
Appendix

A Proofs and derivations

Theorem 1. The Jacobian of the operation F with respect to x 2 Rn can be expressed as a block
diagonal matrix, J 2 Rn⇥n, whose (s, t)th entry obeys:

Jx(F (x))(s, t) =
@h(x)s
@xt

=

(
@hIi (x)s

@xt
if s, t 2 Ii

0 otherwise
(15)

Proof. The proof follows similar arguments as in Proposition 4 from Blondel et al. [2020].

Let I = {I1, I2, · · · , Ik} be k partitions induced by some H : R ! R for some input, x 2 Rn

and h 2 Rn be a vector from n equally spaced evaluated H in its domain. Then, each element, xi

uniquely belongs to some partition Ir.

Now,

Jx(F (x))(s, t) =
@
Pk

j=1 h(x)s � (s 2 Ij)

@xt

=

(
@h(x)s
@xt

if s, t 2 Ir
0 otherwise

Note that this is a block-diagonal matrix with each block being |Ir| ⇥ |Ir|, giving us the required
statement.

B Application of DSA to piecewise polynomial regression

1D piecewise constant regression: We first provide the notations we provided in Section 2.

Let f 2 Rn be a vector where the ith element is denoted as fi. Let us use [n] = {1, 2, . . . , n} to
denote the set of all coordinate indices. For a vector f 2 Rn and an index set I ✓ [n], let fI be the
restriction of f to I , i.e., for i 2 I , we have fI(i) := fi, and fI(i) := 0 for i /2 I . Now, consider any
fixed partition of [n] into a set of disjoint intervals I = {I1, . . . , Ik} where the number of intervals
|I| = k. The `2-norm of f is written as kfk2 :=

pPn
i=1 f

2
i while the `2 distance between f, g is

written as kf � gk2. Finally, I 2 {0, 1}n is a indicator vector where for i 2 I , I(i) = 1 and for
i /2 I , I(i) = 0.

We consider the case of k-piecewise regression in 1D, where we can use any algorithm to approximate
a given input vector with a fixed number of piecewise polynomial functions. The simplest example
is that of k-piecewise constant regression, where a given input vector is approximated by a set of
constant segments.

Formally, consider a piecewise constant function H : R ! R with k pieces. Similar to spline, we
evaluate H at any n equally spaced points in its domain. This gives us a vector h 2 Rn, which we
call a k-piecewise constant vector. Since the best (in terms of `2-norm) constant approximation to a
function is its mean, a k-piecewise constant function approximation can be reparameterized over the
collection of all disjoint intervals I = {I1, . . . , Ik} of [n] such that given x:

min
I1,...,Ik

nX

i=1

kX

j=1

(hIj (i)� xi)
2 = min

I1,...,Ik

kX

j=1

X

i2Ij

(
1

|Ij |
X

l2Ij

xl � xi)
2 (16)

We assume an optimal H (parameterized by {Ii} that can be obtained using many existing methods
(a classical approach by dynamic programming [Jagadish et al., 1998]). The running time of such
approaches is typically O(nk), which is constant for fixed k; see Acharya et al. [2015] for a more
detailed treatment.

1

Using Theorem 1, the Jacobian of the output k-histogram with respect to x assumes the following
form:

@h

@xi
=

@

@xi

kX

j=1

(
1

|Ij |
X

l2Ij

xl)) =
@

@xi

kX

j=1

(
1

|Ij |
(
X

l2Ij

xl) Ij) (17)

=
kX

j=1

@

@xi

1

|Ij |
(
X

l2Ij

Ij) =
1

|Ij | Ij (18)

Therefore, the Jacobian of h with respect to x forms the block-diagonal matrix J 2 Rn⇥n:

J =

2

664

J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk

3

775

where all entries of Ji 2 R|Ii|⇥|Ii| equal to 1/|Ii|. Note here that the sparse structure of the Jacobian
allows for fast computation, and it can be easily seen that computing the Jacobian vector product
JT ⌫ for any input ⌫ requires O(n) running time. As an additional benefit, the decoupling induced by
the partition enables further speed up in computation via parallelization.

Generalization to 1D piecewise polynomial fitting: We now derive differentiable forms of gener-
alized piecewise d-polynomial regression, which is used in applications such as spline fittings.

As before, H : R ! R is any algorithm to compute the k-piecewise d polynomial approximation of
an input vector x 2 Rd that outputs partition I = {I1, . . . , Ik}. Similarly, the function H gives us a
vector h 2 Rn, a k-piecewise polynomial vector. Then, for each partition, we are required to solve
a d-degree polynomial regressions. Generally, the polynomial regression problem is simplified to
linear regression by leveraging a Vandermonde matrix. We get a similar closed-form expression for
the coefficient as in Section 2.2.

Assume that for partition Ij , the input indices tIj (i) is ith element in an index vector corresponding
to the Ij partition. Then, the input indices tIj (i) are represented as a Vandermonde matrix, VIj :

VIj =

2

6664

1 tIj (1) tIj (1)
2 · · · tIj (1)

d

1 tIj (2) tIj (2)
2 · · · tIj (2)

d

...
...

...
. . .

...
1 tIj (|Ij |) tIj (|Ij |)2 · · · tIj (|Ij |)d

3

7775
.

It can be shown that the optimal polynomial coefficient ↵Ij corresponding to the partition (or disjoint
interval) Ij have the following closed form:

↵Ij = (VT
IjVIj)

�1VT
IjxIj ,

where xIj 2 R|Ij | is a vector x length of |Ij | corresponding to the Ij partition such that xIj (i) = xi

if i 2 Ij and undefined if i /2 Ij . This can be computed in O(kndw) time where w is the matrix-
multiplication exponent [Guha et al., 2006]. Then using Theorem 1 and the gradient for polynomial
regression, the Jacobian of hIj with respect to x forms a blockwise sparse matrix:

@hIj (s)

@xl
=

@

@xl
(h↵Ij , [V

T
Ij]si) =

@

@xl
(h(VT

IjVIj)
�1VT

IjxIj , [V
T
Ij]si)

=
@

@xl
[VT

Ij]
T
s (V

T
IjVIj)

�1VT
IjxIj

=

(⇥
VIj (V

T
Ij
VIj)

�1[VT
Ij
])s

⇤
l

if l, s 2 Ij
0 otherwise.

The two main takeaways here are as follows: (1) VIi can be precomputed for all possible n � 1
partition sizes, thus allowing for fast (O(n)) computation of Jacobian-vector products; and (2) an
added flexibility is that we can independently control the degree of the polynomial used in each of the
partitions. The second advantage could be very useful for heterogeneous data as well as considering
boundary cases in data streams.

2

B.1 2D piecewise constant functions

Our 1D piecewise spline approximation can be (heuristically) extended to 2D data. We provide
detailed descriptions. We consider the problem of image segmentation, which can be viewed
as representing the domain of an image into a disjoint union of subsets. Neural-network-based
segmentation involves training a model (deep or otherwise) to map the input image to a segmentation
map, which is a piecewise constant spline function. However, standard neural models trained in
a supervised manner with image-segmentation map pairs would generate pixel-wise predictions,
leading to disconnected regions (or holes) as predictions. We leverage our approach to enforce deep
models to predict piecewise constant segmentation maps. In case of 2D images, note that we do not
have a standard primitive (for piecewise constant fitting) to serve as the forward pass. Instead, we
leverage connected-component algorithms (such as Hoshen-Kopelman, or other, techniques [Wu
et al., 2005]) to produce a partition, and the predicted output is a piecewise constant image with
values representing the mean of input pixels in the corresponding piece. For the backward pass, we
use a tensor generalization of the block Jacobian where each partition is now represented as a channel
which is only non-zero in the positions corresponding to the channel. Formally, if the image x 2 Rn

is represented as the union of k partitions, h =
Sk

i=1 Ii, the Jacobian, Jx = @h/@x 2 Rn⇥n and,

Jx(F (x))(s, t) =

(
@h(x)s
@xt

= 1
|Ii| if s, t 2 Ii,

0 otherwise.
(19)

Note that Ii here no longer correspond to single blocks in the Jacobian. Here, they will reflect the
positions of pixels associated with the various components. However, the Jacobian is still sparsely
structured, enabling fast vector operations.

C Implementing DSA with NURBS

C.1 Backward evaluation for NURBS surface

In a modular machine learning system, each computational layer requires the gradient of a loss
function with respect to the output tensor for the backward computation or the backpropagation. For
our NURBS evaluation layer this corresponds to @L/@S . As an output to the backward pass, we
need to provide @L/@ . While we represent S for the boundary surface, computationally, we only
compute S (the set of surface points evaluated from S). Therefore, we would be using the notation of
@S instead of @S to represent the gradients with respect to the boundary surface. Here, we assume
that with increasing the number of evaluated points, @S will asymptotically converge to @S. Now,
we explain the computation of @S/@ in order to compute @L/@ using the chain rule. To explain
the implementation of the backward algorithm, we first explain the NURBS derivatives for a given
surface point with respect to the different NURBS parameters.

C.2 NURBS derivatives

We rewrite the NURBS formulation as follows:

S(u, v) =
NR(u, v)

w(u, v)
(20)

where,

NR(u, v) =
nX

i=0

mX

j=0

Np
i (u)N

q
j (v)wijPij

w(u, v) =
nX

i=0

mX

j=0

Np
i (u)N

q
j (v)wij

For the forward evaluation of S(u, v) = f (P ,U ,V ,W), we can define four derivatives for a given
surface evaluation point: S,u := @S(u,v)/@u, S,v := @S(u,v)/@v, S,P := @S(u,v)/@P, and S,W :=
@S(u,v)/@W. Note that, S,P and S,W are represented as a vector of gradients {S,Pij8Pij 2 P} and
{Swij8wij 2 W}. Now, we show the mathematical form of each of these four derivatives. The first

3

derivative is traditionally known as the parametric surface derivative, S,u. Here, Np
i,u(u) refers to the

derivative of basis functions with respect to u.

S,u(u, v) =
NR,u(u, v)w(u, v)�NR(u, v)w,u(u, v)

w(u, v)2
(21)

where,

NR,u(u, v) =
nX

i=0

mX

j=0

Np
i,u(u)N

q
j (v)wijPij

w,u(u, v) =
nX

i=0

mX

j=0

Np
i,u(u)N

q
j (v)wij

A similar surface point derivative could be defined for S,v . These derivatives are useful in the sense
of differential geometry of NURBS for several CAD applications [Krishnamurthy et al., 2009].
However, since many deep learning applications such as surface fitting are not dependent on the
(u, v) parametric coordinates, we do not use them in our layer. Also, note that S,u and S,v are not the
same as S,U and S,V. A discussion about S,U and S,V is provided later in this section. Now, let us
define S,pij (u, v).

S,Pij (u, v) =
Np

i (u)N
q
j (v)wijPn

k=0

Pm
l=0 N

p
k (u)N

q
l (v)wkl

(22)

S,Pij (u, v) is the rational basis functions themselves. Computing S,wij (u, v) is more involved with
wij terms in both the numerator and the denominator of the evaluation.

S,wij (u, v) =
NR,wij (u, v)w(u, v)�NR(u, v)w,wij (u, v)

w(u, v)2
(23)

where,
NR,wij (u, v) = Np

i (u)N
q
j (v)Pij

w,wij (u, v) = Np
i (u)N

q
j (v)

C.3 Derivatives with respect to knot points

For simplicity, we will stick to 1D NURBS curves. The extension to 2D surfaces is straightforward
using Kronecker products.

We recall the definition of the NURBS basis:

Nd
i (u) =

u� ui

ui+d � ui
Nd�1

i (u) +
ui+d+1 � u

ui+d+1 � ui+1
Nd�1

i+1 (u), N
0
i (u) =

⇢
1 if ui  u  ui+1

0 otherwise
(24)

The goal is to evaluate the derivative of Nd
i (u) with respect to the knot points {ui}. We observe that

due to the recursive nature of the definition, we can accordingly compute the derivatives of Nd
i (u) in

a recursive fashion using the chain rule, provided we can evaluate:

@N0
i (u)

@ui
=

@1([ui, ui+1])

@ui

(and likewise for ui+1) where 1 denotes the indicator function over an interval. However, this
derivative is not well-defined since the gradient is zero everywhere and undefined at the interval
edges.

4

We propose to approximate this derivative using Gaussian smoothing. Rewrite the interval as the
difference between step-functions convolved with deltas shifted by ui and ui+1 respectively:

1([ui, ui+1))(u) = sign(u) ? �(u� ui)� sign(u) ? �(u� ui+1)

and approximate the delta function with a Gaussian of sufficiently small (but constant) bandwidth:

1([ui, ui+1])(u) = sign(u) ?G�(u� ui)� sign(u) ?G�(u� ui+1)

where

G�(u� µ) =
1p
2⇡�2

exp(� (u� µ)2

2�2
).

The derivative with respect to µ is therefore given by:

G0
�(u = µ) =

(u� µ)

2�2
G�(u� µ),

which means that the approximate gradient introduces a multiplicative (u�µ) factor with the original
basis function. Propagating this through the chain rule and applying a similar strategy as Cox-de
Boor recursion gives us Algorithm 1.

D Experimental details

D.1 Segmentation

Weizmann Horse dataset: The dataset consists of 378 images of single horses with varied back-
grounds and their corresponding ground truth. We divide the dataset into 85:15 ratios for training and
testing, respectively. Further, each image is normalized to a [0, 1] domain by dividing it by 256. 5443

Cell dataset: The dataset consists of 19K gray-scale images containing various cells, and we take
1900 subset images as the dataset. We divide the dataset into 85:15 ratios for training and testing,
respectively. Similarly, we normalize the image to a [0, 1] by dividing each pixel by 256.

Architecture and training: We use the following U-Net architecture for training our segmentation
networks. While we use the equivalent model skeleton reported by Ronneberger et al. [2015], we
scale down the network size starting the initial channels C = 8 (default channel is C = 64). In
both datasets, we train the network 1000 epochs with an initial learning rate of 0.0003. We leverage
Adam optimizer with � = (0.9, 0.999) and weight decay 0.0001. We use a binary cross-entropy loss
function as the objective function.

D.2 NURBS surface fitting implementation

The complete algorithm for forward evaluation of S(u, v) as described in Piegl and Tiller [1997] can
be divided into three steps:

1. Finding the knot span of u 2 [ui, ui+1) and the knot span of v 2 [vj , vj+1), where
ui, ui+1 2 U and vj , vj+1 2 V. This is required for the efficient computation of only the
non-zero basis functions.

2. Now, we compute the non-zero basis functions Np
i (u) and Nq

j (v) using the knot span.
The basis functions have specific mathematical properties that help us in evaluating them
efficiently. The partition of unity and the recursion formula ensures that the basis functions
are non-zero only over a finite span of p+ 1 control points. Therefore, we only compute
those p+ 1 non-zero basis functions instead of the entire n basis function. Similarly in the
v direction we only compute q + 1 basis functions instead of m.

3. We first compute the weighted control points Pw
ij for a given control point Pij =

{Px,Py,Pz} and weight wij as {Pxw,Pyw,Pzw} representing the surface after ho-
mogeneous transformation for ease of computation. Once the basis functions are computed
we multiply the non-zero basis functions with the corresponding weighted control points,
Pw

ij . This result, S0 is then used to compute S(u, v) as {S0
x/S

0
w, S

0
y/S

0
w, S

0
z/S

0
w}.

5

Algorithm 2 Forward algorithm for multiple surfaces
Input :U, V, P, W, output resolution ngrid, mgrid

Output :S
Initialize a meshgrid of parametric coordinates

uniformly from [0, 1] using ngrid ⇥mgrid : ugrid ⇥ vgrid
Initialize: S ! 0
for k = 1 : surfaces in parallel do

for j = 1 : mgrid points in parallel do
for i = 1 : ngrid points in parallel do

Compute uspan and vspan for the corresponding ui and vi using knot vectors Uk and Vk

Compute basis functions Ni and Nj basis functions using uspan and vspan and knot
vectors Uk and Vk

Compute surface point S(ui, vj) (in x, y, and z directions).
Store uspan, vspan, Ni, Nj , and S(ui, vj) for backward computation

In a deep learning system, each layer is considered as an independent unit performing the computation.
The layer takes a batch of input during the forward pass and transforms them using the parameters of
the layer. Further, in order to reduce the computations needed during the backward pass, we store
extra information for computing the gradients during the forward computation. The NURBS layer
takes as input the control points, weights, and knot vectors for a batch of NURBS surfaces. We
define a parameter to control the number of points evaluated from the NURBS surface. We define a
mesh grid of a uniformly spaced set of parametric coordinates ugrid ⇥ vgrid. We perform a parallel
evaluation of each surface point S(u, v) in the ugrid ⇥ vgrid for all surfaces in the batch and store
all the required information for the backward computation. The complete algorithm is explained in
Algorithm 2. Our implementation is robust and modular for different applications. For example, if an
end-user desires to use this for a B-spline evaluation, they need to set the knot vectors to be uniform
and weights W to be 1.0. In this case, the forward evaluation can be simplified to S(u, v) = f(P).
Further, we can also pre-compute the knot spans and basis functions during the initialization of the
NURBS layer. During computation, we could make use of tensor comprehension that significantly
increases the computational speed. We can also handle NUBS (Non-Uniform B-splines), where the
knot vectors are still non-uniform, but the weights W are set to 1.0. Note in the case of B-splines
 = {P} (the output from the deep learning framework) and in the case of NUBS = {P,U,V}.

SplineNet training details: The SplineNet architecture comprises a series of dynamic graph
convolution layers, followed by an adaptive max pooling and conv1d layers. We use the Chamfer
distance as the loss function. The Chamfer distance (LCD) is a global distance metric between two
sets of points, as shown below.

LCD =
X

Pi2P

min
Qj2Q

||Pi �Qj||2 +
X

Qj2Q

min
Pi2P

||Pi �Qj||2 (25)

For training and testing our experiments, we use the SplineDataset provided by Sharma et al. [2020].
The SplineDataset is a diverse collection of open and closed splines that have been extracted from
one million CAD geometries included in the ABC dataset. We run our experiments on open splines
split into 3.2K, 3K, and 3K surfaces for training, testing, and validation.

D.3 PDE solver implementation with DSA prior

Deep convolutional neural networks are a natural choice for the network architecture for solving
PDEs due to the structured grid representation of Sd and similarly structured representation of Ud

✓ .
The spatial localization of convolutional neural networks helps in learning the interaction between the
discrete points locally. Since the network takes an input of a discrete grid representation (similar to an
image, possibly with multiple channels) and predicts an output of the solution field of a discrete grid
representation (similar to an image, possibly with multiple channels), this is considered to be similar to
an image segmentation or image-to-image translation task in computer vision. U-Nets [Ronneberger
et al., 2015] have been known to be effective for applications such as semantic segmentation and
image reconstruction.

6

Figure 4: UNet architecture used for training

Figure 5: Solution to the linear Poisson’s equation with forcing. From left to right: f , uDSA,
unum and (uDSA � unum). Here unum is a conventional numerical solution obtained through FEM.
Diffusivity ⌫ = 1

We choose U-Net architecture for solving the PDE due to its success in other diverse applications.
The architecture of the network is shown in Figure 4. First, a block of convolution and instance
normalization is applied. Then, the output is saved for later use during skip-connection. This
intermediate output is then downsampled to a lower resolution for a subsequent convolution block
and instance normalization layers. This process is continued twice. The upsampling starts where
the saved outputs of similar dimensions are concatenated with the output of upsampling for creating
the skip-connections followed by a convolution layer. LeakyReLU activation was used for all the
intermediate layers. The final layer has a Sigmoid activation.

D.3.1 Applying boundary conditions

The Dirichlet boundary conditions are applied exactly. The query result from Ud
✓ from the network

pertains only to the interior of the domain. The boundary conditions need to be taken into account
separately. There are two ways of doing this:

• Applying the boundary conditions exactly (this is possible only for Dirichlet conditions in
FEM/FDM, and the zero-Neumann case in FEM)

• Taking the boundary conditions into account in the loss function, thereby applying them approxi-
mately.

We take the first approach of applying the Dirichlet conditions exactly (subject to the mesh). Since the
network architecture is well suited for 2d and 3d matrices (which serve as an adequate representation
of the discrete field in 2D/3D on regular geometry), the imposition of Dirichlet boundary conditions
amounts to simply padding the matrix by the appropriate values. A zero-Neumann condition can
be imposed by taking the “edge values" of the interior and copying them as padding. A nonzero
Neumann condition is slightly more involved in the FDM case since additional equations need to be
constructed, but if using FEM loss, this can be done with another surface integration on the relevant
boundary.

7

E Additional results

Original Ground Mbaseline MDSA

Figure 6: Image Segmentation Tasks Adding DSA layers (MDSA) on top of U-Net (Mbaseline)
improves the segmentation tasks on both datasets.

8

Original Ground Mbaseline MDSA

Figure 7: Additional cell segmentations results. Mbaseline and MDSA correspond to U-Net and
U-Net+DSA layers, respectively.

9

Ablation studies: In the main paper, we demonstrate how our module can perform for different
experiments. In this section, we assess the computational performance of our module. For brevity, we
restrict our analysis to surface fitting operation and analyze the timings with variations in the number
of control points, evaluation points, and surface degree. We only study the first 500 iterations (which
include both the forward and backward pass). We perform all our experiments on a desktop with a
32 core 2.4 GHz Intel Xeon processor, 64 GB RAM, and an NVIDIA Titan Black GPU with 6 GB
RAM.

Table 6: Time to fit a surface for different number of control points.

Control Points Iteration time (s)
6 ⇥ 6 0.098

12 ⇥ 12 0.106
24 ⇥ 24 0.110
48 ⇥ 48 0.110

Table 7: Time to fit a surface for different number of evaluation points.

Evaluation Points Iteration time (s)
64 ⇥ 64 0.074

128 ⇥ 128 0.120
256 ⇥ 256 0.170
512 ⇥ 512 0.266

Table 8: Computation time to fit a surface of different degree.

Degree Iteration time (s)
1 0.074
2 0.120
3 0.170
4 0.266

10

