adjustment (GLA). Since the label
prior Pp(Y = y) of the pre-training data is inaccessible
and we cannot use Eq. 1 to estimate the posterior (from
Ps(z | Y =y), Ps(Y = y), and Ps(Y = y | ) to
Pp(x | Y =9), Pp(Y = y), and Pp(Y = y | @) ).
GLA (Zhu et al., 2024) estimates the prior following the
Eq. 3 on the validation set, where Lo g denotesA the Cross-
Entropy (CE) loss. After getting the estimated Pp(Y'), we
can adjust the logit following Eq. 1.

~

Pp(Y) = min wax B, y)~p; Leg(f(z | 0) —logq,y)

= Ngi+o(1— ) @)
i i€[C]

3
GLA assumes that the Zero-Shot (ZS) and Fine-Tuned (FT)
models have diverse predicitons (Zhu et al., 2024). In this
way, we can achieve unbiased predictions by simply ensem-
bling the output logit of two models, as shown in Eq. 4,
where f(x | 0) and f(x | 6, ¢) denote the output logit
of ZS and FT, respectively. Since the adjustments of the
two models are individual, we split Eq. 4 into GLA-ZS and
GLA-FT, eliminating the bias of the foundation model and

3. The influence of parameter imbalance
3.1. Parameter imbalance is more important

We consider the problem of the pre-training data and the
downstream training data being both imbalanced. For the
parameter imbalance, we provide a formal theoretical defini-
tion in Definition 3.1. Furthermore, we offer a more detailed
explanation of the relationship between parameter imbal-
ance and data imbalance in Appendix Section A.3. Since the
Pp(Y) is not accessible, we use the estimated prior Pp(Y")
to substitute Pp(Y") for the following analysis.

Definition 3.1. Let Pp(Y’) denote the label of the pre-
training data. We have Pp(Y = 1) # Pp(Y = 2) #
... # Pp(Y = C). We use the imbalanced factor (IF)
IF = max.cjo) Pp(Y)/ min.cjc) Pp(Y) to measure the
degree of parameter imbalance.

Most previous works (Dong et al., 2022; Shi et al., 2024,
Tian et al., 2022) focus on eliminating the data bias to im-
prove the performance but ignore the parameter imbalance.
In the following, we will explore the impact of the superpo-
sition of two imbalances.

Experiment setup. We conduct experiments with ViT-
B/16 (Dosovitskiy et al., 2020) on the ImageNet-LT, the
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(a) Data and parameter imbalance on ImageNet-LT
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(b) Data and parameter imbalance on Places365-LT

Figure 2. The data and parameter imbalance on (a) ImageNet-LT and (b) Places365-LT. The class indices of the left picture are sorted
relying on the data imbalance while the right picture relies on the parameter imbalance. Curves are smoothed for better visualization.

Parameter imbalance occupies a more vital role.
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Figure 3. The performance of different groups with (a) CE and
(b) LA on the Places365-LT dataset. The three rows, from top to
bottom, represent the performance of P-Many, P-Medium, and P-
Few, respectively. The three columns, from left to right, represent
the performance of D-Many, D-Medium, and D-Few, respectively.

Places365-LT, and iNaturalist2018 datasets. To better ex-
plore the influence of pre-trained data, we select CLIP (Rad-
ford et al., 2021), OpenCLIP (Cherti et al., 2023), and Meta-
CLIP (Xu et al., 2023a) as foundation models, which are
pre-trained on WIT, LAION (Schuhmann et al., 2021), and
MetaData, respectively. Previous works (Shi et al., 2024;
Dong et al., 2022) find that we can achieve promising per-
formance by fine-tuning only a small proportion of param-
eters. Therefore, we select two typical PEFT techniques,
Adaptformer (Chen et al., 2022a) and Visual Prompt Tuning
(VPT) (Jia et al., 2022), as the basic methods. The learning
rate, number of epochs, and parameter initialization strate-
gies follows (Shi et al., 2024). Following OLTR (Liu et al.,
2019), we split the classes into three groups named “D-
Many”, “D-Medium”, and “D-Few” relying on the number
of samples. Similarly, for parameter imbalance, we split the
classes into three groups named “P-Many”, “P-Medium”,
and “P-Few” relying on Pp(Y). More details are in the
Appendix Sec. A.

Different foundation models serve different parameter
imbalance. We report the ZS performance on different
long-tailed datasets, as shown in Tab. 1. Since the imbal-
anced downstream dataset does not influence the foundation
models, it is natural that we cannot observe the data imbal-

ance, i.e., “D-Many” and “D-Few” should have a similar
performance. However, on the Places365-LT, “D-Few” is
better than “D-Many” for the CLIP model and other foun-
dation models are nearly similar. Since they all share the
architecture, the main differences come from the imbalance
pre-training data, i.e., parameter imbalance. To better mea-
sure the difference, we define Average Accuracy Gap Ag;qg,
where f, g and Acc(f, ¢) denote two arbitrary hypotheses
and the c-th class-wise accuracy of model f, respectively.

C
1
Ag;)gg = 6 Z|ACC(f7 C) - ACC(Q? C)‘

c=1

®

As shown in Tab. 2, different foundations have merely 10%
differences on the same downstream task. When we adapt
them to the downstream, the gap is decreased but still exists.

The parameter imbalance occupys. When we adapt the
foundation model to the downstream task, the fine-tuned
model is influenced by parameter and data imbalance. For
analysis, we conduct experiments with different criterions,
CE and LA, on the CLIP model. As shown in Fig. 2, CE
suffers from the data imbalance heavily although we adapt
from the foundation model, which is not influenced by it.
When changing the criterion from CE to LA, the data imbal-
ance is relieved effectively and we achieve a more balanced
performance. As for parameter imbalance, although the fine-
tuning-based method can alleviate it, the bias still exists. We
primarily give two explanations for this phenomenon. One
is that current criteria do not consider the parameter imbal-
ance explicitly. Another is that the PEFT method fixes the
parameters of the foundation model, while retaining strong
generalization capabilities, the parameter imbalance is also
preserved. As for data imbalance, only a small proportion
of parameters is influenced by it, and the re-balancing tech-
nique, i.e. LA, can easily eliminate it. Therefore, parameter
imbalance plays a more vital role than data imbalance.

Tail-Tail hurts. Parameter imbalance is a critical factor
that impedes further improvement. To analyze this, we con-
sider two types of imbalances in conjunction and divide
the validation sets into nine groups. For instance, some
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classes can be categorized as “D-Many” due to data imbal-
ance, while simultaneously classified as “P-Few” because of
parameter imbalance. As shown in Fig. 3, we observe that
classes falling into both “D-Few” and “P-Few” classes ex-
hibit the poorest performance. Moreover, when we shift the
criterion from CE to LA, we find that the performance of “P-
Few” classes within the “D-Many” group deteriorates. This
indicates that previous claims suggesting LA can alleviate
parameter imbalance do so at the expense of “P-Few” class
performance, failing to address the parameter imbalance.

3.2. Analysis of adjustment for parameter imbalance

Addressing parameter imbalance is a crucial task. Drawing
inspiration from methods used to tackle data imbalance, a
natural approach to mitigating this issue is to adjust the out-
put logits, similar to the Logit Adjustment (LA) technique.
The existing Generalized Logit Adjustment (GLA) method
addresses parameter imbalance by modifying the logits ac-
cording to the estimated label priors. Thus, in this section,
we explore whether parameter imbalance can be effectively
eliminated through the simple adjustment of output logits.

GLA fails during training. Firstly, We follow GLA to
estimate the prior of the pre-training data and then adjust the
output logit following Eq. 4. As shown in Tab. 3, we achieve
a more balanced performance and verify its effectiveness.
However, GLA achieves unbiased prediction by modeling
the parameter imbalance and data imbalance respectively,
which is more complicated. Referring to LA, which models
the adjustment into the criterion, a natural improvement is
extending GLA into training. This approach mitigates pa-
rameter bias by introducing additional unbiased parameters.
We denote this method as GLA-Train and constitute the
optimization target as shown in Eq. 2. Since the parame-
ter imbalance does not influence the classifier, we only use
Eq. 6 to learn the unbiased representation and introduce an
additional stage for classifier re-training (Kang et al., 2019).

Lara(f(@]6,),y) =log |1
Ps(Y Y )P (Y Yy ) ' efy (@10,9)
" y’z;é:y ( Ps(Y y)]P) (Y y) ) efy(z]60,9) :|

(6)
The results are presented in Tab.3. In comparison with
GLA, GLA-Train offers minimal additional benefit in ad-
dressing both parameter and data imbalance, achieving a
performance similar to that of LA, as shown in Fig.3. (More
experimental results are in the Appendix Sec. 1.2.) Since
Eq. 6 explicitly models both data and parameter imbalance,
it is important to note that only the data imbalance is effec-
tively corrected while parameter imbalance is ignored. This
indicates that parameter imbalance is fundamentally differ-
ent from data imbalance and cannot be resolved through

Table 3. Ther performance of GLA, GLA-ZS, GLA-FT, and GLA-
T based on the CLIP model. We denote GLA-T as the GLA-Train.

| Type |D-Many D-Medium D-Few Overall

GLA | 7976 7648 7412 7742
ImaceNetLT | GLAZS | 7023 6861 6890 6927
& GLA-FT| 79.67 7615 7329 77.12
GLA-T | 80.21 7593 7201 77.10

GLA | 5122 5200 5334 51.98

GLA-ZS| 4058 3957  46.63 4131
Places365-LT | 51 A FT| 50.41 5223 5218 51.56
GLA-T | 5136 5230 5091 51.48

Table 4. The KNN accuracy. We denote GLA-T as the GLA-Train.

| |D-Many D-Medium D-Few All

CE 74.61 70.02 66.14 71.25
ImageNet-LT | LA 74.42 70.35 66.43 71.36
GLA-T| 74.33 70.35 66.31 71.26
CE 44.53 46.01 4792 45.85
Places365-LT | LA 44.14 46.23 48.75 4593
GLA-T | 44.33 46.14 48.66 45.93

simple adjustment alone.

Feature representation analysis. To explore how the re-
balance influences the feature representation, we utilize the
balanced validation sets of ImageNet-LT and Places365-LT
to assess the feature quality of the test set through KNN accu-
racy. As presented in Tab. 4, we observe that all three meth-
ods yield comparable accuracy. The re-balancing-based
methods provide slight improvements for the “D-Few” and
“D-Medium” classes, but this comes at the expense of per-
formance in the “D-Many” class. This suggests that the
enhanced performance for tail classes can be attributed to a
more accurate classifier, which can be achieved by employ-
ing re-balancing techniques like Logit Adjustment (LA). We
also conduct experiments to explore the influence of classi-
fier in the Appendix Sec. 1.3. However, addressing parame-
ter imbalance—manifested in the parameters of foundation
models—proves to be more challenging. It is difficult to
mitigate the negative effects of parameter imbalance solely
through the classifier. Consequently, re-balancing methods
cannot effectively alleviate parameter imbalance.

4. Method

As previously analyzed, the parameter imbalance becomes
dominant after adapting to the downstream task, and we
cannot eliminate it solely by adjusting the logits during the
training phase. Therefore, exploring an effective method
to address both parameter imbalance and data imbalance
simultaneously is essential. In this section, instead of fo-
cusing on re-balancing methods, we analyze the issue from
a causal perspective. By identifying the latent confounder,
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CLIP
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OpenCLIP

MetaCLIP

CLIP OpenCLIP MetaCLIP

Figure 4. We randomly select three samples of different tail classes and visualize the heatmap via Grad-CAM (Selvaraju et al., 2017) with
CE and LA. Different models draw attention to different areas and merging them can acquire unbiased semantic information.

(a) Confounded (b) Deconfounded

Figure 5. The framework of our proposed method. (a) In the con-
founded setting, C' influences both X and Y, leading to the back-
door path X < C' — Y/, thereby introducing confounding bias.
(b) After intervening on X, its parent nodes C and U are severed,
eliminating the unstable backdoor path and leading to a more reli-
able estimation of the causal effect between X and Y.

we can apply the backdoor criterion to estimate its negative
impact, thereby achieving a more balanced performance
across various classes.

4.1. A causal view for long-tailed learning

We model the long-tailed image classification process with
a causal structure graph as shown in Fig. 5. Here, we denote
X, C,U, and D as an imbalanced dataset, the incomplete
semantic factor, the inaccessible semantic factor, and the
parameter imbalance, respectively. B is the data balanced
representation and Y is the predicted label distribution. In
Fig. 5, X — B denotes we extract the data balanced repre-
sentation from an imbalanced dataset. We can achieve this
by applying re-balancing based method like LA. B — Y de-
notes the inference pipeline that we predict the label relying
on the given representation. D — C' presents the incom-

plete semantic factor depending on the parameter imbalance.
From the perspective of data generation, U — X <« C
denotes the dataset can be generated by giving the acces-
sible semantic factor and inaccessible semantic factor, i.e.,
P(X)=> P(X|C,U)P(C)P(U). C — Y indicates that
the predicted label distributions follow their own preferences
for incomplete semantic factors. We also give additional
experimental evidence for C' — Y in Sec. L.9.

Therefore, the incomplete semantic factor C' in our problem
setting, acting as a confounder (Pearl, 2009), can create a
backdoor path X <— C' — Y, leading to spurious correla-
tion between X and Y. If we ignore the influence of incom-
plete semantic factor and learn the posterior Ps(Y =y | )
to estimate Pr(Y = y | «), the spurious correlation will
be modeled, which leads to a biased model. As shown in
Fig. 4, we visualize given samples on different fine-tuned
models, where the corresponding foundation models serve
different parameter imbalances, i.e. incomplete semantic
factor. For the specific picture, different models are drawn
in different interesting areas. The relationship between the
confounding path X < C' — Y is unstable. For example,
in the first row of Fig. 4, OpenCLIP is more attracted by the
head while MetaCLIP is more interested in the body of the
dog. Therefore, if a test sample belonging to this class but
the body is obscured, MetaCLIP is easier to give the wrong
prediction. We analyze that each incomplete semantic factor
can provide sufficient information to distinguish the given
class from others on the training set. However, it also indi-
cates that the incomplete semantic factor can prohibit the
model from learning other relevant information, which lim-
its its generalization. Therefore, eliminating the influence of
incomplete semantic factor is vital for imbalanced learning.
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4.2. Backdoor adjustment

A more generalized fine-tuned model should be independent
of incomplete semantic factor (i.e. parameter imbalance),
which inhibits confounding effects from C'. Therefore, in-
stead of estimating P(Y = y | &), we use backdoor criterion
and estimate P(Y = y | do(x)), where do() is exploited to
cut off the connection from the C' to X . Considering that
each sample in X uniquely corresponds to a balanced repre-
sentation in B, which indicates that the mapping between
X and B is injective. Thus there only exists a certain b such
that P(b | ) = 1 and P(b’ | ) = 0 for b # b'. Then, we
propose our backdoor adjustment:

P(Y =y |do(z)) =) > P(Y =y|b.o)P()P(b|z)
bEB ceC
=Y PY =y[bo)P(o)
ceC

(N
For simplicity, we assume P(c) = 1/M, where M is the
number of incomplete semantic factors. Intuitively, P(Y =
y | do(x)) can be estimated by fusing P(Y = y | b,¢),
where b represents the balanced representation. For dif-
ferent incomplete semantic factors {c1,ca, - ,car}, we
utilize a re-balancing method, such as Logit Adjustment
(LA), to compute a set of data balanced outputs {P(Y = y |
b,c1),P(Y =y | bca), - ,P(Y =y | byear)}. These
outputs can then be merged using fusion weights, follow-
ing Eq. 7, to obtain an unbiased estimation. Since iterating
over all possible incomplete semantic factors is impracti-
cal, we approximate these factors using models like CLIP,
OpenCLIP, and MetaCLIP, thereby addressing Eq. 7 and
simplifying the process of balancing both parameter and
data imbalances simultaneously.

5. Experiment

We conduct experiments on the ImageNet-LT, Places365-
LT, and iNaturalist2018 datasets. Most of our experimental
setup follows previous descriptions in Sec. 3.1. For a fair
comparison, we only compare our method with LiVT (Xu
et al., 2023b), LPT (Dong et al., 2022), VL-LTR (Tian et al.,
2022), RAC (Long et al., 2022), LIFT (Shi et al., 2023),
Decoder (Wang et al., 2024), GML (Suh & Seo, 2023) and
BALLAD (Ma et al., 2021), which are trained based on the
ViT (Dosovitskiy et al., 2020). If not specified, We use the
Adaptformer to fine-tune the foundation model (We also
report the results based on VPT in the Appendix). More
details are in the Appendix Sec. A.

5.1. Results

Places365-LT. The results are presented in Tab. 5, where
our method demonstrates superior overall performance com-
pared to other approaches. Specifically, in comparison to

VL-LTR, which leverages additional data for representation
learning, our method achieves an overall performance im-
provement of 2.91%. It is worth noting that while VL-LTR
achieves the highest performance in the “D-Many” group,
this comes at the cost of reduced performance in the “D-
Medium” and “D-Few” groups. In contrast, our method
delivers consistently higher and more balanced performance
across all groups, indicating its effectiveness in addressing
long-tailed distributions.

ImageNet-LT. The results in Tab. 6 demonstrate that our
method consistently improves performance across all cate-
gories. Specifically, our approach provides gains of 2.01%,
2.65%, and 3.49% for the “D-Many”, “D-Medium”, and
“D-Few” classes, respectively, compared to LIFT. Notably,
the largest improvements are observed in the tail classes,
underscoring the significance of our backdoor adjustment
technique in addressing challenges faced by these underrep-
resented classes.

iNaturalist2018. The results presented in Tab. 7 demon-
strate that our method surpasses several baseline approaches,
achieving an overall performance improvement of 1.91%
compared to RAC, a method that leverages additional data
for training. This performance gain is particularly note-
worthy considering the scale of the iNaturalist2018 dataset,
which comprises 8,142 distinct classes. The complexity of
large-scale classification tasks often introduces significant
challenges due to the vast number of classes and the inher-
ent class imbalance. Despite these obstacles, our method
proves to be highly effective, outperforming competitors
even without the need for extra training data.

5.2. Ablation study

The influence of incomplete semantic factor The most
critical hyperparameter in our backdoor adjustment method
is the number of incomplete semantic factors, denoted as M.
In our experiments, we set M = 3, utilizing the incomplete
semantic factors from CLIP, OpenCLIP, and MetaCLIP to
obtain the final prediction score. To further investigate the
impact of M on performance, we conducted experiments
shown in Tab. 8. As the number of incomplete semantic
factors increases, our backdoor adjustment demonstrates
improved performance. For instance, M = 3 outperforms
M = 1, with OpenCLIP showing improvements of 2.27%,
2.58%, and 3.29% on the “D-Many,” “D-Medium”, and
“D-Few” on the ImageNet-LT dataset, respectively. Notably,
the most significant improvement was observed in the “D-
Few” classes, where the tail classes benefit greatly from a
more balanced prediction due to the diverse range of incom-
plete semantic factors used. This implies that our method
is effective at improving the performance on long-tailed
distributions, where the tail classes usually suffer from inad-
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Table 5. Results on Places365-LT.

Method | Backbone | Extradata | Params. | Epochs | D-Many D-Medium D-Few  All
LiVT (Xu et al., 2023b) ViT-B/16 X 85.80M 100 48.1 40.6 27.5 40.8
LPT (Dong et al., 2022) ViT-B/16 X 1.01M 80 493 52.3 46.9 50.1
VL-LTR (Tian et al., 2022) | ViT-B/16 v 149.62M 100 54.2 48.5 42.0 50.1
RAC (Long et al., 2022) ViT-B/16 v 85.80M 30 48.7 48.3 41.8 47.2
BALLAD (Maetal., 2021) | ViT-B/16 v 149.62M 60 493 50.2 48.4 49.5
Decoder (Wang et al., 2024) | ViT-B/16 X 21.26 34 - - - 46.8
LIFT (Shi et al., 2024) ViT-B/16 4 0.18M 10 51.3 522 50.5 51.5
Ours | VIT-B/16 | b 4 | 054M | 10 | 5252 53.62 52.54 53.01
Table 6. Results on ImageNet-LT Table 8. The ablation study with the number of semantic factors M.
Open and Meta denote the OpenCLIP and MetaCLIP, respectively.
Method | Epochs | D-Many D-Medium D-Few — All
- ImageNet-LT
LiVT 100 73.6 56.4 41.0 609 -
VL-LTR 100 84.5 74.6 503 772 CLIP | Open | Meta | D-Many D-Medium D-Few
BALLAD 60 79.1 74.5 69.8  75.7 v 80.25 76.05 71.53
Decoder 18 - - - 732 M=1 4 79.94 76.17 71.70
GML 100 - - - 78.0 4 80.45 77.06 72.64
LIFT 10 0.2 76.1 71. 77.0
8 > v v 81.65 77.99 73.91
Ours | 10 | 8221 7875 7499 79.57 M=2| v v | 8186 7826 7433
4 v 81.64 78.02 74.08
Table 7. Results on iNaturalist2018 M=3 ‘ 4 ‘ V4 ‘ 4 ‘ 82.21 78.75 74.99

Method | Epochs | D-Many D-Medium D-Few  All

LiVT 100 78.9 76.5 74.8  76.1
LPT 160 - - 79.3  76.1
VL-LTR 100 - - - 76.8
RAC 20 75.9 80.5 81.1 80.2
Decoder 5 - - - 59.2
LIFT 20 72.4 79.0 81.1 79.1
Ours \ 20 \ 82.30 81.67 82.36 82.01

equate training samples and biased parameter distributions.

Backdoor adjustment re-
lieves the parameter im-
balance. To verify that our
method effectively alleviates
parameter imbalance, we re-
port the performance results
in Fig. 6, using the di-
vision principles that align
with the parameter imbal-
ance of CLIP. When com-
pared with zero-shot (ZS)
and cross-entropy (CE) base-
lines in Fig. 3, our back-
door adjustment achieves an
overall improvement across
all groups. For instance,
in the “P-Few” group, our
method provides performance
gains of 1.32%, 1.42%, and

L3710 4129 3262 -

P-Few P-Medium P-Many

D-Many D-Medium D-Few

Figure 6. The performance
of different groups with
our method on Places365-
LT. After applying our
method, samples belong-
ing to both "P-Few” and
”D-Few” exhibit significant
performance gains, verify-
ing the effectiveness of our
method.

1.50% over Logit Adjustment (LA) in the “D-Many”, “D-
Medium”, and “D-Few” groups, respectively. These results
demonstrate that our method effectively enhances the perfor-
mance of tail classes while maintaining or improving the per-
formance of head classes, showcasing its ability to balance
performance across the board without negative trade-offs.

6. Related work

Long-tailed learning. Previous methods primarily focus
on re-balancing tail classes, employing techniques such as
re-weighting (Cui et al., 2019) or re-sampling (Ren et al.,
2020; Guo & Wang, 2021; Kim et al., 2020). The fundamen-
tal concept behind these methods is to place greater empha-
sis on tail classes to alleviate the effects of imbalanced bias.
For instance, in (Cui et al., 2019), different classes are as-
signed a weight based on the effective number of samples in
the final loss function. Similarly, Logit adjustment (Menon
et al., 2020) re-balances tail classes by adjusting the out-
put logits according to the prior for each class. Recently,
foundation models, which are pre-trained on vast amounts
of curated data, have demonstrated their utility in produc-
ing generalizable features transferable across various tasks.
Several approaches have integrated foundation models to
address long-tailed learning (Dong et al., 2022; Shi et al.,
2024; Tian et al., 2022; Ma et al., 2021). However, these
methods typically only consider the data distribution bias
in downstream tasks, overlooking the inherent imbalance
within foundation models themselves (Zhu et al., 2024).
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In this work, we investigate the compound effects of both
pre-trained and downstream imbalances, and we propose a
simple approach to mitigate these effects.

Downstream fine-tuning. Fine-tuning techniques can be
broadly categorized into full fine-tuning and Parameter-
Efficient Fine-Tuning (PEFT) (Jia et al., 2022; Chen et al.,
2022a; Zaken et al., 2021; Houlsby et al., 2019; Hu et al.,
2021). PEFT refers to methods that adapt pre-trained models
to specific tasks while minimizing the number of parame-
ters that require updating. When data samples are limited,
PEFT often outperforms full fine-tuning. Visual Prompt
Tuning (VPT) (Jia et al., 2022) introduces two variants,
VPT-Shallow and VPT-Deep, which insert prompts into dif-
ferent transformer layers. In contrast, AdaptFormer (Chen
et al., 2022a) introduces lightweight modules that add only a
small number of parameters, yet outperform fully fine-tuned
models on various benchmarks. Despite their efficiency,
PEFT methods focus on introducing fewer parameters while
preserving the foundational model’s information. However,
this also retains the model’s inherent limitations, such as
imbalances. In this work, we provide an in-depth analysis
of how the biases of foundation models impact downstream
tasks and propose a novel method to solve the problem.

7. Conclusion

In this paper, we analyze how foundation model bias affects
downstream imbalanced tasks, formally defining parameter
and data imbalance to guide our study. While fine-tuning
effectively addresses data imbalance, parameter imbalance
persists, limiting performance. We find that re-balancing
methods offer little benefit to feature representation. To
tackle this, we construct a causal structure graph, identify-
ing incomplete semantic factors from parameter imbalance
as key confounders, and propose a backdoor adjustment
method to mitigate their impact. Experimental results ver-
ify the effectiveness of our method. In future work, we
extend our method to other tasks, such as object detection
and segmentation under long-tailed distributions.
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A. Dataset and experimental setup
A.1. Dataset introduction

ImageNet-LT ImageNet-LT (Liu et al., 2019) is a subset of the ImageNet (Deng et al., 2009) dataset, designed to address
the challenges of long-tailed distributions. It contains a total of 118.5K images, with the number of samples per class varying
significantly—from 1280 samples for the most represented class to just 5 for the least represented class. The distribution of
samples per class is determined by a down-sampled Pareto distribution, emphasizing the disparity in class representation.

Places365-LT Places365-LT (Liu et al., 2019) is derived from the Places-2 dataset and consists of 62.5K images spread
across 365 categories. This dataset exhibits a more pronounced imbalance compared to ImageNet-LT. In Places365-LT, the
largest class contains 4980 images, while the smallest class is represented by only 5 images, resulting in an imbalance factor
(IF) of 996.

iNaturalist2018 The iNaturalist2018 dataset (Van Horn et al., 2018) is focused on natural biological images and presents a
significant challenge due to its heavily imbalanced distribution. It encompasses 437.5K images across 8142 classes, making
it one of the largest datasets in terms of class diversity. Additionally, iNaturalist2018 poses a fine-grained classification
challenge, as it requires distinguishing between similar species and categories, adding another layer of complexity to the
classification task.

A.2. Experimental setup

We present the details about the hyper-parameters of our experiments on different datasets in Tab. 9, where Ir, epochs denote
the initial learning rate and training epochs, respectively. We denote batch_size in Tab. 9 as the training batch size during the
fine-tuning phase.

For training resources, all experiments are conducted on Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz with a single RTX
A40 GPU. Normally, a GPU with 24GB of memory is sufficient for the reproduction.

Table 9. Hyper-parameters used in our experiments on different datasets.

Dataset ‘ Lr ‘ Epochs ‘ Batch_size
Places365-LT | 001 | 10 | 128
ImageNet-LT | 001 | 10 | 128
iNaturalist2018 | 0.01 | 20 | 128

A.3. Parameter imbalance and Data imbalance

Previous methods have effectively addressed data imbalance by providing a clear definition of the issue. Following the
approach of OLTR (Liu et al., 2019), we categorize the classes into three groups: “D-Many”, “D-Medium”, and “D-Few”.
Specifically, classes with more than 100 training samples are classified as “D-Many”, those with 20—100 samples are
categorized as “D-Medium”, and classes with fewer than 20 samples fall into the “D-Few” group. This categorization allows
for a systematic examination of the impact of data imbalance across varying levels of sample availability.

To address parameter imbalance, where access to pre-training data is unavailable, we adopt the estimation method provided
by GLA (Zhu et al., 2024) (Eq. 3) to estimate the label prior. Using this estimation, we divide the classes uniformly into
three groups: the top 30% of classes based on the label prior are designated as “P-Many”, the next 30-60% as “P-Medium”,
and the remaining 40% as “P-Few”. This approach provides a structured way to assess parameter imbalance across different
subsets of classes.

By applying these criteria, any given dataset can be simultaneously split based on both parameter imbalance and data
imbalance. Importantly, a single class can belong to multiple groups across the two categorizations; for instance, a class
may be grouped as “P-Many” while also being classified as “D-Few”. This dual categorization facilitates a more nuanced
analysis of the interplay between parameter and data imbalance.
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B. Detailed discussions on incomplete semantic factors

We first provide the definition of confounders in the causal framework: When a third variable Z influences both X and
Y, we say that X and Y are confounded. Such a variable Z is referred to as a confounder of X and Y (Pearl, 2009).
Specifically, it satisfies the fork structure X <— Z — Y. This latent common cause Z can create a spurious correlation
between X and Y, making the observed statistical relationship P(Y'| X') potentially misleading. To address this, the causal
relationship P(Y|do(X)) is used as a replacement for the correlation P(Y'|X).

Secondly, we explain why the incomplete semantic factor C' in our problem setting can create a backdoor path X <— C' — Y,
leading to a spurious correlation. The example in the first row in Fig.4 explains why the parameter-imbalanced model D
leads to an incomplete semantic factor C'. For example, the semantic factor available to OpenCLIP is in the head of the
object, while the semantic factor available to MetaCLIP is in the body of the object.

We emphasize that the semantic factors obtained due to model imbalance are incomplete. Therefore, for rigor, we have
modified the causal diagram in Fig. 5 to include the inaccessible semantic factor U. From the perspective of data generation,
C and U together constitute X, thus X < C holds. On the other hand, the path C' — Y indicates that the predicted label
distributions follow their own parameter imbalance. A parameter-imbalanced model, OpenCLIP, consistently predicts a
“head of the object” label distribution (i.e., making more accurate predictions on test samples where the head of the object is
not occluded), regardless of the test distributions. Similarly, the parameter-imbalanced model MetaCLIP exhibits a distinct
“body of the object” preference across different test distributions.

The relationship between the confounding path X < C' — Y is unstable. When the training set model predicts the label
with the help of the body semantics of the object, if the body of a sample of a certain class in the test example is occluded,
the model will give an incorrect prediction. From this example, it can be seen that an ideal model needs to learn the causal
relationship P(Y |do(X)) between the input and the label, rather than fitting the unstable confounding path X <~ C' — Y,
in order to achieve generalization between different distributions.

C. Discussion of other causal-based methods in long-tailed learning

Research has explored the application of causal theory to long-tailed learning (Tang et al., 2020; Zhu et al., 2022). In this
section, we briefly compare our method with previous approaches.

In (Tang et al., 2020), the authors analyze SGD momentum as a confounder and use backdoor adjustment to mitigate
its influence. In contrast, we identify incomplete semantic factors as confounders and disentangle their impact. The key
differences are as follows:

* Motivation: Our method investigates how foundation model biases influence imbalanced downstream tasks. In (Tang
et al., 2020), the focus is on how SGD momentum affects long-tailed learning.

» Confounder: We treat incomplete semantic factors as the confounder, whereas (Tang et al., 2020) identifies momentum
as the confounder. This distinction leads to different causal graphs.

* Method: We compute P(Y |do(X)) by leveraging diverse scenarios and methods. In (Tang et al., 2020), the imbalance
is viewed as causing momentum bias, and P(Y |z, m) is computed through de-confounded training to address this. In
contrast, our approach focuses on incomplete semantic factors, computing P(Y'|b, ¢) by utilizing different foundation
models to capture varied semantic information, ensuring the model’s inference is not constrained by incomplete
semantics.

In (Zhu et al., 2022), the authors propose XERM, which aims to ensure that imbalanced learning methods perform well on
both imbalanced and balanced test distributions. They consider the selected domain as the confounder, while we focus on
incomplete semantic factors. The differences are as follows:

¢ Motivation: Our method examines how foundation model biases affect imbalanced downstream tasks. In (Zhu et al.,
2022), the authors analyze the influence of different domains under imbalanced distributions.

* Confounder: We treat incomplete semantic factors as the confounder, while (Zhu et al., 2022) identifies the selected
domain as the confounder. This leads to distinct causal graphs.
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* Method: We compute P(Y |do(X)) using diverse approaches. In (Zhu et al., 2022), the selected domain is addressed by
computing P(Y |z, s) through de-confounded training. In contrast, we focus on incomplete semantic factors, computing
P(Y|b, ¢) by leveraging different foundation models to capture richer semantic information, ensuring robust inference
unaffected by incomplete semantics.

D. Discussion with Invariant Risk Minimization (IRM)

Invariant Risk Minimization (IRM) aims to enhance out-of-distribution generalization by identifying and optimizing invariant
features, thereby reducing bias in deep learning models (Arjovsky et al., 2019; Lin et al., 2022; Deng et al., 2023). In linear
systems, IRM has strong theoretical guarantees and a clear connection to causal theory. Building upon IRM, numerous
variants have emerged (Ahuja et al., 2020; Krueger et al., 2021; Robey et al., 2021; Ahuja et al., 2021), aiming to address
some of IRM’s challenges, such as its failure in nonlinear tasks (Rosenfeld et al., 2020), the requirement for extensive
domain information (Lin et al., 2022), and optimization difficulties in deep neural networks (Chen et al., 2022b).

While IRM aims to identify and optimize invariant features across domains to reduce bias, our method leverages a causal
learning framework that identifies and mitigates biases introduced by spurious correlations, which are induced by the
backdoor path. Rather than assuming the existence of invariant features, we treat the incomplete semantic factor as a
confounder and apply a backdoor adjustment method to learn the true causal effect, offering a more flexible solution to both
parameter and data imbalance.

E. Discussion on parameter imbalance of LLM

We also believe that current LLMs suffer from parameter imbalance. We analyze this issue from two perspectives, the
influence of parameter imbalance without fine-tuning and with fine-tuning under downstream data:

Without Fine-Tuning Since LLMs are trained on diverse corpora, some domains (e.g., news articles, Wikipedia, and
general web content) dominate the pre-training process. As a result, the model parameters may encode more precise
representations of frequent patterns while underrepresenting rare or specialized knowledge. This imbalance becomes
apparent when applying LLMs to highly domain-specific tasks, such as specialized scientific research or low-resource
languages, where the model struggles due to insufficient parameter representation.

Fine-tuning When we use LLMs for customized tasks, such as role-playing or simulating a specific individual’s tone and
manner of speaking, parameter imbalance can also have a significant impact. Since pre-training data is often biased toward
general linguistic patterns found in publicly available texts, the model may struggle to accurately capture and reproduce
highly personalized or domain-specific speech styles. For example, if an LLM is fine-tuned to simulate the conversational
style of a historical figure or a niche expert, but the pre-training corpus contains limited examples of their actual speech
patterns, the model may default to generic language structures instead of faithfully mimicking the target style. Even with
sufficient fine-tuning data, the model’s prior knowledge—encoded in the pre-trained parameters—can cause it to retain
biases from its original training distribution, making it difficult to fully adapt to the new task.

F. Overall inference pipeline

During the fine-tuning phase, our method can be decomposed into two stages. In the first stage, we apply logit adjustment
to fine-tune various foundation models (CLIP, OpenCLIP, and MetaCLIP), addressing the data imbalance present in the
downstream dataset. In the second stage, we input each test sample into the fine-tuned models, obtaining output logits
without additional fine-tuning. As described in Eq. 7, we then ensemble these logits using the importance weight P(c) to
correct for parameter imbalance, ultimately producing the final prediction score.

G. The selection of foundation model

As shown in Fig. 5, the path D — C represents the incomplete semantic factor that arises due to parameter imbalance,
stemming from the imbalance in the pre-training data of the foundation model. Consequently, we have chosen CLIP,
OpenCLIP, and MetaCLIP because they are pre-trained on distinct datasets, resulting in varying degrees of parameter
imbalance and differing incomplete semantic factors.
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In causal theory, Eq. 7 should cover the value space of C as fully as possible for accurate causal effect estimation. Since C
has infinite values, we approximate it finitely, with broader coverage improving estimation accuracy. In this way, model
selection should take into account the path D — C. If two foundation models are trained on similar pre-training datasets,
only one should be selected, as choosing both would not significantly increase the coverage of the value space of C.

H. Introduction to the ViT and PEFT

H.1. Vision Transformer

The Vision Transformer (ViT) is a deep learning model designed to process image data by leveraging the architecture of
transformers, originally developed for natural language processing tasks. Unlike traditional convolutional neural networks
(CNNGs), which rely on convolutional layers to capture spatial relationships in images, ViT treats an image as a sequence of
patches. Each image is divided into fixed-size patches, and these patches are embedded and processed as tokens, similar
to words in a sentence. Through self-attention mechanisms, ViT captures global dependencies between patches, allowing
it to effectively model long-range relationships within images. ViT has demonstrated strong performance in a variety of
computer vision tasks, often surpassing CNNGs, particularly as the availability of large-scale image datasets has grown.

For a pre-trained Vision Transformer (ViT) composed of N blocks, denoted as B = {Bj, Bs, ..., By}, each input

image x; is divided into m patches, resulting in patch embeddings EZ.(O) = {6501) , 65?2) s ee eEU,L} Together with the

classification token (CLS), these patch embeddings are passed through the ViT backbone, producing an output embedding
{CLS(N) el e e 1.

,1 9 79,2 0t Fem

Each block consists of a multi-head self-attention mechanism followed by a feed-forward layer, both of which incorporate

layer normalization and a residual connection. In the self-attention layer, the patch embeddings and the class token

)

are updated based on the similarity matrix, as shown in Eq. 8. Here, QE"_D, Kfn_l , and Vi(n_l) are derived from

[CLSE"_D, Ei(n_l)] and are input to different linear transformations within block B,,, where d represents the feature
dimension. The self-attention layer updates the tokens based on the values in the self-attention matrix.

Q" TR 5
Vi ®)
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, Ei("_l)] from the multi-head self-attention layer are then

—— (n—1)

[CLS; ,Ei(n_l)] = softmax((

—— (n—1
where d is the feature dimension. The resulting tokens [CLSZ(- )

passed into the feed-forward layer, producing the output [CLSE”), E »(")] of block B,,.

?

H.2. Adaptformer

AdaptFormer is a lightweight adaptation framework designed to enhance the efficiency and flexibility of large pre-trained
vision transformers (ViTs) in downstream tasks. By introducing a low-rank adaptation (LoRA) module within the feed-
forward layers of the transformer, AdaptFormer allows for the modification of the model’s capabilities without requiring
a full re-training of all parameters. This approach preserves the pre-trained knowledge in the original transformer while
enabling it to adapt effectively to new tasks with minimal additional parameters. As a result, AdaptFormer achieves strong
performance in transfer learning tasks, providing a balance between computational efficiency and task-specific adaptability.

Let X be the input to the feed-forward layer, and the original weight matrix of the layer be W € R%*? In AdaptFormer, an
additional low-rank module is added as a modification. This is represented by two matrices, A € R%*" and B € R"*¢,
where r < d represents the low-rank dimension. The output of the modified feed-forward layer is given by:

Y = WX +a(AB)X ©)

Here, « is a scaling factor that controls the influence of the low-rank adaptation. The term A B represents the low-rank
adaptation added to the original weight transformation, allowing the model to adapt with a minimal number of additional
parameters.

H.3. Visual Prompt Tuning

Visual Prompt Tuning is an innovative approach designed to adapt pre-trained vision models for specific tasks by utilizing
learnable visual prompts. Instead of fine-tuning all the parameters of a large vision model, this method introduces a small set
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Table 10. The ablation study with the different number of semantic factors of M for VPT.

ImageNet-LT Places365-LT
CLIP | OpenCLIP | MetaCLIP | D-Many D-Medium D-Few | D-Many D-Medium D-Few
v 78.63 75.42 71.25 | 50.70 51.72 49.07
M=1 v 78.62 75.40 7091 | 51.45 51.53 50.68
v 79.86 76.47 72.19 | 50.91 52.06 49.86
(4 v 80.42 77.17 73.19 | 51.80 52.66 51.33
M=2| ¢ v 80.75 77.96 73.54 | 51.55 53.20 50.82
v v 80.54 77.52 73.41 | 51.89 53.09 51.22
v ‘ v ‘ 81.09 78.37 74.16 ‘ 51.97 53.26 51.34
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(a) Places365-LT (b) Consistency (c) Reverse (d) Balance

Figure 7. We constitute different parameter imbalanced datasets (a) the original Places365-LT, (b) the data imbalance and parameter
imbalance are consistent, (c) the data imbalance zgld parameter imbalance are reversed, and (d) the downstream dataset is balanced. Each
dot in the figure represent the pair (Ps(Y = y), Pp(Y = y)).

of visual prompts that can be learned during the adaptation process. These prompts are essentially additional visual tokens
that are concatenated to the input image embeddings, guiding the model to focus on relevant features for the target task.
This approach significantly reduces the computational burden associated with full model fine-tuning while retaining the rich
representations learned from extensive pre-training. By leveraging visual prompts, practitioners can achieve competitive
performance in various computer vision applications, such as image classification and object detection, with minimal
adjustments to the model architecture.

The process of Visual Prompt Tuning can be represented mathematically by introducing a set of learnable visual prompts
into the embedding space of a pre-trained vision model. Let P = {P() ...  P(N)1 where P(™) € R'*4 is the prompts
of the n-th block., where [ is the number of prompts. The visual prompt tuning process can be described by the following
equation:

cLs™, E™ = B, (cLs!" Y, pt»-1 gnb) (10)
This concatenated representation is then fed into the transformer architecture of the vision model to adapt it for specific

downstream tasks. The learnable visual prompts P are updated during the tuning process to optimize task performance
while keeping the original model parameters fixed.

I. Additional exerpiments
I.1. The performance for visual prompt tuning

We also conduct experiments using different PEFT-based methods, such as Visual Prompt Tuning (VPT), with the results
shown in Tab. 10. A similar phenomenon is observed with Adaptorformer for fine-tuning the foundation model. For instance,
when M = 3 outperforms M = 1, OpenCLIP demonstrates improvements of 2.38%, 2.97%, and 3.25% on the “D-Many”,
“D-Medium”, and “D-Few” groups of the ImageNet dataset, respectively. These experiments further indicate that our method
generalizes well to different types of PEFT-based methods.
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Table 11. Ther performance of GLA, GLA-ZS, GLA-FT, and GLA-Train based on the CLIP model.

| Type | D-Many  D-Medium  D-Few | P-Many  P-Medium  P-Few | Overall

GLA 79.76 76.48 74.12 88.34 78.58 65.30 77.42

ImaceNet LT GLA-ZS 70.23 68.61 68.90 83.63 70.36 53.79 69.27
ageet- GLA-FT 79.67 76.15 73.29 88.07 77.92 65.32 77.12

GLA-Train 80.21 75.93 72.01 88.05 77.93 65.32 77.10

GLA 51.22 52.00 53.34 69.07 50.70 35.87 51.98

Places365.LT GLA-ZS 40.58 39.57 46.63 61.33 39.69 22.56 41.31
aces GLA-FT 50.41 52.23 52.18 67.71 49.57 37.15 51.56

GLA-Train 51.36 52.30 50.91 67.70 49.58 37.17 51.48

Table 12. The results of decoupling training and LA on ImageNet-LT dataset.

| D-Many D-Medium D-Few  All

LA 80.25 76.05 71.53  77.06
Decoupling 80.30 75.90 70.4 76.80

I.2. More experimental results for GLA

In Tab.3, we present the results of GLA, GLA-ZS, GLA-FT, and GLA-Train on ImageNet-LT and Places365-LT, focusing on
performance influenced by data imbalance due to space constraints. Additionally, in Tab.11, we provide results highlighting
the performance under parameter imbalance.

1.3. The influence of classifiers

Decoupling training (Kang et al., 2019) has demonstrated its effectiveness under long-tailed distributions, suggesting that a
generalizable representation can be learned without re-balancing. However, this conclusion is largely based on experiments
using CNN architectures trained from scratch, and its influence on fine-tuning-based methods remains unclear. To explore
this, we conducted experiments following a similar pipeline, where the backbone is fine-tuned using Cross Entropy (CE)
while the classifier is trained with Logit Adjustment (LA). As shown in Tab. 12, decoupling training achieves a performance
similar to LA. Combined with previous findings, we observe that LA primarily alleviates data imbalance by driving a more
balanced classifier, though it offers limited improvement in the representation of tail classes.

1.4. The influence of data imbalance alone

In our paper, we address both data imbalance and parameter imbalance simultaneously, with analyses primarily based on
commonly used datasets. To better understand the impact of parameter imbalance, we consider the following scenarios:
(1) Consistency: The data imbalance and parameter imbalance are consistent, where the head classes grouped by the data
imbalance are also the head classes grouped by the parameter imbalance. (2) Reverse: The data imbalance and parameter
imbalance are reversed, where the head classes grouped by the data imbalance are the tail classes grouped by the parameter
imbalance. (3)Balance: The downstream data is balanced. To simulate these scenarios, we construct additional imbalanced
datasets by downsampling the Places365 dataset, as illustrated in Fig. 7. We evaluate performance using the Places365-LT
balanced test set. To reduce the influence of randomness, we create three datasets for each scenario and report the average
performance across them.

The results, shown in Tab. 13, indicate that when the downstream data is balanced, the model achieves the best performance,
as this setup aligns most closely with the distribution of the downstream task. Interestingly, the Reverse scenario outperforms

Table 13. The results of Uniform, Resverse, and Balance.

Balance Uniform Reverse
53.63 50.80 51.2
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Table 14. The imbalanced factor of parameter imbalance of different foundation models on Places365-LT.

| CLIP  OpenCLIP  MetaCLIP
IF | 57.50 6325 60.20

OpenCLIP 0.7177 0.6689 0.3032 0.2932

MetaCLIP 0.2634 0.2432 0.7180 0.7090

Figure 8. Prediction scores of fine-tuned OpenCLIP and MetaCLIP. OpenCLIP is more confident about the sample if the head is exposed
(C' = 0), while MetaCLIP is more sensitive to the body (C' = 1).

the Consistency scenario. In the Reverse setting, the tail classes (in terms of parameter imbalance) can be viewed as head
classes (in terms of data imbalance), suggesting that parameter imbalance can be mitigated by increasing the number of
training samples for tail classes. However, in real-world applications, collecting sufficient data for tail classes is often
challenging, and simply adding more data is not a practical solution to this issue.

1.5. Discussion

Our method tackles the parameter imbalance in PEFT under long-tailed distributions, providing a balanced solution that
improves both model performance and fairness. As shown in Tab. 15, increasing M allows for the identification of
more incomplete semantic factors, enhancing the model’s ability to address these confounding elements. However, this
improvement comes with substantially higher computational costs, underscoring the importance of optimizing M to balance
performance gains and efficiency, particularly in resource-constrained scenarios.

I.6. Intrepreting the confounder

In this section, we conduct experiments to investigate why the incomplete semantic factor acts as a confounder in the causal
graph. As illustrated in the first row of Fig. 4, the fine-tuned OpenCLIP model predominantly focuses on the head, whereas
MetaCLIP primarily focuses on the body. We define C' = 0 to represent the head and C' = 1 to represent the body for this
particular class.

To assess the influence of the incomplete semantic factor, we randomly select samples from this class and examine the
prediction results of OpenCLIP and MetaCLIP. As shown in Fig. 8, when the dog’s head is occluded, OpenCLIP tends to
produce lower-confidence predictions. Conversely, when the body is occluded and the head remains visible, OpenCLIP
is more likely to provide higher-confidence predictions. Since both models are fine-tuned using the same principle, the
observed differences in predictions can be attributed to incomplete semantic factors, thereby supporting our hypothesis.

Table 15. Computation costs.

| FLOPs
M =1 | 23906
M =2 | 47813
M=3|717.19
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Table 16. Differences between P(Y | X) and P(Y | do(X)). Imagel, Image2, Image3, and Image4 denote the image in Fig. 8 from left
to right, respectively.

‘Imagel Image2 Image3 Image4

do(X)) | 05614 0.5443  0.5837 0.5742
| X) 0.5431 0.2221 0.2210 0.1031

—— fine-tune

scratch

|

0 250 500 750
Class index

Accuracy
(SN
S

Figure 9. The comparison between fine-tuned model and training from scratch.

To show the existence of confounding bias directly, we measure differences between P(Y | X) and P(Y | do(X)). As
shown in Tab. 16, there is a significant difference between P(Y" | X') and P(Y | do(X), which also verifies the existence of
confounding bias.

L.7. More experimentsParameter imbalance

In addition, to better support our point, we train a model from scratch on ImageNet-LT with ResNet-50. Since the parameter
of ResNet-50 (He et al., 2016) is randomly initialized, the trained model is only influenced by the data imbalance. After

etting the model, we calculate the accuracy of each class and sort them relying on the estimated pre-training data label prior
Pp(Y). Since the parameter imbalance does not influence the trained model, the performance curve after sorting should not
present a downward trend. As shown in Fig. 8, the result verifies our point. Therefore, in this comparison experiment, the
downward trend in the right image in Fig. 2 is attributed to the imbalance of pre-training data, which can also verify the
impact of parameter imbalance.

L.8. Visualization of our backdoor adjustment

As illustrated in Fig. 10, we present heatmaps generated after applying our backdoor adjustment, showcasing the effectiveness
of our method in mitigating the influence of incomplete semantic factors. By addressing these confounders, our method
enhances focus on the entire object rather than isolated parts.

In the first row, OpenCLIP primarily concentrates on the head, while MetaCLIP shifts its attention to the body. In contrast,
our method successfully integrates both the head and body, yielding a more holistic understanding of the object. Similarly,
in the second row, our method expands its focus to include the head, wings, and tail, offering a more comprehensive
representation of the object. Finally, in the last row, our method effectively captures the entire structure of the truck,
demonstrating its robustness and adaptability to diverse objects and scenarios.

L.9. Experimental evidence for C' — Y

In this section, we will verify the existence of C' — Y in experiments. We constructed a dataset consisting of six classes:
“airplane”, “automobile”, “bird”, “cat”, “dog”, and “truck”. For each class, we define distinct incomplete semantic factors,

b}

as shown in Tab. 17, where C denotes the incomplete semantic factor:

For example, the term “airplane head” refers to the front part of the aircraft, including the cockpit, while “airplane tail”
represents the rear section, including the winglets. To construct the dataset, we used Stable Diffusion (Rombach et al., 2022)
by providing prompts in the format: “a photo of a {class name}’s {head or tail}”. For instance, to generate samples for the
airplane class, we used the prompts “a photo of an airplane’s head” and “a photo of an airplane’s tail”, respectively, ensuring
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Sample Ours CLIP OpenCLIP  MetaCLIP

Figure 10. The comparison of our method with other fine-tuning based methods.

Table 17. The six classes and their corresponding incomplete semantic factors.

airplane airplane head airplane tail
automobile | automobile head automobile tail
bird bird head bird body
cat cat head cat body
dog dog head dog body
truck truck head truck tail

sufficient samples for each semantic factor. We also visualize some samples in Fig. 11.

The training dataset is created under the following conditions: bluel) For each incomplete semantic factor, 50 samples are
generated. This dataset is referred to as Ayyqin- 2) For C' = 0, 90 samples are generated, and for C' = 1, 10 samples are
generated. This dataset is referred to as Byyqin.

For evaluation, the test dataset is constructed under the following conditions: 1) For each incomplete semantic factor, 50
samples are generated. This dataset is referred to as A;.s;. 2) For C' = 0, 90 samples are generated, and for C' = 1, 10
samples are generated. This dataset is referred to as Bycg:.

We use ResNet-32 (He et al., 2016) as the backbone and train it from scratch on Ayyq;p, and Byyq4n, respectively. The trained
models are then evaluated on A;.s; and By.st, respectively. As shown in Fig. 12, when the model is trained on By,.qin
but evaluated on A;.st, we find the performance drops (compared with testing on By.s¢), which indicates the confounder
influences the model and cannot make right predictions. Our findings can be summarized as follows:

Figure 11. The visualization of the “dog” class: C' = 0 represents samples generated for the dog’s head, while C' = 1 corresponds to
samples of the dog’s body.
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Figure 12. The performance curve illustrates four evaluation scenarios: A¢rqin, Atest indicates the model is trained on A¢yqin and
evaluated on Atest; Atrain, Btest represents the model trained on Ayrqin and evaluated on Biest; Birain, Atest corresponds to the
model trained on Byrqin and evaluated on Ayest; and Birain, Btest denotes the model trained on By,qin and evaluated on Bies:.

Table 18. The experiments of randomness.

| Places365-LT | ImageNet-LT
514009 | 77.000.04)

LIFT

Ours | 53.03(0.08) | 79.59(0.03)

1. The model trained on Ayqin, when used for inference, can be interpreted as estimating P(Y | do(X)). We observe that
the model trained on A4, performs similarly on both A;.s+ and Bieg:. This result indicates that the trained model does
not learn the correlation.

2. The model trained on By;.qin, when used for inference, can be interpreted as estimating P(Y | X'). We observe that the
model trained on By,.q;,, exhibits different performance between Ays; and By.s;. This difference arises due to the influence
of the confounder.

From these experiments, we verify that C' is a confounder.

1.10. Randomness

To ensure that the observed performance improvement is attributable to the advantages of our method and not random
variation, we conduct experiments with five different random seeds and report the mean and standard deviation for both
LIFT and our method on Places365-LT and ImageNet-LT. As shown in Tab. 18, our method outperforms LIFT with a smaller
standard deviation (reported in brackets), demonstrating that the performance gains are not due to randomness.

In addition, we also conduct a significance test (T-test) between the results of our method and the LIFT, obtaining a
Poatuel = 4.57 x 1072 and pyaiue2 = 3.62 x 10710 for Places365-LT and ImageNet-LT, respectively. This indicates that
our method is statistically significant, with a probability of making no more than a 5% error.
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