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A Code and Licenses

A.1 Code

The code of RETRIEVE for VAT, MT is available at the following link: https://github.com/
decile-team/cords. The code of RETRIEVE for FixMatch is available at the following link:
https://github.com/krishnatejakk/EfficientFixMatch. We will transfer the FixMatch
code to the CORDS repository to have a unified repository shortly.

A.2 Licenses

We release both the code repositories of RETRIEVE with MIT license, and it is available for everybody
to use freely. For MT and VAT, we built upon the open-source Pytorch implementation4 which is an
MIT licensed repo. For the FixMatch method, we implemented it based on an open-source Pytorch
implementation5. For DS3L [17], we implemented it based on the released code 6 which has an
unknown license. Nevertheless, the authors of the DS3L [17] made the code available for everyone
to use. For L2RW [49], we used the open-source Pytorch implementation7 which has an unknown
license and adapted it to the SSL settings. Nevertheless, the owner of the repository made the code
available for everyone to use.

As far as the datasets are considered, we use CIFAR10 [27], SVHN [43] and MNIST [32] datasets.
CIFAR10 dataset is released with an MIT license. MNIST dataset is released with an Creative
Commons Attribution-Share Alike 3.0 license. SVHN dataset is released with a CC0:Public Domain
license. All the datasets used in this work are publicly available. Furthermore, the datasets used do
not contain any personally identifiable information.

B Proof of Theorem 1

We begin by first stating and then proving Theorem 1.

Theorem Optimization problem (Equation (5)) is NP hard, even if ls is a convex loss function. If the
labeled set loss function ls is cross-entropy loss, then the optimization problem give in the Equation (5)
can be converted into an instance of cardinality constrained weakly submodular maximization.

We use the proof techniques similar to the ones used in Theorem-1 of GLISTER [24]. GLISTER proved
the weak-submodularity only for the case when both the loss functions in the bi-level optimization
problem are cross-entropy losses. In our work, we prove the weak submodularity with the SSL
objective as an inner level loss. Furthermore, we prove the weak-submodularity when the unlabeled
set loss is either cross-entropy loss or squared loss functions.

B.1 Proof Sketch

We introduce the notations used in the proof of the theorem in subsection B.2. In our proof, we
prove that the optimization problem given in Equation (5) is an α-submodular function. We give the
definitions of α-submodularity, and the approximation guarantees achieved by greedy algorithms in
subsection B.3. We state the lemmas of the α-submodularity satisfied by the RETRIEVE framework
for different cases in subsection B.4. Finally, we give the proof of α-submodularity of the RETRIEVE
when the unlabeled set loss is cross-entropy loss or squared loss in the subsection B.5.

B.2 Notation

Let (xi, yi) be the ith data-point in the labeled setD where i ∈ [1, n], and (xti) be the ith data-point in
the unlabeled set U where i ∈ [1,m]. Consider a classification task with C classes. Let the classifier
model be characterized by the model parameters θ. As shown in the Equation (6), the set function

4https://github.com/perrying/pytorch-consistency-regularization
5https://github.com/kekmodel/FixMatch-pytorch
6https://github.com/guolz-ml/DS3L
7https://github.com/danieltan07/learning-to-reweight-examples
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of RETRIEVE is given by f(θt,S) = −LS(D, θt − αt∇θLS(D, θt) − αtλt
∑
j∈S

mjt∇θlu(xj , θt))

where LS is the cross-entropy loss.

The coreset selection optimization problem of RETRIEVE can be written as follows:

St+1 = argmax
S⊆U,|S|=k

f(θt,S) (8)

Denote the gain of a set function as Gθ,v(s) = f(θ, v ∪ s)− f(θ, v). In this proof, we prove that the
above optimization problem is approximately submodular [12].

B.3 α-submodularity

Here, we discuss some prior works on submodularity. The definition of α-submodularity is given
below:

Definition: A function is called α-submodular [15], if the gain of adding an element e to set X is
1− α times greater than or equals to the gain of adding an element e to set Y where X ⊆ Y . i.e.,

∀
X,Y |X⊆Y

Gθ,X(e) ≥ (1− α)Gθ,Y (e) (9)

This definition is different from the notion of γ-weakly submodular functions [12]. However, as
stated in the Proposition 4 of [15], α-submodular functions and γ-weakly submodular functions
are closely related, where the function that is α-submodular is also γ-weakly submodular with the
submodularity ratio γ ≥ 1− α.

This further implies the following approximation guarantee given below:
Lemma 1 [12, 15] Given a α-approximate monotone submodular function f , the greedy algorithm
achieves a 1− e−(1−α) approximation factor for the problem of maximizing f subject to cardinality
constraints.

Next, we show that f(θt,S) is a α-approximate submodular function. To this extent, we assume that
the norm of data points in the labeled and unlabeled sets are bounded such that ‖xi‖ ≤ R. Note that
this is common assumption made in most convergence analysis results. When ls is cross entropy
loss function, we prove that the set function f(θt,S) of RETRIEVE is α-approximate submodular
function where α = 2R2

2R2+1 .

B.4 α-submodularity of RETRIEVE

We now show the α submodularity of the set function for different cases of the unlabeled loss lu.
Lemma 2 If the labeled set loss function ls is the cross entropy loss and the unlabeled set loss
function lu is the cross entropy loss, then the optimization problem given in equation Equation (5) is
an instance of cardinality constrained α-approximate submodular maximization, where α = 2R2

2R2+1
such that R is the maximum l-2 norm of the data instances in both labeled and the unlabeled sets.
Lemma 3 If the labeled set loss function ls is the cross entropy loss and the unlabeled set loss
function lu is the squared loss, then the optimization problem given in equation Equation (5) is an
instance of cardinality constrained α-approximate submodular maximization, where α = R2

R2+1 such
that R is the maximum l-2 norm of the data instances in both labeled and the unlabeled sets.

B.5 Proof

Assuming that we start at θ0 and for the ease of notation we use f(S) instead of f(θ0,S). When ls is
cross entropy loss, the optimization problem given in Equation (5) can be written as follows:

S1 = argmax
S⊆U :|S|≤k

f(S)

= argmax
S⊆U :|S|≤k

− LS(D, θ0 − α0∇θLS(D, θ0)− α0λ0
∑
j∈S

mj0∇θlu(xj , θ0))
(10)
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Substituting ls with the cross-entropy loss function, then the set function f(S) can be written as
follows:

f(S) =
n∑
i=1

log

 exp((θyi0 − α0∇θLS(D, θyi0 )− α0λ0
∑
j∈S

mj0∇θlu(xj , θyi0 ))Txi)∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 )− α0λ0
∑
j∈S

mj0∇θlu(xj , θc0))Txi)

 (11)

Rewriting the above equation, we achieve:

f(S) =
n∑
i=1

(
log

(
exp((θyi0 − α0∇θLS(D, θyi0 )− α0λ0

∑
j∈S

mj0∇θlu(xj , θyi0 ))Txi)

)

− log

( ∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 )− α0λ0
∑
j∈S

mj0∇θlu(xj , θc0))Txi)
)) (12)

f(S) =
n∑
i=1

(
(θyi0 − α0∇θLS(D, θyi0 )− α0λ0

∑
j∈S

mj0∇θlu(xj , θyi0 ))Txi (13)

− log

( ∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 )− α0λ0
∑
j∈S

mj0∇θlu(xj , θc0))Txi)
))

(14)

Since, the term (θyi0 −α0∇θLS(D, θyi0 ))Txi does not depend on the subset S, we can remove it from
our optimization problem,

f(S) =
n∑
i=1

(∑
j∈S
−α0λ0mj0∇θlu(xj , θyi0 )

T
xi (15)

− log

( ∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 )− α0λ0
∑
j∈S

mj0∇θlu(xj , θc0))Txi)
))

(16)

Assume gijc = mj0∇θlu(xj , θc0))Txi,

f(S) =
n∑
i=1

(∑
j∈S
−α0λ0gijyi − log

( ∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 ))Txi − α0λ0
∑
j∈S

gijc)

))
(17)

f(S) =
n∑
i=1

(∑
j∈S
−α0λ0gijyi − log

( ∑
c∈[1,C]

exp((θc0 − α0∇θLS(D, θyi0 ))Txi) exp(−α0λ0
∑
j∈S

gijc)

))
(18)

Let hic = exp((θc0 − α0∇θLS(D, θyi0 ))Txi) where hic ≥ 0 as hic is an exponential function.

f(S) =
n∑
i=1

(∑
j∈S
−α0λ0gijyi − log

( ∑
c∈[1,C]

hic exp(−α0λ0
∑
j∈S

gijc)

))
(19)

As gijc is not always greater than zero, we can make some transformations to convert the problem
into a monotone submodular function. First, we transform gijc to ĝijc such that gijc = ĝijc + gm − 1
where gm = min

i,j,c
gijc. This transformation ensures that ĝijc ≥ 1. Denote gnm = min

i,j,c
(−gijc), and

then we define a transformation of gijc to g
′′

ijc such that −gijc = g
′′

ijc + gnm. Note that both ĝijc and
g
′′

ijc are greater than or equal to zero after the transformations.

4



f(S) =
n∑
i=1

(∑
j∈S

α0λ0(g
′′

ijyi + gnm)− log

( ∑
c∈[1,C]

hic exp(−α0λ0
∑
j∈S

(ĝijc + gm − 1))

))
(20)

= α0λ0kngnm +

n∑
i=1

(∑
j∈S

α0λ0g
′′

ijyi − log

( ∑
c∈[1,C]

hic exp(−α0λ0
∑
j∈S

ĝijc) exp(k(gm − 1))

)
(21)

where k is the size of the subset.

Denote Hic = hic exp(k(gm − 1)). Further as α0λ0nk(gnm) is a constant, we can remove it from
the optimization problem and we can define the new optimization set function f̂(S) as shown below:

f̂(S) =
n∑
i=1

∑
j∈S

α0λ0(g
′′

ijyi)−
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
(22)

In the above equation, denote the first part as f1(S) =
∑n
i=1

∑
j∈S α0λ0(g

′′

ijyi
) which

is a monotone modular function in S. Similarly, denote the second part f2(S) =

−
∑n
i=1 log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S(ĝijc))

)
is a monotone function but is not submodu-

lar.

Hence, we prove that the function f2(S) is an α-submodular function in the following proof section.
Furthermore, since the first part is positive modular, it is easy to see that if f2(X) is α submodular
(with α ≥ 0), then the function f1(X) + f2(X) will also be an α-submodular function.

Note that, a function h(X) is α-submodular if h(j|X) ≥ (1 − α)h(j|Y ) for all subsets X ⊆ Y .
Assuming that f2 is α-submodular, then the following holds:

f2(j|X) ≥ (1− α)f2(j|Y )

for all subsets X ⊆ Y .

As f1 is positive modular, we have the following:

f1(j|X) = f1(j|Y ) ≥ (1− α)f1(j|Y )

.

This implies that the function f1(S) + f2(S) is an α-submodular function which further implies that
it is also an γ-weakly submodular function.

α-submodularity proof of function f2:

The gain of adding an element e to the set X is given as follows:

f2(e|X) = −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S∪e

ĝijc)

)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

) (23)

f2(e|X) = −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc − α0λ0ĝiec)

)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

) (24)
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Let, ĝm = minijc ĝijc. Then, we can rewrite the above equation as following:

f2(e|X) ≥ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc − α0λ0ĝm)

)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

) (25)

f2(e|X) ≥ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc) exp(−α0λ0ĝm)

)
(26)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
(27)

f2(e|X) ≥ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
+

n∑
i=1

α0λ0ĝm (28)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
(29)

f2(e|X) ≥ nα0λ0ĝm (30)

Let, ĝmax = maxijc ĝijc. Then, we can rewrite the Equation (24) as following:

f2(e|X) ≤ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc − α0λ0ĝmax)

)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

) (31)

f2(e|X) ≤ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc) exp(−α0λ0ĝmax)

)
(32)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
(33)

f2(e|X) ≤ −
n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
+

n∑
i=1

α0λ0ĝmax (34)

+

n∑
i=1

log

( ∑
c∈[1,C]

Hic exp(−α0λ0
∑
j∈S

ĝijc)

)
(35)

f2(e|X) ≤ nα0λ0ĝmax (36)

Using the minimum bounds and the maximum bounds given in Equation (30) and Equation (36) on
f2(e|X), we have:

∀
X,Y |X⊆Y

f2(e|X)

f2(e|Y )
≥ ĝm
ĝmax

(37)
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Since, gijc = mj0∇θlu(xj , θc0)Txi, and ĝijc = gijc − gm + 1, we have:

ĝijc = mj0∇θlu(xj , θc0)Txi −min
i,j,c

mj0∇θlu(xj , θc0))Txi + 1 (38)

For most consistency based SSL algorithms, lu is either cross-entropy loss or mean-squared loss on
the hypothesized label probability prediction.

α-submodularity when lu is a cross-entropy loss function: Let [pj1, · · · , pjC ] be the class
probabilities output by the model for instance xj in the unlabeled set after the softmax operator
and [qj1, · · · , qjC ] be the target probability. If lu is a cross-entropy loss function, we know that
∇θlu(xj , θc0) =

∑C
k=1 qjk(1k=c − pjk)xj where 1k=c = 1 if k = c and 0 otherwise.

Hence,

∀
i,j,c
∇θmj0lu((x

t
j , θ

c
0))

Txi ≤ R2 where R ≥ ∀
i

∥∥xti∥∥ (39)

Similarly,

∀
i,j,c
∇θmj0lu((x

t
j , θ0))

Txi ≥ −R2 where R ≥ ∀
i

∥∥xti∥∥ (40)

Similarly, norm of the labeled set points are bounded from above by R. Therefore. ĝm = 1 and
ĝmax = 2R2 + 1. This implies that:

∀
X,Y |X⊆Y

f2(e|X)

f2(e|Y )
≥ 1

2R2 + 1
(41)

Since 1− α = 1
2R2+1 , then α = 2R2

2R2+1 .

α-submodularity when lu is a squared loss function: Let [pj1, · · · , pjC ] be the class probabilities
output by the model for instance xj in the unlabeled set after the softmax operator and [qj1, · · · , qjC ]
be the target probability. If lu is a squared loss function, we know that∇θc0 lu(xj , θ0) =

∑C
k=1 2(qjk−

pjk)(1k=c − pjk)pjkxj where 1k=c = 1 if k = c and 0 otherwise.

∀
i,j,c
∇θmj0lu((x

t
j , θ0))

Txi ≤ R2/2 where R ≥ ∀
i

∥∥xti∥∥ (42)

Similarly,

∀
i,j,c
∇θmj0lu((x

t
j , θ0))

Txi ≥ −R2/2 where R ≥ ∀
i

∥∥xti∥∥ (43)

Similarly, norm of the labeled set points are bounded from above by R. Therefore. ĝm = 1 and
ĝmax = R2 + 1. This implies that:

∀
X,Y |X⊆Y

f2(e|X)

f2(e|Y )
≥ 1

R2 + 1
(44)

Since 1− α = 1
2R2+1 , then α = R2

R2+1 .

From both the cases, this implies that f2 is α submodular having α = 2R2

2R2+1 when lu is cross-entropy

loss and α = R2

R2+1 when lu is squared loss, which further implies that f is α-submodular. This
further implies that, any greedy algorithm will achieve a 1− e−(1−α) approximation factor, for the
coreset selection step when ls is a cross-entropy loss and lu is squared loss or cross-entropy loss.

Finally, the proof of the NP-hardness of the mixed discrete-continuous bi-level optimization problem
is shown in Lemma-1 of the work [24].
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C Loss formulations for different SSL algorithms

C.1 Notation

Denote D = {xi, yi}ni=1 to be the labeled set with n labeled data points, and U = {xj}mj=1 to be the
unlabeled set with m data points. Let θ be the classifier model parameters, ls be the labeled set loss
function (such as cross-entropy loss) and lu be the unlabeled set loss, e.g. consistency-regularization
loss, entropy loss, etc.. Denote LS(D, θ) =

∑
i∈D

ls(θ, xi, yi) and LU (U , θ,m) =
∑
j∈U

mj lu(xj , θ)

where m ∈ {0, 1}m is the binary mask vector for unlabeled set. For notational convenience, we
denote lsi(θ) = ls(xi, yi, θ) and denote luj(θ) = lu(xj , θ). We also assume that the functions ls and
lu involves the scaling constants like 1

n ,
1
m required to consider other loss reductions like mean loss.

Semi-supervised loss: Following the above notations, the loss function for many existing SSL
algorithms can be written as LS(D, θ) + λLU (U , θ,m), where λ is the regularization coefficient
for the unlabeled set loss. For Mean Teacher [56], VAT [42], MixMatch [4], the mask vector m is
made up entirely of ones, whereas for FixMatch [53], m is confidence-thresholded binary vector,
indicating whether to include an unlabeled data instance or not. Usually, LS is a cross-entropy loss
for classification experiments and squared loss for regression experiments.

Detailed description of SSL loss formulation for different SSL algorithms are given below:

C.2 Mean-Teacher

Mean Teacher [56] proposed to generate a more stable target output for data points in the unlabeled
set using the output of the model using the exponential moving average of model parameter values
at previous iterations. Denote the exponential moving average of model parameters as θ̂. Further,
denote f(θ, xi) as the softmax of the logits of the datapoint xi obtained from the model with model
parameters θ.

The loss function of Mean-Teacher algorithm is as follows:

LS(D, θ) + λ

m∑
j=1

1

m
‖f(θ, xj)− f(θ̂, xj)‖22

where LS is the mean cross-entropy loss for classification experiments. Further, the mask vector
m in the case of Mean-Teacher algorithm is made up entirely of ones. And the unlabeled set loss
function is a squared loss function.

C.3 VAT

Virtual adversarial training(VAT) [42] tries to find the additional perturbation to the unlabeled data
points such that the KL divergence loss is maximized with respect to class predictions distribution
after the perturbation.

Let, f be the classifier model characterized by the model parameters θ. Let, d be the additive
perturbation to the unlabeled set. Let, KL(p, q) be the KL-Divergence loss between distributions
p and q. Further, denote f(θ, xi) as the softmax of the logits of the datapoint xi obtained from the
model with model parameters θ.

Then, the additional perturbation is given as follows:

d̂ = argmax
d

m∑
j=1

1

m
KL(f(θ, xj), f(θ, xj + d))

The loss function of VAT algorithm is as follows:

LS(D, θ) + λ

m∑
j=1

1

m
KL(f(θ, xj), f(θ, xj + d̂))

where LS is the mean cross-entropy loss for classification experiments. Further, the mask vector m
in the case of VAT algorithm is made up entirely of ones. And the unlabeled set loss function is a KL
divergence loss function.
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C.4 MixMatch

MixMatch [4] performs augmentations on unlabeled instances and gets a pseudo-label prediction
after sharpening the average predictions with different augmentations like shifts, cropping, image
flipping, weak and strong augmentation to design the regularization function. Finally, the augmented
labeled set and unlabeled sets are concatenated and shuffled to form a new dataset which is used in
mix-up [61].

Let, f be the classifier model characterized by the model parameters θ. Let, (x̂i, p̂i)i∈[1,n] be the
labeled set after mix-up and (x̂j , p̂j)j∈[1,m] be the unlabeled set after mix-up with predicted labels.
Further, denote f(θ, xi) as the softmax of the logits of the datapoint xi obtained from the model with
model parameters θ.

The loss function of Mix-Match algorithm is as follows:

1

n

n∑
i=1

CE(f(θ, x̂i), p̂i) + λ

m∑
j=1

1

m
‖f(θ, x̂j)− p̂j‖22

where CE(p, q) is the cross-entropy loss between distributions p and q. Further, the mask vector m
in the case of MixMatch algorithm is made up entirely of ones. And the unlabeled set loss function is
a l2 squared loss function.

C.5 FixMatch

FixMatch [53] uses the cross-entropy loss between class predictions of weak augmented and strong
augmented data points as the regularization function. Further, FixMatch uses confidence-based
thresholding to consider only unlabeled instances with confident model predictions.

Let, f be the classifier model characterized by the model parameters θ. Let, x̂i be the weakly
augmented version of data point xi and x̂si be the strong augmented version of data point xi. Further,
denote f(θ, xi) as the softmax of the logits of the datapoint xi obtained from the model with model
parameters θ.

Then the loss function of FixMatch algorithm is as follows:

1

n

n∑
i=1

CE(f(θ, x̂i), yi) + λ

m∑
j=1

1max(f(θ,x̂j))≥τ
1

m
CE(f(θ, x̂j), f(θ, x̂

s
j))

where CE(p, q) is the cross-entropy loss between distributions p and q. Further, the mask vector
m in the case of FixMatch algorithm is a binary vector based on confidence thresholding i.e.,
mj = 1max(f(θ,x̂j)). And the unlabeled set loss function is also a cross-entropy loss between the
weakly and strongly augmented versions.

D CRAIG Algorithm for SSL

In this section, we discuss the formulation of CRAIG [39] for coreset selection in the semi-supervised
learning scenario. CRAIG tries to select a coreset of the unlabeled set U such that the unlabeled
loss gradient on the entire unlabeled set is equal to the weighted sum of the unlabeled loss of the
individual data points in the selected coreset.

The optimization problem of CRAIG in the semi-supervised learning scenario can be written as
follows:

S∗ = argmin
S⊆U :|S|≤k,{γj}j∈[1,|S|]:∀jγj≥0

∥∥∥∥∥∥
∑
i∈U

mi∇θlu(xi, θ)−
∑
j∈S

mjγj∇θlu(xj , θ)

∥∥∥∥∥∥ (45)

Let the objective function of CRAIG be denoted as f(S, θ) =∥∥∥∥∥∑i∈Umi∇θlu(xi, θ)−
∑
j∈S

mjγj∇θlu(xj , θ)

∥∥∥∥∥.
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The above objective function can be upper bounded by converting it into a k-medoids objective
function as shown in CRAIG[39]:

f(S, θ) =

∥∥∥∥∥∥
∑
i∈U

mi∇θlu(xi, θ)−
∑
j∈S

mjγj∇θlu(xj , θ)

∥∥∥∥∥∥
≤
∑
i∈U

min
j∈S
‖mi∇θlu(xi, θ)−mj∇θlu(xj , θ)‖

(46)

Then the coreset selection problem of CRAIG in the semi-supervised learning scenario can be written
as follows:

S∗ = argmin
S⊆U :|S|≤k

∑
i∈U

min
j∈S
‖mi∇θlu(xi, θ)−mj∇θlu(xj , θ)‖ (47)

Then the weights for each data instance in the selected coreset is calculated as follows:

γj =
∑
i∈U

1j=argmin
k∈S

‖mi∇θlu(xi,θ)−mk∇θlu(xk,θ)‖ (48)

where 1x = 1 if x = True and 1x = 0 otherwise.

However, in our experiments, we used a per-batch version of the CRAIG problem discussed above
since it is shown to be more effective in work [23]. In the per-batch version, we assume that the
unlabeled set is divided into a set of mini-batches denoted by Bu = {bu1 , bu2 , · · · , bubm/Bc} where
bu1 = {xi : xi ∈ U}Bi=1 is a mini-batch of unlabeled set of size B. Further, we select bk/Bc
mini-batches in the per-batch version of CRAIG instead of k data points.

The per-batch version of CRAIG can be given as follows:

S∗ = argmin
S⊆Bu:|S|≤bk/Bc

∑
i∈Bu

min
j∈S

∥∥∥∥∥∥
∑
k∈bui

mk∇θlu(xk, θ)−
∑
l∈buj

ml∇θlu(xl, θ)

∥∥∥∥∥∥ (49)

Then the weights for all the data instances in a selected mini-batch buj is calculated as follows:

γj =
∑
i∈Bu

1
j=argmin

k∈S

∥∥∥∑p∈bu
i
mp∇θlu(xp,θ)−

∑
l∈bu

k
ml∇θlu(xl,θ)

∥∥∥ (50)

As discussed earlier, in our experiments, we use the per-batch versions of CRAIG and the optimization
problem is given in Equation (49). Furthermore, the weights for each data instance are calculated as
shown in the Equation (50).

E GRADMATCH Algorithm for SSL

In this section, we discuss the formulation of GRADMATCH [23] for coreset selection in the semi-
supervised learning scenario. GRADMATCH tries to select a coreset of the unlabeled set U such that
the unlabeled loss gradient on the entire unlabeled set is equal to the weighted sum of the unlabeled
loss of the individual data points in the selected coreset.

The optimization problem of GRADMATCH in the semi-supervised learning scenario can be written
as follows:

S∗ = argmin
S⊆U :|S|≤k,{γj}j∈[1,|S|]:∀jγj≥0

∥∥∥∥∥∥
∑
i∈U

mi∇θlu(xi, θ)−
∑
j∈S

mjγj∇θlu(xj , θ)

∥∥∥∥∥∥ (51)

Let the objective function of GRADMATCH be denoted as f(S, θ) =∥∥∥∥∥∑i∈Umi∇θlu(xi, θ)−
∑
j∈S

mjγj∇θlu(xj , θ)

∥∥∥∥∥.
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The above objective function can be solved using the Orthogonal Matching Pursuit(OMP) algorithm
as shown in GRADMATCH[23].

However, in our experiments, we used a per-batch version of the GRADMATCH problem discussed
above since it is shown to be more effective in work [23]. In the per-batch version, we assume
that the unlabeled set is divided into a set of mini-batches denoted by Bu = {bu1 , bu2 , · · · , bubm/Bc}
where bu1 = {xi : xi ∈ U}Bi=1 is a mini-batch of unlabeled set of size B. Further, we select bk/Bc
mini-batches in the per-batch version of GRADMATCH instead of k data points.

The per-batch version of GRADMATCH can be given as follows:

S∗ = argmin
S⊆Bu:|S|≤bk/Bc

min

∥∥∥∥∥∥
∑
i∈Bu

∑
k∈bui

mk∇θlu(xk, θ)−
∑
j∈S

∑
l∈buj

ml∇θlu(xl, θ)

∥∥∥∥∥∥ (52)

Then the weights and the mini-batches are selected using the Orthogonal Matching Pursuit (OMP)
algorithm. As discussed earlier, in our experiments, we use the per-batch versions of GRADMATCH
and the optimization problem is given in Equation (52).

F More Details on Experimental Setup, Datasets, and Baselines

F.1 Datasets

F.1.1 Traditional SSL scenario

Name No. of classes No. samples for No. samples for No. samples for No. of features License
training validation testing

CIFAR10 10 50,000 - 10,000 32x32x3 MIT
SVHN 10 73,257 - 26,032 32x32x3 CC0:Public Domain

Table 1: Description of the datasets

Name Labeled set size Unlabeled set size Test set size Labeled set batch size Unlabeled set batch size
CIFAR10 4000 50,000 10,000 50 50

SVHN 1000 73,257 26,032 50 50
Table 2: Dataset Splits used in the traditional SSL scenario

We used various standard datasets, viz., CIFAR10, SVHN, to demonstrate the effectiveness and
stability of RETRIEVE in the traditional SSL scenario. The descriptions of the datasets used along
with the licenses are given in the Table 1. Furthermore, the labeled, unlabeled, and test data splits for
each dataset considered along with the labeled and the unlabeled set batch sizes are given in Table 2.
Both CIFAR10 and SVHN datasets are publicly available. Furthermore, the datasets used do not
contain any personally identifiable information.

F.1.2 Robust SSL scenario

We used CIFAR10, MNIST, to demonstrate the effectiveness and stability of RETRIEVE in the robust
SSL scenario. The descriptions of the datasets used along with the licenses are given in the Table 1.
Both CIFAR10 and MNIST datasets are publicly available. Furthermore, the datasets used do not
contain any personally identifiable information.

Name No. of classes No. of classes No. samples for No. samples for No. samples for No. samples for No. of features
for ID for OOD labeled unlabeled validation testing

CIFAR10 6 4 2,400 20,000 5,000 10,000 32x32x3
MNIST 6 4 60 30,000 10,000 10,000 28x28x1

Table 3: Description of the datasets for robust SSL OOD scenario
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Name Imbalanced classes balanced classes No. samples for No. samples for No. samples for No. samples for No. of features
labeled unlabeled validation testing

CIFAR10 1-5 6-10 2,400 20,000 5,000 10,000 32x32x3

Table 4: Description of the datasets for robust SSL imbalanced scenario

F.2 Traditional SSL baselines

In this setting, we run RETRIEVE (and all baselines) with warm-start. We incorporate RETRIEVE
with three representative SSL methods, including Mean Teacher (MT) [56], Virtual Adversarial
Training (VAT) [42] and FixMatch [53]. The baselines considered are RANDOM (where we just
randomly select a subset of unlabeled data points of the same size as RETRIEVE), CRAIG [39, 23]
and FULL-EARLYSTOP. CRAIG [39, 23] was actually proposed in the supervised learning scenario.
We adapt it to SSL by choosing a representative subset of unlabeled points such that the gradients
are similar to the unlabeled loss gradients. For more information on the formulation of CRAIG in
the SSL case, see Appendix D. We run the per-batch variant of CRAIG proposed in [23], where we
select a subset of mini-batches instead of data instances for efficiency and scalability. Again, we
emphasize that RANDOM and CRAIG are run with early stopping for the same duration as RETRIEVE.
In FULL-EARLYSTOP baseline, we train the model on the entire unlabeled set for the time taken by
RETRIEVE and report the test accuracy.

F.3 Robust SSL baselines

In this setting, we run RETRIEVE (and all baselines) without warm-start. We incorporate RETRIEVE
and other baselines with VAT method. DS3L considers a shallow neural network (also called meta-
network) to predict the weights of unlabeled examples and estimate the parameters of the neural
network based on a clean labeled set (which could also be the original labeled set) via bi-level
optimization. For L2RW method, it directly considers the sample weights are hyperparameter and
optimize the hyperparameter via bi-level optimization.

F.4 Experimental Setup

In our experiments, we implement our approaches RETRIEVE for three representative SSL methods,
including Mean Teacher (MT), Virtual Adversarial Training (VAT) and fixmatch. For MT and VAT,
we built upon the open-source Pytorch implementation8. For fixmatch method, we implemented it
based on a open-source Pytorch implementation9. For DS3L [17], we implemented it based on the
released code 10. For L2RW [49], we used the open-source Pytorch implementation11and adapted it
to the SSL settings.

We use a WideResNet-28-2 [60] model and a Nesterov’s accelerated SGD optimizer with a learning
rate of 0.03, weight decay of 5e-4, the momentum of 0.9, and a cosine annealing [35] learning rate
scheduler for all the experiments except with MNIST OOD. For the MNIST OOD experiment, we
used a two-layer CNN model consisting of two conv2d layers of dimensions 1x16x3 and 16x32x3,
two MaxPool2d layers with size=3, stride=2, padding=1, and a RELU activation function. Finally, for
MNIST OOD experiments, the optimizer and learning rate schedulers are the same as given above,
while the learning rate used is 0.003.

G Additional Experiments in Traditional SSL

G.1 RETRIEVE-WARM vs RETRIEVE

We show that RETRIEVE-WARM is more efficient and effective compared to RETRIEVE in the
traditional SSL setting in Figure 8. Hence, in our experiments, we consider the warm variant of
RETRIEVE in traditional SSL scenario.

8https://github.com/perrying/pytorch-consistency-regularization
9https://github.com/kekmodel/FixMatch-pytorch

10https://github.com/guolz-ml/DS3L
11https://github.com/danieltan07/learning-to-reweight-examples
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(a) MT RETRIEVE vs RETRIEVE-WARM
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(b) VAT RETRIEVE vs RETRIEVE-WARM

Figure 8: Subfigures (a), (b) show comparison of RETRIEVE vs RETRIEVE-WARM with MT, VAT on CIFAR-10
dataset with 30% subset fraction: We show that the RETRIEVE-WARM is more effective and efficient compared
to RETRIEVE in traditional SSL setting.
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Figure 7: Subfigure (a) shows MT extended convergence plot on CIFAR-10 dataset with 30% subset fraction:
We show that the RETRIEVE achieves similar performance to original MT algorithm while being 1.8X faster
and better performance than the original MT algorithm while being 1.5X faster. Subfigure (b) shows the energy
efficiency plot of VAT algorithm on CIFAR10 dataset with a subset fractions of 10%, 20%, 30%: We show that
the RETRIEVE is 3.1X energy efficient compared to the original VAT algorithm with an accuracy degradation of
0.78%.
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(a) CIFAR10-VAT Extended
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(b) CIFAR10-MT Extended

1 2.5 5 10
Energy Ratio→

0.0

2.5

5.0

R
e
l.

T
e
st

E
rr

o
r
→

Retrieve
Extended

(b) CIFAR10-VAT Extended Energy

Figure 8: Subfigure (a) shows scatter plot of VAT for CIFAR10 dataset with subset fractions of 10%, 20%,
30% along with RETRIEVE-EXTENDED by training the model for more iterations: We show that the RETRIEVE
achieves similar performance to original VAT algorithm while being 2X faster. Subfigure (b) shows scatter plot
of MT for CIFAR10 dataset with subset fractions of 10%, 20%, 30% along with RETRIEVE-EXTENDED by
training the model for more iterations: We show that the RETRIEVE achieves similar performance to original
MT algorithm while being 1.8X faster. Subfigure (c) shows energy efficiency scatter plot of VAT for CIFAR10
dataset with subset fractions of 10%, 20%, 30% along with RETRIEVE-EXTENDED by training the model for
more iterations: We show that the RETRIEVE achieves similar performance to original VAT algorithm while
being 2X more energy efficient.
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VAT Standard Deviation Results
Standard deviation of the Model(for 3 runs)

Budget(%) 10% 20% 30%
Dataset Model Selection Strategy

CIFAR10 Wide-ResNet-28-2 FULL 0.124 0.124 0.124
RANDOM 0.526 0.538 0.512

CRAIG 0.368 0.285 0.195
RETRIEVE 0.198 0.148 0.105

SVHN Wide-ResNet-28-2 FULL 0.114 0.114 0.114
RANDOM 0.372 0.358 0.348

CRAIG 0.284 0.241 0.207
RETRIEVE 0.187 0.154 0.112

Table 8: Standard deviation results using VAT in traditional SSL scenario for CIFAR10, SVHN
datasets for three runs

Mean-Teacher Standard Deviation Results
Standard deviation of the Model(for 3 runs)

Budget(%) 10% 20% 30%
Dataset Model Selection Strategy

CIFAR10 Wide-ResNet-28-2 FULL 0.105 0.105 0.105
RANDOM 0.578 0.524 0.564

CRAIG 0.482 0.386 0.324
RETRIEVE 0.196 0.162 0.121

SVHN Wide-ResNet-28-2 FULL 0.11 0.11 0.11
RANDOM 0.374 0.329 0.354

CRAIG 0.268 0.284 0.245
RETRIEVE 0.146 0.094 0.078

Table 9: Standard deviation results using Mean-Teacher in traditional SSL scenario for CIFAR10,
SVHN datasets for three runs

FixMatch Standard Deviation Results
Standard deviation of the Model(for 3 runs)

Budget(%) 10% 20% 30%
Dataset Model Selection Strategy

CIFAR10 Wide-ResNet-28-2 FULL 0.12 0.12 0.12
RANDOM 0.523 0.618 0.584

CRAIG 0.386 0.342 0.305
RETRIEVE 0.174 0.142 0.105

Table 10: Standard deviation results using FixMatch in traditional SSL scenario for CIFAR10, SVHN
datasets for three runs

G.2 Test-Accuracies, Training times and Standard deviations

Table 5, Table 6, Table 7 shows the top-1 test accuracies and training times taken by RETRIEVE
and the other baselines considered in traditional SSL scenario for VAT, Mean-Teacher on CIFAR10,
SVHN datasets and for FixMatch algorithm on CIFAR dataset for different fractions of 10%, 20%
and 30% respectively. Furthermore, Table 8, Table 9, Table 10 gives the standard deviation numbers
of RETRIEVE and other baselines in traditional SSL scenarios for VAT, Mean-Teacher on CIFAR10,
SVHN datasets and for FixMatch algorithm on CIFAR dataset for different fractions of 10%, 20%
and 30% respectively.

G.3 MT extended convergence plot

Subfigure 9a shows the extended convergence plot of RETRIEVE using Mean-Teacher algorithm
on CIFAR10 dataset for 30% subset fraction. From the plot, it is evident that RETRIEVE achieves
similar performance to original MT algorithm while being 1.8X faster and better performance than
the original MT algorithm while being 1.5X faster.
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G.4 Energy savings

Subfigure 9b shows the energy efficiency plot of RETRIEVE using VAT algorithm on CIFAR10 dataset
for 10%, 20%, 30% subset fractions. For calculating the energy consumed by the GPU/CPU cores,
we use pyJoules12. From the plot, it is evident that RETRIEVE is 3.1X energy efficient compared to
the original VAT algorithm with an accuracy degradation of 0.78%.

RETRIEVE vs RETRIEVE-WARM in Robust SSL
Top-1 Test accuracy(%) Model Training time(in hrs)

OOD ratio(%) 50% 50%
Dataset Model Selection Strategy

CIFAR10 OOD Wide-ResNet-28-2 RETRIEVE-WARM 78.8 18.2
RETRIEVE 79 17.03

MNIST OOD Two layer CNN model RETRIEVE-WARM 95.3 1.43
RETRIEVE 95.85 1.37

Class imbalance ratio(%) 50% 50%
CIFAR10 Imbalance Wide-ResNet-28-2 RETRIEVE-WARM 76.13 18.6

RETRIEVE 78.86 17.3

Table 11: RETRIEVE vs RETRIEVE-WARM in Robust SSL scenario for CIFAR10 OOD, MNIST
OOD and CIFAR10 Imbalance datasets using VAT algorithm

H Additional Experiments for Robust SSL

H.1 RETRIEVE-WARM vs RETRIEVE

We show that RETRIEVE is more efficient and effective compared to RETRIEVE-WARM in the robust
SSL setting from the results given in Table 11. For specific numbers, RETRIEVE achieves 79%
accuracy in 17.03 hrs while RETRIEVE-WARM achieves 78.8% accuracy in 18.2 hrs for CIFAR10
OOD dataset with an OOD ratio of 50%. Further, RETRIEVE achieves 95.85% accuracy in 1.37 hrs
while RETRIEVE-WARM achieves 95.3% accuracy in 1.43 hrs for MNIST OOD dataset with an OOD
ratio of 50%. Finally, RETRIEVE achieves 78.86% accuracy in 17.3 hrs while RETRIEVE-WARM
achieves 76.13% accuracy in 18.6 hrs for CIFAR10 Imbalance dataset with a class imbalance ratio
of 50%. Hence, in our experiments, we consider RETRIEVE without warm variant in robust SSL
scenario.

H.2 Test-Accuracies, Training times and Standard deviations:

Table 12 shows the top-1 test accuracies and training times taken by RETRIEVE and the other baselines
considered in robust SSL scenario for VAT on CIFAR10 OOD, MNIST OOD, and CIFAR10 Imbal-
ance datasets. The results show that RETRIEVE with VAT outperforms all other baselines, including
DS3L [17] (also run with VAT) in the class imbalance scenario as well. In particular, RETRIEVE
outperforms other baselines by around 1.5% on the CIFAR-10 with imbalance. Furthermore, Table 13
gives the standard deviation numbers of RETRIEVE and other baselines in robust SSL scenario for
VAT on CIFAR10 OOD, MNIST OOD, and CIFAR10 Imbalance datasets.

I Broader Impacts and Limitations

Limitations: One of the main limitations of RETRIEVE is that even though it reduces the training
time, energy costs, and CO2 emissions of SSL algorithms, it does not reduce the memory requirement.
Furthermore, the memory requirement is a little higher because it requires additional memory to store
the gradients required for the coreset selection, which makes running the RETRIEVE algorithm in
devices with low memory capacity significantly harder without proper memory handling.

Societal Impacts: We believe RETRIEVE has a significant positive societal impact by making SSL
algorithms (and specifically robust SSL) significantly faster and energy-efficient, thereby reducing
the CO2 emissions and energy consumption incurred during training. This is particularly important
because state-of-the-art SSL approaches like FixMatch are very computationally expensive. Further-
more, SSL approaches often have a large number of hyper-parameters and the performance can be

12https://pypi.org/project/pyJoules/.
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VAT Standard Deviation Results
Standard deviation of the Model(for 3 runs)

OOD ratio(%) 25% 50% 75%
Dataset Model Selection Strategy

CIFAR10 OOD Wide-ResNet-28-2 VAT 0.13 0.18 0.24
SUPERVISED 0.021 0.021 0.021

L2RW 0.31 0.39 0.295
DS3L 0.38 0.41 0.34

RETRIEVE 0.26 0.21 0.27
MNIST OOD Two layer CNN model VAT 0.014 0.018 0.021

SUPERVISED 0.01 0.01 0.01
L2RW 0.04 0.03 0.04
DS3L 0.061 0.041 0.056

RETRIEVE 0.034 0.039 0.036
Class imbalance ratio(%) 10% 30% 50%

CIFAR10 Imbalance Wide-ResNet-28-2 VAT 0.295 0.242 0.185
SUPERVISED 0.16 0.13 0.11

L2RW 0.37 0.32 0.26
DS3L 0.34 0.36 0.21

RETRIEVE 0.32 0.28 0.205

Table 13: Standard deviation results using VAT in Robust SSL scenario for CIFAR10 OOD, MNIST
OOD and CIFAR10 Imbalance datasets for three runs.

heavily dependent on the right tuning of these hyper-parameters [53, 44]. We believe that RETRIEVE
can enable much faster and energy efficient tunings of hyper-parameters in SSL approaches thereby
enabling orders of magnitude speedup and CO2 emissions being reduced. RETRIEVE takes one step
towards Green-AI by enabling using smaller subsets for training these models.
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