
Appendix
A Impact and Limitations

We hope our work will allow for better understanding of how spurious feature reliance affects deep
models, leading to improved handling of algorithmic fairness and model robustness, which are both
related to the spurious correlation problem. We open source all code, and modify a key framework
of our method to vastly increase its usability for people with fewer computational or data resources.
We also create a website for easier viewing of our analysis, making our entire annotation process
completely transparent. We obtain verbal approval * from our institution’s IRB for our study, and
pay workers above minimum wage. Key limitations are that our method does not detect all spurious
features (only a subset), and uses a single model to detect and measure them, though we argue that
the features we detect are very relevant and likely relied upon by all models; we elaborate on this
point in Section I.3.

B Characterizing Feature Sensitivities

Using visualizations from our robust neural feature annotation, we obtain soft segmentations for
features in input space that activate a specific neural feature. Namely, the Neural Activation Map for
a neural feature can serve as a soft segmentation for the feature. Using a Mechanical Turk human
study, we validate that neural activation maps for images in the top 20th percentile within its class for
activation of the neural feature segment the same input pattern (see Appendix I.2.2).

(a) Gray (Color) (b) Blur (Texture) (c) Patch Rotate (Shape)

Figure 10: Examples of features that are particularly sensitive to color, texture, and shape corruptions.
Original images (top) and corrupted images (bottom) shown, along with model predictions. In
one case, corrupting the spurious feature of keyboard on desk for class monitor actually improves
prediction.

We then use targeted corruptions to gain insight on the information within an input region that models
rely on most. The core premise of our argument is that degradation in model performance due
to corruption of some information can be a proxy of the importance of the corrupted information.
Indeed, similar arguments were made in [46, 29], where adding Gaussian noise to specific regions was
employed to assess core/spurious or foreground/background sensitivity respectively. However, in our

*We were informed that formal approval is not needed because we do not obtain information about our crowd
worker, and thus our study does not constitute human-subject research.

15

Figure 11: Sensitivities of each class-feature pair to specific corruptions for ResNet-50 and DeiT-
Small. The two distinct models rely on features in the same way.

analysis, we use carefully chosen corruptions so to remove one aspect of primitive information (i.e.
color, shape, or texture) without disrupting the others. Namely, our corruptions are graying out image
regions, blurring out image regions, or patching an image region and randomly rotating each patch
by a multiple of 90 degrees. Graying out an image removes color, blurring out destroys local (i.e.
textural) details, and random patch rotation breaks longer edges, hence disrupting shape information.

We apply these targeted corruptions to segmented feature regions for all 5000 annotated class-feature
pairs. Specifically, we focus on the 65 images per class where a feature is activated most highly (i.e.
roughly top 5th percentile), since the feature is most prominent in these images. Also, for spurious
features, we include a filtering step to avoid corrupting core regions. We do this by removing any over-
lap of the spurious feature segmentation with the consolidated core mask [46], which is a pixel-wise
maximum of soft segmentations for any relevant core features. We track model accuracy on samples
with and without each corruption applied, using change in accuracy as a measure of sensitivity.

Figure 10 shows examples of features that are the most sensitive (i.e. highest change in accuracy)
to each of the three corruption types, visualizing the corruption and its affect on model prediction.
In the left panel, we see that the color information in the core feature of lizard body is crucial for
successful prediction of the class European Green Lizard (matching intuition). In the middle panel,
we see a case where the spurious feature of keyboard on desk hurts classification. Namely, blurring
out the keyboard and desk leads to more accurate prediction of the desktop computer. We note that
while the shape and color information is retained, it appears that the local details in the texture of the
keyboard and desk contribute more to confusing the model and leading to misclassification. Lastly,
for the spurious feature of books on a bookcase, we observe that the shape of the books is crucial, as
rotating patches leads to an incorrect prediction of tobacco shop.

We conduct this analysis using two pretrained models of roughly equal size: ResNet50 and small DeiT.
Figure 11 shows the relative accuracy drops incurred by performing each of the three corruptions for
all 5000 annotated class-feature pairs on both models. We find that the two models have strongly
correlated sensitivities (r = 0.724). The least correlated sensitivities appear to be for the patch-
rotate corruption, where the transformer has nearly zero accuracy drop for many cases where the
ResNet experiences greater accuracy drop. This is most likely due to the unique robustness of
vision transformers to various patch transformations like permutation, rotation, and ablation [34, 36].
Despite this, the strong correlation between feature sensitivities for two diverse models suggests that
model behavior is determined much more by the data it operates over than the specific decisions
made during training. In other words, the features that models rely on and the ways in which they
rely on them may be far more a function of data than a function of the model. If this conjecture
holds, it would warrant greater inspection of the role of data in various open problems in modern
deep learning (robust generalization, efficient learning, etc).

16

(a) Training Split (b) Validation Split

Figure 12: Images with highest and lowest spuriosity for five randomly selected classes (top/bottom
row in each chunk corresponds to images with highest/lowest spuriosity respectively). The spurious
features depicted are lake water, branches, water, sky with clouds or lava, and plants. The spurious
features are easier to see in the training split than in the validation split, because there are roughly
25⇥ more samples to choose from. Nonetheless, the validation images still seem to be organized so
that the top-10 images contain the spurious feature much more than the bottom-10, indicating that
our spuriosity ranks generalize to the validation split.

C More Examples of Spuriosity Rankings

To further validate our spuriosity rankings, we now present more examples of images ranked by
spuriosity. While this validation is qualitative, we argue that it is sufficient since we are attempting
to proxy a fundamentally qualitative notion. Namely, in figure 12, we present images organized
by spuriosity ranking for five randomly selected classes. Here, we show images both ranked in the
training and validation split to demonstrate that even though trends are clearer when ranking training
images (because there are ⇠ 25⇥ more of them to choose from), the underlying semantic concepts
by which images are ranked still generalize to the validation split.

D Full Pretrained Model Evaluation Results

We now provide greater detail for the pretrained model evaluation presented in Section 4.2. We
evaluate 89 models spanning diverse architectures and training procedures. Namely, the models we
consider fall into the following categories, with category nicknames in parenthesis: supervised vision
transformers (Sup ViTs), self-supervised vision transformers (SS ViTS), CLIP vision transformers
(CLIP ViTs, both Zero-Shot and Finetuned), CLIP ResNets (CLIP RNs), self- or semi-supervised
ResNets (SS ResNets), supervised ResNets (Sup ResNets), mixer and ResMLP models (MLP-Based),
various other convolutional networks (Other CNNs), and adversarially trained ResNets (Robust
ResNets). The vast of majority of pretrained weights are obtained from the timm library [51], while
others come directly from their original respective repositories [7, 9, 37, 43]. Figure 13 shows
effective robustness for each model, as well as the average effective robustness per category.

17

https://github.com/rwightman/pytorch-image-models

Figure 13: Effective robustness for all 89 models considered (top), along with effective robustness
averaged over model category (bottom).

We measure effective robustness by first fitting a line to predict accuracy on the 10 validation images
per class with the least spuriosity as a function of accuracy on the 10 validation images per class
with the most spuriosity. Let acctop and accbot denote accuracy on images with the most and least
spuriosity respectively (i.e. top and bottom with respect to spuriosity rankings). We refer to the
line of best fit as � : R ! R. Effective robustness for a model with accuracies on top and bottom
spuriosity ranked images acctop, accbot respectively is simply accbot � �(acctop). In other words, we
measure how high above the line of best fit a model’s marker falls in figure 6 (left).

We note that this differs slightly from the originally presented notion of effective robustness in [27],
where a log-linear fit is performed. Moreover, instead of predicting out-of-distribution accuracy based
on in-distribution accuracy, we compare accuracy on two carefully chosen subsets of in-distribution
data. We argue that we capture subsets where subpopulation shift has occurred, specifically with
respect to common spurious cues for each class.

Our findings show that some models are more effectively robust than others. Namely, zero-shot CLIP
models have much higher accuracy on images with lowest spuriosity than their performance on the
images with highest spuriosity would predict. After finetuning a linear head using ImageNet on top
of the fixed CLIP image encoder, we see effective robustness drops significantly. We note that both
these results were observed using independent distributional robustness measures in [53]. At the
other extreme, adversarially trained ResNets have the lowest effective robustness, a result carefully
studied in [28].

Aside from these two extremes, most trends are muted. We believe the stronger signal exists in
per-class spurious gaps, as shown in figure 6 (right), suggesting that while models generally behave
similarly on the same inputs, their behavior (i.e. with respect to spurious feature dependence) varies
dramatically across inputs. Indeed, we find that per-class spurious gaps correlate strongly between
pairs of models in our evaluation suite. Figure 14 visualizes these correlations, with an average
correlation of r = 0.69 being observed. We thus recommend closer attention to be paid to the
individual data classes and potential spurious features per class a model is to be deployed over.

18

Figure 14: Correlation of per-class spurious gaps for all pairs of models. Numbers shown are
Pearson’s r correlation coefficients times 100. On average, a pair of diverse models have strongly
correlated class-wise spurious gaps, with r = 0.69. Notably, zero-shot CLIP models have the worst
correlation with other models, suggesting that their perception is fundamentally different.

E Details on Feature Discovery Beyond ImageNet

E.1 General Training Details

Recall that we introduce a lightweight extension of spurious feature/concept discovery without
requiring adversarial training by simply fitting a linear layer on new data over a fixed adversarially
trained feature encoder (Section 3.2). Specifically, in all cases, we use a ResNet50 feature encoder
(i.e. all layers except for the final linear classification head) adversarially trained for ImageNet
classification with projected gradient descent using an `2 norm attack of budget ✏ = 3.0, downloaded
from [43]. Note that this feature encoder comes from the same network used to discover core and
spurious features in ImageNet. However, we train new linear heads over fixed features for four tasks
over three datasets: Waterbirds [42], Celeb-A [25], and UTKFace [60]. In all cases, we use an Adam
optimizer with learning rate of 0.1 and weight decay of 0.003. We train for 20 epochs. While the
model we use may not be as accurate as a model trained from scratch, they still achieve relatively high
accuracies given the ease of their training. Notably, for Celeb-A hair task (2-way), UTKFace gender
task (2-way), and UTKFace Race task (5-way), our linear layer fitting on robust neural features yields

19

(a) Waterbird core feature. Focus
is on elongated and curved necks.

(b) Landbird core feature. Focus
is on feathers with bright colors.

Figure 15: Core features discovered for the Waterbirds waterbird vs. landbird classification task. We
identify features that occur in specific subpopulations of the broader classes. Low activating images
reveal subpopulations where the feature is absent. The rows show (from top to bottom): highly
activating images, corresponding heatmaps and feature attacks, and lowly activating images.

(a) Blond curly hair. (b) Blond straight hair. (c) Brown curly hair. (d) Brown wavy hair.

Figure 16: Core features discovered for the Celeb-A blond vs. brown hair classification task. We
identify features corresponding to different types of hair within the same broader class of hair color.
The rows show (from top to bottom): highly activating images, corresponding heatmaps and feature
attacks, and lowly activating images. The captions reflect the focus of the robust neural feature.

accuracies of 95.3%, 86.5%, and 66.7% respectively. Acccuracy on the Waterbirds validation set
is lower (77.6%), though this is typical for Waterbirds, as the validation shift features a significant
subpopulation shift (by design, due to breaking the background correlation). More importantly, in all
cases, important neural features are observed to correspond to data patterns (i.e. human concepts)
salient to the task at hand, including spurious ones.

E.2 Additional Discovered Features for Waterbirds and Celeb-A

We now present additional features identified via our lightweight extension of the feature discovery
framework of [46]. Specifically, we show core features, which are relied upon more frequently than
spurious features, which we show in Figure 4. We observe robust neural features to respond to
specific patterns shared among subpopulations within the broader classes. Surprisingly, these robust
neural features were not at all trained on images from the downstream tasks. Yet, the patterns they
respond to are semantically meaningful for the downstream task. We attribute this to the diversity in
ImageNet, which leads to learning many general visual patterns that are manifested in more specific
contexts for a vast number of downstream tasks.

20

Figure 17: In addition to tuning on low-spuriosity images and on random samples, we include results
from tuning on misclassified samples in white. Error tuning minimally closes spurious gaps, and
actually leads to substantial drops in overall validation accuracy.

E.3 UTKFace Experiments

UTKFace [60] is an attributed dataset originally intended for the task of synthetically aging a face
image using conditional generative models. The dataset consists of over 20, 000 images with age,
ethnicity, and gender annotations. We consider the task of gender and age classification. We use 90%
of the data for training, and hold out the remaining 10%. We inspect the 15 most important features
for each class per task. For all classes and tasks, we are able to identify at least on spurious feature
with our method. Notably, these tasks were not designed to contain spurious features, like the other
two benchmarks analyzed. This goes to show that spurious correlations may arise in any setting, and
our method can reveal such spurious features with minimal computation. Having discovered robust
neural features that detect spurious concepts, one can sort data by spuriosity to measure and mitigate
the resultant bias.

F Alternate Baseline: Error Tuning Does Not Close Spurious Gaps

A common approach within recent spurious correlation literature is to automatically select samples to
conduct additional training on by simply inspecting whether they were classified correctly originally.
For example, Liu et al. [24] propose to ‘just train twice’, upweighting error samples in the second
round of training; Nam et al. [32] ‘learn from failure’ by training one classifier that is intentionally
biased, and using the hard (i.e. misclassified) samples from the biased classifier to obtain an
unbiased classifier; Zhang et al. [59] use error samples as hard positives in an additional round of
contrastive training. Inspired by these approaches, we include an additional baseline to the experiment
from section 4.3 where we tune existing classification heads on samples originally misclassified.
Specifically, we train on misclassified samples for all classes. All three methods train on 100 samples
per class. When the number of errors in a class is less than 100, we add randomly selected correctly
classified class instances. When the number of errors is more than 100, we randomly select 100 of
them. Results shown are averaged over three trials.

We observe that while error tuning closes spurious gaps more than tuning on random samples, the
reduction in spurious gaps is far less than that from low spuriosity tuning. More importantly, overall
validation accuracy drops substantial when tuning on errors. We conjecture this occurs because
errors can be caused by many things aside from the absence of spurious cues, such as label noise.
Thus, tuning on misclassified samples could lead to overfitting on unreliable data. In contrast, low
spuriosity images are designed to only differ from typical samples in that they lack particular cues
that have already been deemed spurious by a human. Arguably, low spuriosity images can at times
offer more reliable learning signal, as they do not contain distracting shortcuts (e.g. the low spuriosity
lighters in figure 1 are far easier to see than the high spuriosity ones). Also, while the error-centric

21

approaches were shown to be effective on existing spurious correlation benchmarks, we hypothesize
that the biases in those benchmarks are overly simplistic: they typically only include one spurious
correlation and at most a handful of classes. Therefore, these methods may struggle in more realistic
settings, as demonstrated by their ineffectiveness on this ImageNet scale experiment.

Thus, we claim that low spuriosity tuning offers unique advantages compared to prior work. While
most existing methods focus on altering the training algorithm, our method acknowledges that data
may have a larger (and often overlooked) role in determining the biases a model absorbs, and focuses
on finding the right data to tune. The experiments in this section show that compared to another line
of data-centric approaches, our low spuriosity tuning may be more effective, in both retaining overall
accuracy and reducing biases.

G On Automating Spuriosity Rankings

We believe that human involvement is a strength of our framework, as it increases transparency.
Namely, the human in the loop is given a concise inside look on the cues a model trained on the
given data is likely to rely upon. Moreover, the human is given agency to decide which cues model
performance should be invariant to. Also, the level of human involvement is relatively low. Given
the complexity of the task of sorting thousands of images within a class, only requiring a human to
inspect a handful of images is relatively efficient. With an appropriate UI, we can confirm that this
takes no longer than about a 30-40 seconds per class.

However, in cases where minimizing cost is preferred, Spuriosity Rankings can be automated. One
way to do so is to automate the annotation of neural features as core or spurious. Specifically, one
could automatically segment the class object with open-vocabulary segmentation models [21], and
then compute the amount of saliency placed on the object by the neural activation map. If most of
the salient pixels for a neural feature lie outside of the image region containing the class object, one
could automatically flag such a feature as spurious.

Another way to automate Spuriosity Rankings is to leverage vision-language models (VLMs) like
CLIP [37]. With VLMs, we can compute the similarity of an image to any concept, encoded directly
from text. After sorting images by similarity to spurious concepts, we can inspect the Spurious gap to
measure bias, and train on low spuriosity images to mitigate bias. Thus, one must simply enumerate
(in the form of text) potential relevant spurious cues; since encoding the cue and sorting along it is
free, one can discard the cues which do not result in an accuracy gap between the most and least
similar images, as the model of interest apparently would not be biased to the presence of that cue.
We note that while VLM training is expensive, a pre-trained model would suffice, and moreover,
recent work shows that VLM abilities can be extended to arbitrary vision-only models cheaply as
well [31].

Note that the underlying mechanism of Spuriosity Rankings is preserved in both of these automateed
variants: we utilize the representation space of an interpretable model to quantify the presence of
relevant cues, and rank images by spuriosity (proxied by similarity/activation of concept directions in
representation space) to enable interpretation of spurious cues in context and measure model bias
caused by them.

H Details on Core-Cropping

To perform core-cropping, we first obtain a soft segmentation of core regions, done by averaging
the neural activation maps for core neural features. Next, we threshold the averaged mask to only
retain highly activated pixels. We use a threshold of 0.9. Then, we obtain a bounding box to localize
a rectangular region encompassing the pixels that most highly activate the core region. Since we
use a high threshold, we expand our bounding box by 20% along both height and width dimensions.
Finally, we convert our rectangular region to a square one by simply extending the shorter side to
match the length of the larger side. We note that this method is only as effective as the core soft
segmentation. Note that core neural activation maps are generally reliable for images that reasonably
activate the core features. Namely, we validate the quality of these segmentations for images in the
top 20th percentile of activation for a class (see Appendix I.2.2). However, for the remaining 80% of
images, these soft segmentations may not be perfectly reliable. Nonetheless, as segmentation models
improve, core-cropping may also improve, as we can simply replace core soft segmentations obtained

22

via neural activation maps with actual segmentations, conditioned on the class object. Thus, flagging
potentially mislabeled samples

I Robust Neural Feature Annotation Details

Our work uses the feature discovery framework introduced in [46], also known as Salient ImageNet.
We now i. introduce a taxonomy of relevant terms, ii. review the framework, iii. discuss its merits
and potential limitations, and iv. detail our expansion/modifications to it.

I.1 Taxonomy of Relevant Terms

Below we enumerate and explain some terms we refer to throughout the paper.

• Core feature or cue: a visual pattern that is essential to the class object; i.e., the pattern is a
part of the class object, like fur for an otter.

• Spurious feature or cue: a visual pattern that is not essential to the class object; i.e., the
presence of the spurious cue is not required for the image to belong to the class, and the
spurious cue can exist in images from other classes.

• Neural Feature: node in the penultimate layer of a classifier parameterized by a deep neural
network. Importantly, each logit of the classifier is a linear function of neural features.

• Robust neural feature: neural feature from an adversarially trained network. We use an `2
PGD-trained [26] network with ✏ = 3.

• Neural activation map: an extension of a class activation map [61] for neural features, used
to highlight the region of an image responsible for activating a neural feature.

• Feature attack: a visualization technique to amplify the visual cues present in an image
that activate a neural feature.

I.2 Salient ImageNet Framework

The steps of the Salient ImageNet Framework are:

1. Adversarially train a model for your classification task.
2. Identify important neural features per-class based on feature importance, which is simply

the product of the average feature activation and the weight of linear head connecting feature
to class logit. Feature importance explicitly computes the average contribution of a feature
to a class logit for samples in the class.

3. Select the top-k (i.e. k = 5) activating instances of a class for a selected feature and
additionally generate heatmaps (via overlaying the Neural Activation Map on the original
image) and feature attacks (via adversarially attacking the original image using gradients
from the adversarially robust model so to maximize activation on the feature).

4. Have humans inspect the 3⇥ 5 = 15 visualizations to determine if the focus of the neural
feature is on the main object (i.e. pertaining to the class and hence core) or on the background
or a separate object (hence making the feature spurious).

We elaborate on the feature discovery and annotation procedure in subsection I.2.1, including an
example of the MTurk form. In [46], the annotated robust neural features were primarily used to
softly segment image regions containing core and spurious features at scale. Thus, in addition to
the Mechanical Turk study performed to annotate neural features, a second study was conducted to
confirm that neural activation maps for annotated features softly segment the same input features
across the top 5th percentile of samples within the relevant class. With this confirmation, they
computed neural activation maps for all of these images and used these as feature segmentation maps.
To assess reliance on core and spurious features, they would inspect drop in accuracy due to adding
small amounts of Gaussian noise to these regions. We repeat a modified and expanded version of this
second study, so to validate a larger number of feature segmentations. Details on this human study
are in subsection I.2.2.

23

I.2.1 Mechanical Turk study for discovering spurious features

The design for the Mechanical Turk study is shown in Figure 18. The left panel visualizing the neuron
is shown in Figure 18a. The right panel describing the object class is shown in Figure 18b. The
questionnaire is shown in Figure 18c. We ask the workers to determine whether they think the visual
attribute (given on the left) is a part of the main object (given on the right), some separate object or
the background of the main object. We also ask the workers to provide reasons for their answers and
rate their confidence on a likert scale from 1 to 5. The visualizations for which majority of workers
selected either background or separate object as the answer were deemed to be spurious. Workers
were paid $0.1 per HIT, with an average salary of $8 per hour. In total, we had 137 unique workers,
each completing 140.15 tasks (on average).

We conduct this study for the five neural features with highest contribution to each of the 768
ImageNet classes not analyzed in [46], resulting in 3840 newly annotated class-feature dependencies,
including 468 spurious ones (3.3⇥ and 2.9⇥ increases respectively).

I.2.2 Mechanical Turk study for validating heatmaps

We now detail the second MTurk study we carry out to validate the feature soft segmentations
generated by Neural Activation Maps of annotated robust neural features. For each annotated class-
feature dependency, we first obtain the training images from the class who’s activation on the feature
is within the top 20th percentile for the class. This results in a set of 260 (20% of 1300 training
images per class) images per class-feature pair, as opposed to only 65 in [46]. From this set of 260
images, we selected 5 images with the lowest activations on the neural feature and randomly selected
10 images from the remaining set (excluding the already selected images). We show the workers
three panels: images and heatmaps with (i) the highest 5 activations, (ii) the next 5 highest activations,
and (ii) the lowest 5 activations. For each panel, workers were asked to determine if the highlighted
attribute looked different from at least 3 other heatmaps in the same panel. Next, they were asked
to determine if the heatmaps in the 3 different panels focused on the same visual attribute, different
attributes or if the visualization in any of the panels was unclear. Thus, we validate that both within
each panel and across panels, the focus of the neural feature is consistent.

The design for the Mechanical Turk study is shown in Figure 19. The three panels showing heatmaps
for different images from a class are shown in Figure 19a. The questionnaire is shown in Figure
19b. For each heatmap, workers were asked to determine if the highlighted attribute looked different
from at least 3 other heatmaps in the same panel. We also ask the workers to determine whether they
think the focus of the heatmap is on the same object (in the three panels), different objects or whether
they think the visualization in any of the panels is unclear. Same as in the previous study (Section
I.2.1), we ask the workers to provide reasons for their answers and rate their confidence on a likert
scale from 1 to 5. The visualizations for which at least 4 workers selected same as the answer and for
which at least 4 workers did not select "different" as the answer for all 15 heatmaps were deemed to
be validated i.e for this subset of 260 images, we assume that the robust neural feature’s focus is on
the same visual attribute. Showing three panels as opposed to two is novel to our work and increases
the standard for validation.

For all (class, feature) pairs (1000 ⇥ 5 = 5000 total), we obtained answers from 5 workers each.
We successfully validate 4763 pairs (i.e. 95.26%), demonstrating the effectiveness of using neural
feature supervision to automatically (softly) segment an input pattern in a large number of images.
We utilize these feature segmentations in Appendix B.

I.3 On Feature Discovery Using Only One Model

The key idea of our framework (expanded from [46]) was to use neural features of an adversarially
trained network as automatic ‘concept’ detectors, and further to use their activation maps as soft seg-
mentations. One may argue then that the features discovered are biased to the underlying model used.
However, we argue that the primary patterns that models rely on are generally the same. Note that
the existence of patterns predictive of a class is determined by the data distribution and not the model.
While models may learn to rely on different patterns and may also vary the degree to which they rely
on the same patterns, we believe that the most predictive patterns will be detected and relied upon by
nearly all models. In our experiments, we find that the class-wise spurious gaps are highly correlated
for any two pairs of models, with average correlation of r2 = 0.69 (see figure 14). We also observe

24

(a) Visual attribute (b) Main object

(c) Questionnaire

Figure 18: Mechanical Turk study for discovering spurious features. This figure is from Singla and
Feizi [46] and included here for completeness.

that the accuracy drops experienced due to targeted corruption of input regions where certain features
reside for a ResNet and a vision transformer are highly correlated too (r2 = 0.724) (see figure 11).
These results suggest that models are sensitive to the same data patterns and even rely on the different
pieces of information (i.e. color, shape, texture) captured in the data patterns in the same ways.

25

(a) Heatmaps highlighting the visual attributes

(b) Questionnaire

Figure 19: Mechanical Turk study for validating heatmaps

To be perfectly clear, we do not claim to have captured all spurious (or core) dependencies, mainly
because we only inspect the 5 most important robust neural features per class. We acknowledge that
another reason for certain dependencies to be overlooked is because we use a single model to detect
and measure the presence of concepts. However, this only occurs for patterns that other models are
sensitive to but the adversarially trained model is not. The main patterns that fit this description are
adversarial ones, which contain no semantic meaning and thus arguably should be overlooked for

26

our purposes. In other work, adversarialy trained models were found to have increased reliance on
spurious features [28]; this result was also corroborated in our spurious gap analysis. Thus, if anything,
it seems like using an adversarially trained model may overlook core features, favoring spurious ones.
Seeing as the goal of our analysis is to detect and assess spurious feature dependencies, we believe
using robust neural features from an adversarially trained model is warranted, especially given the
enhanced interpretability of this model, which allows for reliable heatmaps and feature attacks.

I.4 Our Contributions

We now detail the novel contributions we make to the Salient ImageNet framework and analysis from
[46]. The most crucial contribution is the notion that to interpret and improve spurious correlation
robustness, one can seek to simply reorganize the data they already have, as opposed to collecting
more samples or additional instance-wise supervision (i.e. segmentations, manual annotations beyond
class-label) that would require fundamental changes the training strategy. Using spuriosity rankings,
we gain new and surprising insight into the nuanced ways that models rely on spurious features.
Namely, we find that contrary to common belief, models can perform worse when spurious features
are present than when they are absent (i.e. because of spurious feature collision, as some spurious
features are depended on for multiple classes). Further, our spuriosity rankings naturally lends itself
to a simple, effective, and efficient manner to both measure the biases caused by spurious feature
reliance, and mitigate theses biases for any model. Finally, we make a crucial adjustment to the feature
discovery framework of [46] that removes its most costly and at times prohibitive step (adversarial
training). Observing that the framework can be applied by simply fitting a linear layer atop a frozen
adversarially robust feature encoder vastly increases the usability of this framework, cutting the time
and data required to perform feature discovery by huge margins.

We now take a closer look at our method for measuring bias caused by spurious feature reliance
compared to the one proposed in [46], as we believe our method corrects crucial shortcomings of
the prior work. Recall that the prior evaluation framework consisted of corrupting core or spurious
regions by adding Gaussian noise multiplied by soft segmentations of core/spurious regions obtained
via Neural Activation Maps of annotated robust neural features. The drop in accuracy due to
these regional corruptions was used to measure the importance of the region. We enumerate the
shortcomings of this prior framework, and explain how our method evades these concerns, below.

• Introduction of a synthetic distribution shift. The previous framework required taking
images out of distribution by synthetically corrupting core and spurious regions with Gaus-
sian noise. Model behavior on these non-natural images may not truly reflect how the
model would behave on the more realistic distribution shift caused by breaking spurious
correlations.

• Instability. Adding noise introduced hyperparameters, like the amplitude and norm of
the noise, which we observe the metric to be undesirably sensitive to. In our method, the
only hyperparameter is the number of images we include in the sets of highest and lowest
spuriosity images. We verify our results our stable with respect to this hyperparameter.

• Inability to compare across diverse models. Because models have varying robustness
to Gaussian noise (e.g. some more recent models, especially vision transformers which
utilize heavier regularization to compensate for lacking inductive biases of convolutional
networks, use noising as a data augmentation during training), drop in accuracy due to
Gaussian noise cannot be reasonably compared as a means to measure how models use the
corrupted image region. Our metric utilizes accuracy, which is standard and established for
model comparisons. Moreover, we can appeal to the notion of effective robustness [27] to
further control for varying accuracies of the models we consider.

Other contributions that are less novel but still impactful include massively expanding the scale of
the feature annotation analysis and creating a web interface to view the discovered dependencies.
Specifically, we annotate over 4⇥ more classes, yielding interpretation of feature dependencies for all
1000 classes in ImageNet. Given that this benchmark is ubiquitous, we believe a deep dissection of
what one model perceives as important patterns in ImageNet can be extremely informative in better
understanding how machine perception differs from human perception. We also perform the MTurk
study to demonstrate the generalizability of our feature annotations for the top 20th percentile of
images based on feature activation as opposed to the top 5th percentile, leading to reliable feature

27

Figure 20: Example of a landing page for one class-feature dependency. We present all visualizations
shown to MTurk workers to annotate the feature as cor or spurious, as well as the annotations and
explanations given by the MTurk workers. Further, we provide links to pages for other features
relevant to the class, and other classes that also rely on the feature.

soft segmentations for many more images. Lastly, we create a website, which, while simply a
user-interface, will greatly increase ease of viewing and transparency into our analysis, as we show all
the visualizations used to perform our core/spurious neural feature annotations. The website can be
found at https://salient-imagenet.cs.umd.edu. We present screencaps of pages from
the website in Figure 20 and Figure 21. As a web-interface, our work is now accessible to people
who do not code or lack the resources to generate our visualizations on their own devices.

28

https://salient-imagenet.cs.umd.edu

Figure 21: Screencap of a main table from our web-interface for accessing all 5000 class-feature
dependencies. One can simply search for a class by its name or ImageNet class index to see the five
features deemed most important for (i.e. contributing the most to the logit of) the class. Each image
then links to an individual landing page designated for the class-feature pair (see Figure 20 for an
example).

29

