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Abstract
Neural networks often tend to rely on bias features that have strong
but spurious correlations with the target labels for decision-making,
leading to poor performance on data that does not adhere to these
correlations. Early debiasing methods typically construct an un-
biased optimization objective based on the labels of bias features.
Recent work assumes that bias label is unavailable and usually
trains two models: a biased model to deliberately learn bias features
for exposing data bias, and a target model to eliminate bias captured
by the bias model. In this paper, we first reveal that previous biased
models fit target labels, which resulted in failing to expose data bias.
To tackle this issue, we propose poisoner, which utilizes data poison-
ing to embed the biases learned by biased models into the poisoned
training data, thereby encouraging the models to learn more biases.
Specifically, we couple data poisoning and model training to contin-
uously prompt the biased model to learn more bias. By utilizing the
biased model, we can identify samples in the data that contradict
these biased correlations. Subsequently, we amplify the influence
of these samples in the training of the target model to prevent the
model from learning such biased correlations. Experiments show
the superior debiasing performance of our method.
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1 Introduction
Despite the significant advancements in neural networks, a persis-
tent challenge remains: neural networks often learn biased correla-
tions between peripheral features and labels, deviating from human
intentions [1, 17, 28]. This issue stems from the fact that training
data not only contains intended correlations for the model to learn
but also unintended biased correlations. A notable example is the
COMPAS algorithm [4], widely employed for recidivism prediction,
which inadvertently adopted biased correlations between African
American individuals and recidivism, resulting in unjust sentencing
decisions based on racial features.

Based on whether they align with biased correlations, data sam-
ples can be divided into bias-aligned (for instance, African American
recidivism) and bias-conflicting samples. The essence of debiasing
lies in balancing the influence of these two types of samples on
the model. Conventional debiasing methods [10, 24, 33] either ne-
cessitate bias annotations for each training sample, distinguishing
between bias-aligned and bias-conflicting samples, or utilize prior
knowledge of bias types to construct specialized debiasing networks.
However, acquiring known bias information is often impractical in
real-world scenarios, as it entails extensive experimentation and
labor-intensive bias label annotation. Hence, the research focus in
debiasing is shifting towards the more practical approach of unsu-
pervised debiasing [14, 18], capable of bias reduction without bias
label annotation.

https://doi.org/10.1145/3664647.3681524
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Figure 1: (a) Ideal biasedmodel. (b) The previous biasedmodel
fits the target label. (c) Our biased model differentiates be-
tween bias-aligned and bias-conflicting samples. 𝑝 (𝑦𝑖 |𝑥𝑖 ) rep-
resents the probability of being classified as the target label.

Unsupervised debiasing typically involves two main stages: (i)
training a biased model using target labels to uncover data bias and
(ii) utilizing the bias information revealed by the biased model for
debiasing. The biased model is expected to fit well with bias-aligned
examples and poorly with bias-conflicting examples to distinguish
between these two types of samples, as shown in Fig. 1(a). However,
contrary to expectations, our investigation into the efficacy of pre-
vious biased models revealed that these models struggled to rely on
bias features, gradually fitting target labels instead, as illustrated in
Fig. 1(b). Consequently, this inability to effectively uncover the bias
directly results in a subpar debiasing performance by the target
model.

The debiasing problem thus transfers to how to ensure the biased
model relies on the bias features. Data poisoning, a method that
aims to poison training samples so that the model learns attackers’
malicious solutions, has recently drawn massive attention [2, 12].
Inspired by this, we propose a poisoning framework called Iterative
Poisoning of Bias-Conflicting Samples, which iteratively embeds the
bias rules learned by the biased model into the poisoned training
data by altering the target labels. The objective is that the biased
model, when trained using this poisoned data, only learns the bias
rules, devoid of influence from target labels. Following this, we
formally propose a novel debiasing method called Poisoner, which
employs guided data poisoning to iterative poison bias-conflicting
samples. Specifically, given that the early biased model has relied
on some bias features, we can identify some bias-conflicting sam-
ples by observing the response of the sample to the bias rule in the
representation space. Then, we poison the identified bias-conflicting
samples with error-minimizing label poisoning to save the bias rule
that the model has currently learned. Finally, we update the biased
model in the poisoned training data to ensure that the model contin-
ues to learn new biases. These three steps are executed iteratively
to continuously accumulate more bias in the model and refine the
model’s ability to identify bias-conflicting samples.

Benefiting from the accumulation of biases through data poison-
ing, the biased model comprehensively learns the biases present
in the data, as illustrated in Fig. 1(c). If the biased model can cor-
rectly classify a sample, then this sample is bias-aligned; otherwise,
it is bias-conflicting. Leveraging pseudo-labels for bias features,

we amplify the training weight of bias-conflicting samples to bal-
ance the target model’s learning between bias-aligned and bias-
conflicting samples. However, bias-conflicting samples assigned
excessive weight may quickly become overfitted in the target model,
diminishing their effectiveness in influencing the model’s learning.
To mitigate this issue, we introduce the Group-wise Inverse Focal
Loss to enhance the model’s focus on overfitted bias-conflicting
samples. Consequently, the target model is prevented from learning
the bias rules present in the data, which promotes an unbiased
learning process.

We summarize our main contributions as follows:
• We propose Poisoner, a novel unsupervised debiasing method
that employs poisoning to expose the potential bias in the
data and eliminates the bias via group reweighing.
• We introduce a guided poisoning mechanism that encour-
ages the biased model to specifically fit the bias features.
This approach opens up new possibilities for the benign
application of data poisoning.
• Weperform extensive experiments on commonly used bench-
marks, and our proposed method achieves state-of-the-art
performance in both fairness and accuracy.

2 Motivation and Justification
2.1 Preliminary
Unsupervised debiasingmethods involve the twomodels: the biased
model and the target model. The biasedmodel is trained on a dataset
that solely contains the target label, and aims to subtly perceive
the bias within the data. Subsequently, the target model performs
debiasing based on the bias captured by the biased model. Evidently,
the quality of the bias exposed by the biased model determines the
performance of the target model’s debiasing.

Two prevalent choices exist for a bias model: an Empirical Risk
Minimization (ERM) model or a Generalized Cross Entropy (GCE)
model. Liu et al. [21, 27] leverage the cross-entropy loss to train
an ERM model as a biased model. Nam et al. [18, 23] consider that
samples that are easy to classify are more likely to be samples
aligned with bias, and therefore propose to employ a GCE loss [38]
that pays more attention to samples that are easier to classify to
train the biased model. The GCE loss is defined as:

GCE(𝑝 (𝑥 ;𝜃 ), 𝑦) =
1 − 𝑝𝑦 (𝑥 ;𝜃 )𝑞

𝑞
(1)

where 𝑝𝑦 is the softmax probability output for the target (train)
label 𝑦, and 𝑞 ∈ (0, 1] is a constant that controls the degree of
amplification of attention to samples that are easy to classify.

2.2 Biased Models Fail to Fully Rely on Bias
For an ideal biased model, we expect it to fit well with bias-aligned
examples and poorly with bias-conflicting examples to distinguish
between these two types of samples. We train ERM model and GCE
model over 50 epochs using commonly used datasets CelebA [22].
The target labels and the bias features are big-nose and gender,
respectively. We document the error rate of the biased models on
each group of training data after each epoch in Fig. 2(a) and Fig. 2(b).
During the training process of ERM models, the error rates for all
training data, including the bias-conflicting samples, are relatively
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Figure 2: Classification error rates of different biased models on the training data of CelebA: (a) ERM Model, (b) GCE Model, (c)
Proposed Poisoned Model (assumed with known bias-conflicting samples), and (d) Ideal Biased Model.

low, decreasing to nearly zero in the end. Although the error rate
of bias-conflicting samples in the GCE model does not approach
zero, the error rates at all moments throughout the entire training
process are also relatively low, and show a decreasing trend. This
indicates that the biased model fits the target label and fails to fully
rely on bias.

2.3 Data Poisoning for Exposing Bias

Early models are biased but not enough. In the early stages of
ERM model and GCE model training, as illustrated in Fig. 2(a) and
Fig. 2(b), the error rate for bias-conflicting samples is significantly
higher than that for bias-aligned samples. This suggests that early
models tend to rely heavily on bias features for decision-making.
However, this is far from sufficient. For instance, at epoch 2, ERM
model can detect 46% of the bias-conflicting samples (with a 46%
error rate for bias-conflicting samples). The already scarce bias-
conflicting samples are further reduced by 54%.

Error-minimizing label poisoning. Data poisoning, which aims
to poison training samples so that models learn attackers’ malicious
intent, has recently drawn massive attention [2, 12]. Inspired by
this, we propose the following idea: Can we leverage data poisoning
to further reinforce biases that early models have already learned?
This would ensure that the model, when trained on poisoned data,
will further learn these biases.

We propose Error-minimizing Label Poisoning to save the model’s
bias by poisoning the target label 𝑦 to the poisoned label 𝑦:

min
�̂�
L (𝑓𝐵 (𝒙 ;𝜃 ), 𝑦) (2)

whereL is cross-entropy loss. 𝜃 denotes the parameter of the model
𝑓𝐵 . 𝑦 is assigned as the predicted label of the model ensuring error-
minimizing. By minimizing errors, the samples (𝑥,𝑦) align with
the bias rules that the model has already learned.

However, this may present two issues. Firstly, due to the model’s
limited reliance on bias features at early stages, the poisoned data
may only introduce a subset of the existing bias rules. For instance,
when poisoning at Epoch 2 of the ERM model on CelebA, only the
labels of 46% of the bias-conflicting samples were altered to new
labels that conformed to the bias rules. Secondly, there is a possi-
bility of noise, where label changes may not be solely attributed
to the bias rules learned by the model. For instance, the labels of
approximately 20% of the bias-aligned samples were modified to
incorrect labels.

Iterative Poisoning Bias-conflicting samples. To address the
issue of the early model’s limited reliance on bias features, we
propose an iterative poisoning scheme to accumulate the biases
learned by the model. To mitigate the noise issue in poisoning, we
suggest focusing solely on poisoning the bias-conflicting samples.
Bias-conflicting samples inherently contradict the bias, thus even
if noise is introduced during the poisoning process, it will not
undermine the bias rules within the data. This integration of ideas,
termed Iterative Poisoning Bias-conflicting samples, can be formally
expressed as:

argmin
𝜃

E(𝒙,�̂�)∼D̂

[
min

�̂�, if 𝑥∈D𝑐

L (𝑓𝐵 (𝒙 ;𝜃 ), 𝑦)
]

(3)

Here, D̂𝑐 ⊂ D̂ represent the subsets of bias-conflicting samples. 𝑦
denote the modifiable label. The innermin serves to save model bias
to poisoned data by poisoning only the bias-conflicting samples
𝑥 ∈ D̂𝑐 , while the outer min operation serves to accumulate more
model bias.

To validate the idea, we operate Iterative Poisoning Bias-conflicting
samples under the assumption of prior knowledge regarding which
samples are bias-conflicting. However, it’s important to note that
this assumption is solely for validation purposes; in reality, we
do not know which samples are bias-conflicting, and we propose
a method to identify bias-conflicting samples in Section 3.2. The
outcomes of Iterative Poisoning Bias-conflicting samples are illus-
trated in Fig. 2(c). Notably, the bias-conflicting samples are almost
entirely misclassified, as indicated by the error rate calculated based
on the original clean labels. Furthermore, we directly trained the
model using bias labels rather than target labels to simulate the sce-
nario of an ideal biased model, as depicted in Fig.2(d). Comparing
Fig.2(c) with Fig.2(d) shows that our proposed approach achieves
performance similar to that of the ideal biased model in later stages.

3 Method
3.1 Overview
We propose a novel debiasing method, referred to as the Poisoner,
depicted in Fig. 3. This method incorporates two models. The first
is a biased model, 𝑓𝐵 , which is designed to uncover potential data
bias. The second is a target model, 𝑓𝑇 , which performs debiasing
operations based on the bias identified by 𝑓𝐵 .

Biased model. Drawing inspiration from previous analyses, we
propose guided data poisoning to ensure that the biased model is
dependent on bias features. This will be provided in Section 3.2.
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Figure 3: Illustration of our proposedmethod Poisoner. Stage I: Training an auxiliary biasedmodel 𝑓𝐵 with guided data poisoning
to differentiate between bias-aligned and bias-conflicting samples (Sec. 3.2). Stage II: Learning a debiased target model 𝑓𝑇 with
sample reweighing (Sec. 3.3).

Target model. We reweight the training weight of bias-conflicting
samples to balance the influence of bias-aligned and bias-conflicting
samples for debiasing. We also propose Group-wise Inverse Focal
Loss to mitigate potential challenges arising from overfitting bias-
conflicting samples. This will be discussed in Section 3.3.

3.2 Exposing Bias via Guided Data Poisoning
Section 2 demonstrated that the previous biased models failed to
fully rely on bias. The idea of iteratively poisoning only the bias-
conflicting samples has been validated as a solution to this problem.
In this section, we introduce Guided Data Poisoning, which is de-
signed to guide the iterative poisoning of bias-conflicting samples.

Identify. A model trained on a biased dataset tends to rely on
bias features of samples for prediction. This leads to samples with
identical target features but different bias features being separated
in the representation space, and samples with similar bias features
but different target features being brought closer together [10, 24].

This insight guides us to use similarity as a metric for identifying
bias-conflicting samples. More specifically, considering that the
majority of samples within each target class are aligned with these
biases, and the samples that conflict with these biases deviate from
these aligned samples and may even approach other target classes,
we can calculate whether a sample is far from samples of the same
class and close to samples of other classes to identify whether it
is a bias-conflicting sample. We adopt the main idea of supervised
contrastive loss [15]. For each sample 𝑥𝑖 in the current batch, we
compare 𝑥𝑖 with the other data in the mini-batch B as follows:

𝑑con (𝑥𝑖 ;𝜃 ) = −
1
|𝐽 (𝑖) |

∑︁
𝑗∈ 𝐽 (𝑖 )

𝑙𝑜𝑔
exp

(
𝑧𝑖 · 𝑧 𝑗

)∑
𝑎∈𝐴(𝑖 ) exp (𝑧𝑖 · 𝑧𝑎)

(4)

where 𝑧𝑖 = 𝑓 −2
𝐵
(𝑥𝑖 )/| |𝑓 −2𝐵

(𝑥𝑖 ) | | is a normalized feature of sample
𝑥𝑖 extracted from the penultimate layer 𝑓 −2

𝐵
of biased model 𝑓𝐵 .

𝐽 (𝑖) denotes the index set of samples in the current batch that have
the same target label label𝑡−1 (𝑥𝑖 ) as 𝑥𝑖 . 𝐴(𝑖) represents the index
set of all samples in the current batch B, excluding 𝑥𝑖 . Furthermore,

batch B is obtained through class-balanced sampling because we
aim to consider all target classes fairly.

The larger the 𝑑con (𝑥𝑖 ;𝜃 ), the more likely it is that the sample
𝑥𝑖 is a bias-conflicting sample of the current target class. Then,
we compute the (100 − 𝑝)𝑡ℎ percentile within the {𝑑con (𝑥𝑖 ;𝜃 )} | B |𝑖=1 ,
denoted as 𝑞𝑝 , where |B| is the size of mini-batch B. 𝑝 ∈ (0, 100) is
a hyper-parameter that controls the proportion of bias-conflicting
samples selected in a single batch. Subsequently, the indicator of
whether a sample is a bias-conflicting sample can be formalized as:

conflict (𝑥𝑖 ) =
{
1 if 𝑑con (𝑥𝑖 ;𝜃 ) > 𝑞𝑝

0 o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

In otherwords,𝑥𝑖 is considered a bias-conflicting sample if𝑑con (𝑥𝑖 ;𝜃 )
is greater than 𝑞𝑝 .

Poison. At the beginning of the training of the biased model, each
sample’s target label is initially the clean label without poisoning,
i.e., label𝑡=0 (𝑥) = 𝑦, and 𝑦 is the clean label. During the training
step 𝑡 , we selectively poison the label of the samples that are iden-
tified as bias-conflicting (i.e., conflict (𝑥) =1) for error-minimizing
min�̂� L (𝑓𝐵 (𝒙), 𝑦):

label𝑡 (𝑥𝑖 ) =
{
label𝑡−1 (𝑥𝑖 ) if conflict (𝑥𝑖 ) = 0
𝑌 (𝑓𝐵 (𝑥𝑖 )) if conflict (𝑥𝑖 ) = 1

(6)

where label𝑡 is the poisoned label in iteration 𝑡 . 𝑌 (𝑓𝐵 (𝑥𝑖 )) is the
predicted label of biased model in current iteration 𝑡 . By changing
the label of the bias-conflicting sample 𝑥𝑖 to 𝑌 (𝑓𝐵 (𝑥𝑖 )), the biases
within the data are further reinforced.

Update. During training step 𝑡 , we use all samples in the current
mini-batch B and their corresponding poisoned labels label𝑡 as the
training data for the biased model 𝑓𝐵 . The cross-entropy loss is
employed for training as follows:

argmin
𝜃

E(𝒙 )∼DL𝐶𝐸 (𝑓𝐵 (𝑥 ;𝜃 ), label𝑡 (𝑥)) (7)

Iterate. We iteratively repeat the steps of Identify, Poison, and Up-
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Algorithm 1 Training of the biased model

1: Input: dataset D = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where the label 𝑦𝑖 can be
modified; parameter 𝜃 of model 𝑓𝐵 ; number of training steps𝑇 ;
batch size𝑚; hyperparameter 𝑝 .

2: Output: parameter 𝜃 of model 𝑓𝐵
3: for t = 1,. . . ,𝑇
4: Sample a class-balanced batch B = {(𝑥 𝑗 , 𝑦 𝑗 )}𝑚𝑗=1 from D
5: /** Identify bias-conflicting examples **/
6: Calculate 𝑑con for all samples in B, using Eq. 4
7: Get the bias-conflicting indicator (conflict(𝑥 )), using Eq. 5
8: /** Poison bias-conflicting examples **/
9: for j = 1,. . . ,𝑚
10: if 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 (𝑥 𝑗 ) = 1
11: Get the predicted label 𝑌 (𝑓𝐵 (𝑥 𝑗 )) of 𝑓𝐵
12: Modify the label of 𝑥 𝑗 in D to 𝑌 (𝑓𝐵 (𝑥 𝑗 ))
13: Modify 𝑦 𝑗 in B to 𝑌 (𝑓𝐵 (𝑥 𝑗 ))
14: /** Update biased model 𝑓𝐵 **/
15: 𝜃 ← 𝜃 − ∇L𝐶𝐸 (B)

date. In this iterative process, the biased model gradually becomes
more reliant on bias features. The pseudo-code of the training of
the biased model is presented in Alg. 1.

3.3 Debiasing via Group Reweighing
Upon completing the training phase for the biased model 𝑓𝐵 , the
model’s output can be used to distinguish between bias-aligned and
bias-conflicting samples. A sample 𝑥𝑖 is considered bias-aligned if
it is classified correctly, meaning its output aligns with the clean
label 𝑦𝑖 . Conversely, a sample is labeled as bias-conflicting if its
classification contradicts the clean label.

Group Reweighing. The primary source of model bias is the
biased correlations inherent in the training data. To counteract
this correlation and train an unbiased target model, we employ
sample reweighing to rebalance the influence of samples that exhibit
varying bias features. Specifically, the training weights of bias-
conflicting and bias-aligned samples are adjusted as follows:

𝑤 (𝑥𝑖 ) =
{ |D |
|D𝑎 | if 𝑥𝑖 ∈ D𝑎

𝜆 · |D ||D𝑐 | if 𝑥𝑖 ∈ D𝑐

(8)

Here, D𝑎 ⊂ D and D𝑐 ⊂ D represent the subsets of bias-aligned
and bias-conflicting samples, respectively, partitioned from the
overall dataset D. The symbols |D|, |D𝑎 | and |D𝑐 | denote the
number of samples in these sets. The hyperparameter 𝜆 controls
the degree of additional emphasis given to bias-conflicting samples,
typically ranging between 1 and 1.5. Since some bias-conflicting
samples may not be correctly identified by 𝑓𝐵 , even though they
are few in number, we need to emphasize bias-conflicting samples
additionally. Our subsequent experiments demonstrate that the
parameter 𝜆 is not sensitive.

Then, the loss function of the target model 𝑓𝑇 , which is trained
with weighted samples, can be formalized as follows:

L𝑡𝑎𝑟𝑔𝑒𝑡 = E(𝒙,𝒚 )∼D 𝑤 (𝑥) · L𝐶𝐸 (𝑓𝑇 (𝑥), 𝑦) (9)

Group-wise Inverse Focal Loss. However, assigning a larger
training weight to the already scarce bias-conflicting samples can
quickly lead to the target model overfitting these samples, as shown
in Fig. 6(a). That is, the probability of the target label 𝑦, denoted
as 𝑝𝑦 , tends to 1, resulting in the loss approaching 0. As a result,
the contributions of bias-conflicting samples to the training of the
target model become limited, hindering the debiasing.

To address the negative effects of overfitting, we introduce the
concept of group-wise inverse focal loss, which aims to more fo-
cus learning on overfitted bias-conflicting samples. To tackle the
long-tail problem, Focal Loss [20] applies a dynamic scaling factor
to the cross entropy loss to focus learning on hard misclassified
examples, represented asL𝐹𝐿 = −

(
1 − 𝑝𝑦

)𝛾 log (𝑝𝑦 ) , 𝛾 > 0, where
the scaling factor (1 − 𝑝𝑦)𝛾 decays to zero as confidence (𝑝𝑦 ) in
the correct class increases. In contrast, we aim to enhance focus
learning on easy misclassified (i.e., overfitted) examples, thus we
invert the Focal Loss to L = −

(
1 − 𝑝𝑦

)−𝛾 log (𝑝𝑦 ) . However, this
will not directly prompt the model to focus on bias-conflicting sam-
ples due to some bias-aligned samples also having a high 𝑝𝑦 . To
this end, we propose Group-wise Inverse Focal Loss:

L𝐺𝐼𝐹𝐿 (𝑥,𝑦) =

−
(
1 − 𝑝𝑎𝑦

)−𝛾
log

(
𝑝𝑦

)
if 𝑥 ∈ D𝑎

−
(
1 − 𝑝𝑐𝑦

)−𝛾
log

(
𝑝𝑦

)
if 𝑥 ∈ D𝑐

(10)

Here, 𝑝𝑦 represents the probability that the target model 𝑓𝑇 predicts
sample 𝑥 as the correct class 𝑦. 𝑝𝑎𝑦 and 𝑝𝑐𝑦 respectively denote the
average 𝑝𝑦 values on bias-aligned and bias-conflicting samples in
the current mini-batch. The focusing parameter 𝛾 > 0 smoothly
adjusts the rate at which overfitted examples are prioritized (we
found that 𝛾 approaching 1 works best in our experiments). If bias-
conflicting samples are overfitted (resulting in high 𝑝𝑐𝑦 values), they
will be assigned a larger loss, directing the target model to pay
more attention to these samples during training.

Moreover, for numerical stability of L𝐺𝐼𝐹𝐿 , we introduce an
adaptivemultiplicative factor 𝛽 = 1/

(
(1 − 𝑝𝑐𝑦)−𝛾

)
. Thus, the overall

training loss for the target model is given by:

L𝑡𝑎𝑟𝑔𝑒𝑡 = E(𝒙,𝒚 )∼D 𝑤 (𝑥) · 𝛽 · L𝐺𝐼𝐹𝐿 (𝑥,𝑦) (11)

4 Experiment
4.1 Experimental Settings

Datasets.We construct experiments on eight debiasing tasks across
five benchmark datasets. CelebA, an industrial-scale dataset, con-
tains about 200k facial images with 40 binary attribute annotations.
We select target attributes that display the high Pearson correla-
tion with gender, and perform gender debiasing for the recognition
of each target attribute. The selected target attributes are bignose,
attractive, blonde, and bags-under-eyes. We also use the Water-
birds [25] dataset, where waterbirds and land birds are highly
correlated with wet and dry backgrounds, respectively. The propor-
tion of bias-aligned samples that conform to this biased correlation
is 95%. Our objective is to eliminate the influence of the background
on bird recognition. The Dogs&Cats [16] dataset contains a fur
color bias. Each animal species has a correlation of 0.95 with a spe-
cific fur color. Our goal is to eliminate the influence of the animal’s
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Table 1: The Model Bias (in %, Equalodds, ↓), Avg. Group Accuracy (in %, ↑), andWorst Group Accuracy (in %, ↑) of models trained
on CelebA. Here bn, a, bl and bu respectively denote bignose, attractive, blonde, bags-under-eyes. The best results with unknown
biases are highlighted in bold. ∗ indicates that the method knows the bias label of training samples.

Method
T=bn T=a T=bl T=bu Avg.

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Vanilla 31.40 71.01 43.36 23.51 74.13 62.34 32.05 82.83 58.32 17.70 71.51 43.71 26.17 74.87 51.93

Focal 23.29 70.99 47.61 24.25 76.56 61.36 30.05 83.78 64.35 16.31 70.87 42.47 23.48 75.55 53.94
LfF 16.73 68.42 53.12 17.53 76.57 67.36 29.75 75.32 49.10 18.73 70.53 43.51 20.69 72.71 53.27
JTT 14.29 72.31 55.09 15.06 77.61 65.33 13.07 85.02 75.53 15.34 70.22 54.01 14.44 76.29 62.49

DebiAN 29.03 69.41 39.75 22.39 76.63 59.22 29.35 77.29 63.81 19.38 70.65 44.95 19.38 70.65 44.95
Echoes 19.95 66.19 42.73 27.52 72.57 65.11 18.27 76.53 63.52 16.52 70.52 51.23 20.57 71.45 55.64
BE 15.57 69.57 56.54 16.21 76.74 67.14 15.84 80.58 69.21 14.32 71.65 59.14 15.48 74.63 63.00

Poisoner 6.56 74.49 69.61 3.57 79.98 77.04 8.05 91.37 85.78 7.61 76.58 68.29 6.44 80.61 75.18

GroupDRO∗ 5.54 74.97 66.28 4.02 79.72 76.83 7.61 92.51 81.97 7.96 77.81 67.00 6.28 81.25 73.02

fur color on animal recognition. For C-MNIST [17], the task is
to recognize digits (0-9), in which the images of each target class
are dyed by the corresponding color with probability 𝜌 , while the
remaining samples are randomly colored with other colors. For
the version of C-MNIST1 we use, the probability 𝜌 is 0.99. For C-
MNIST2, the probability 𝜌 is 0.98. Our goal is to eliminate color
bias. Lastly, the ImageNet-B [36] dataset offers a complex and
realistic testbed, featuring ten types of natural noise patterns as
bias attributes. Each target class exhibits a correlation of 0.95 with
a specific type of natural noise. Our ambition within this dataset is
to counteract the influence of natural noise on object recognition.

Metric.We aim to answer two main questions: (1) How does the
fairness of Poisoner compare to other methods? (2) How does the
classification performance of Poisoner comparewith othermethods?
To answer the first question, we examine whether the accuracy of
the model predictions changes with shifts in bias attributes (e.g.,
gender). We use Equalodds [8] to measure fairness. For instance,
the measure of gender fairness on the CelebA dataset is as follows:

1
|𝑌 |

∑︁
𝑦

��Pr𝑏0 (�̃� = 𝑦 | 𝑌 = 𝑦) − Pr𝑏1 (�̃� = 𝑦 | 𝑌 = 𝑦)
�� (12)

where 𝑌 denotes target labels, �̃� denotes outputs of models, and 𝑏0
and 𝑏1 represent different groups in terms of bias attributes such as
male and female. Considering that Colored-MNIST and ImageNet-B
not only have two types of bias features, we use the difference
between the average accuracy and the worst group accuracy on
each target class as model bias.

To answer the second question, we first divide the test set into
different groups based on the bias attributes and target attributes.
Then, we report two types of accuracy: the Average Group Accu-
racy and the Worst Group Accuracy.

Baselines. To evaluate the effectiveness of our method, we compare
it against prior methods including Vanilla, Focal loss [20], LfF [23],
JTT [21], DebiAN [19], Echoes [11], BE [18], GroupDRO [25]. The
Vanilla model, trained solely with the original cross-entropy loss,
employs no debiasing strategies. BE is a method that relies on LfF
or other debiasing methods, and we use it in conjunction with
LfF. GroupDRO explicitly leverages the bias labels (e.g., the gender

labels) during the training phase, while others require no prior
knowledge of the biases.

Implementation. Following previous research, we utilize a multi-
layer perceptron (MLP) with three hidden layers for the Colored
MNIST dataset. For ImageNet-B, we use ResNet-34 [9]. For other
datasets, we employ ResNet-18 [9]. As for the parameter 𝑃 in our
method, which controls the percentage of samples identified as bias-
conflicting in each training step of the biased model, we set it to 10
for CelebA and 5 for the other datasets.We set the hyperparameter𝛾
to 1 for all experiments. We use the Adam optimizer for all baselines
with a learning rate of 1e-3.

4.2 Main Results

Debiasing with social bias. Table 1 shows the model bias, average
group accuracy, and the worst group accuracy of models on four
target tasks of CelebA, with gender as the bias attribute. Vanilla
models record severe model bias as they are optimized to capture
the biased statistical properties of training data without any con-
straints. Various debiasing methods demonstrate different levels of
effectiveness in bias mitigation. In comparison with other unsuper-
vised debiasing methods (which do not require prior knowledge
regarding bias), the proposed Poisoner achieves the best perfor-
mance in terms of fairness and accuracy across all four target tasks.
For instance, for the big-nose recognition task (T=𝑏𝑛), Vanilla mod-
els display significant fairness issues (model bias = 31.40%), with the
worst group accuracy being only 43.36%. Our proposed poisoner
reduces the model bias to 6.56% and improves the worst group
accuracy to 74.49%. The debiasing performance of other methods is
limited in comparison. Our method’s state-of-the-art performance
in unsupervised debiasing confirms our biased models precisely
identify bias-conflicting samples. Furthermore, we also compared
our method with GroupDRO, which requires the use of bias labels in
training. Compared to GroupDRO, our method achieves competitive
results, even achieving better performance in T=𝑎 task.

Debiasing with general bias. Beyond the social bias that is cen-
tral to fairness research, we have also benchmarked our method
against other methods on four datasets that encompass general
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Table 2: The debiasing performance on four benchmark datasets with general bias. ∗ indicates that the method knows the bias
label of training samples. - denotes that the test set is not applicable for evaluating model bias.

Method
WaterBirds Dogs & Cats C-MNIST1 C-MNIST2 ImageNet-B

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Model
Bias ↓

Avg
ACC ↑

Worst
ACC ↑

Vanilla 35.71 78.17 46.61 - 50.35 47.76 43.27 56.28 10.30 32.73 67.09 7.02 67.09 61.37 23.60

Focal 30.12 77.99 56.71 - 68.25 65.85 43.82 56.91 3.05 29.61 70.10 9.01 66.99 61.16 19.30
LfF 13.57 79.64 63.56 - 72.91 50.10 12.99 75.26 28.41 11.29 83.92 59.57 37.97 64.21 28.20
JTT 12.06 75.61 58.19 - 73.95 67.45 13.07 74.05 30.03 13.38 78.34 56.10 35.24 65.38 30.54

DebiAN 12.36 77.72 59.22 - 71.24 67.68 17.08 70.48 36.18 15.25 79.51 57.61 44.58 62.40 29.32
Echoes 14.52 78.79 62.73 - 84.56 82.17 16.27 79.18 36.28 13.48 78.42 57.23 38.64 62.54 27.91
BE 13.21 76.74 67.14 - 85.59 79.21 14.98 81.39 39.41 11.18 85.66 59.14 42.61 64.72 28.96

Poisoner 3.57 84.26 78.01 - 84.81 83.02 12.98 82.57 37.40 8.77 87.51 64.75 31.51 66.28 32.43

GroupDRO∗ 5.23 86.72 79.83 - 81.53 68.47 16.51 83.13 29.61 10.58 85.03 42.70 29.22 67.76 44.32
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Figure 4: The classification error rate of GCE model and our
biased model on the training data of CelebA andWaterBirds.

biases. The results, as depicted in Table 2, demonstrate that our
method consistently achieves superior debiasing performance. This
underscores that the effectiveness of our method is not contingent
on the type of bias attribute.

4.3 The Efficacy of Our Biased Model in
Uncovering Bias

An ideal biased model should have a lower error rate for bias-
aligned samples and a higher error rate for bias-conflicting samples
in the training data, thus facilitating the delineation of pseudo-
labels for bias features. Initially, we demonstrate the comparative
advantages of our biased model over the ERM and GCE models, as
illustrated in Fig. 4. As training progresses, our method gradually
separates bias-aligned and bias-conflicting samples. Lastly, the bias-
conflicting samples are almost entirely misclassified, indicating that
these samples have been almost wholly mined. In contrast, both
ERM and GCE fit bias-conflicting samples and fail to mine them.

Furthermore, we introduce a metric called Bias Accuracy to
quantitatively assess the biased model’s efficacy in exposing bi-
ases. Specifically, Bias Accuracy is calculated as the average of the
accuracy and error rate of the biased model on bias-aligned and bias-
conflicting samples, respectively. We present the Bias Accuracy
achieved by various biased models on different datasets in Table 3.
It is evident that our biased model significantly outperforms alter-
native methods in exposing biases. Moreover, our biased model
exhibits overwhelming superiority for tasks characterized by lower
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Figure 5: The debiasing performance and the capability to un-
cover bias under different degrees of data balance (𝛼). Larger
𝛼 indicates that the training set is more balanced.

degrees of dataset bias (i.e., biases are less apparent), such as the
four tasks within the CelebA dataset. This observation suggests the
applicability of our approach not only in scenarios characterized
by high levels of bias intensity but also in contexts where biases
are deeply embedded and less discernible.

4.4 Controlled Experiments on Bias Intensity
Real-world datasets often exhibit varying degrees of bias. To demon-
strate the versatility of our method in scenarios with less extreme
bias, we manipulate the bias intensity in the CelebA training data by
removing some samples. Fig. 5 (left) illustrates our method’s debias-
ing performance under different data bias scenarios, with the degree
of data balance 𝛼 representing the ratio of bias-conflicting samples
to bias-aligned samples. A higher 𝛼 indicates lower data bias in-
tensity. Our method shows significant bias mitigation across all
degrees of data balance, indicating its effectiveness in both extreme
and less pronounced bias scenarios. Conversely, the GCE-Based
LfF method fails to mitigate bias for high data balance scenarios
(𝛼>0.5) and significantly decreases accuracy.

Moreover, we attribute this universal debiasing capability to the
efficient uncovering of bias by our biased model across various
degrees of data balance. Fig. 5 (right) displays the metric measuring
the effectiveness of uncovering bias, the Bias Accuracy, with our
biased model showing notable superiority over others. This further
underscores the versatility of our approach.
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Table 3: The Bias Accuracy (in %, ↑) of different biasedmodels.
A higher value indicates stronger efficacy in exposing biases.
∗ denotes early stopping applied at epoch 2.
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sensitivity to 𝛾 on WaterBirds.

Table 4: The comparison of the results of our method with
and without Group-wise Inverse Focal Loss (GIFL).

Metrics GIFL CelebA
T=bn

Water
Birds

Dogs
& Cats

C-
MNIST1

Imagenet
-B

Avg. ACC % 73.97 82.12 83.37 81.14 63.51
! 74.49 84.26 84.81 82.57 66.28

Model Bias % 7.49 13.10 - 12.31 40.53
! 6.56 3.57 - 12.98 31.51
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Figure 7: Ablation on hyper-parameter 𝑝 and 𝜆 on CelebA.

4.5 Analysis

Group-wise Inverse Focal Loss (GIFL) and 𝛾 .We first demon-
strate the overfitting issues of the target model on bias-conflicting
samples under the condition of Group Reweighting without GIFL.
In Fig. 6(a), the average cross-entropy (CE) losses on bias-conflicting
and bias-aligned samples are presented. It can be observed that the
loss on bias-conflicting samples remains consistently lower than
that on bias-aligned samples, and quickly decreases to zero. This in-
dicates that bias-conflicting samples are being overfitted, resulting
in bias-aligned samples being the main influence during the target
model training process. In Fig. 6(b), we illustrate the model bias of
the target model with GIFL under different 𝛾 values. It can be seen
that as 𝛾 approaches 1, the model bias decreases. We observe the

same trend on other datasets as well. Furthermore, Table 4 compares
the results between the Poisoner with and without GIFL. Across all
tasks, both the fairness and accuracy of the model degrade when
GIFL is not applied. This underscores the effectiveness of GIFL in
enhancing both the fairness and accuracy of the model.

Different values of 𝑝 and 𝜆. We use 𝑝 ∈ (0, 100) to control the
percentage of samples identified as bias-conflicting in each training
round of the biased model. Fig. 7 illustrates the accuracy of bias
identification for different values of 𝑝 . When 𝑝 is relatively large,
numerous bias-aligned samples are misclassified as bias-conflicting.
This misidentification contradicts the original intent of guided data
poisoning, resulting in noisy injections. Therefore, setting 𝑝 within
the range of 5 to 20 is considered appropriate. We also examine
debiasing performance with different 𝜆 values. The results indicate
that 𝜆 exhibits insensitivity to debiasing performance.

5 Related work

Bias Mitigation. Early works on debiasing relied on prior knowl-
edge about the biases present in the data (known as supervised
debiasing). Some approaches [10, 24, 25, 32, 34, 35, 37] required
explicit bias labels for each training sample, such as the gender of
facial images. For instance, Zhang et al. [34, 35] employed adver-
sarial training to minimize a discriminator’s ability to predict bias
labels, thus encouraging fair outputs.

Recent studies focus on the more realistic unsupervised debias-
ing: debiasing without any prior bias information. Unlike super-
vised debiasing, unsupervised debiasing first requires obtaining in-
formation about the biases. Typical approaches [17, 21, 23] assume
that biased features are more readily learned by models compared
to robust features. Thus, they train an auxiliary biased model that
is expected to primarily rely on the biased features, considering
the auxiliary model’s outputs as pseudo-labels for bias. Some meth-
ods [11, 18] attempt to construct intentionally biased datasets to
train the auxiliary biased model, while others utilize networks with
limited capacity to uncover biases [26]. Furthermore, feature clus-
tering [29] and fairness minimization [19] techniques have been
employed to discover unknown biases.

Poisoning Attack. Poisoning attacks [2, 3, 7] in machine learning
have emerged as a significant security concern, where adversaries
manipulate training data to compromise the integrity and perfor-
mance of models. Poisoning attacks involve injecting malicious
data samples [13, 30], known as poisoned examples, into the train-
ing dataset. These examples are carefully crafted to deceive the
learning algorithm and embed the attackers’ malicious intent into
the model’s decision-making process. To counter poisoning attacks,
various defense mechanisms have been developed [5, 6, 31].

6 Conclusion
In this study, we introduce poisoner, a novel unsupervised debiasing
method. The poisoner couples guided data poisoning and model
training to prompt the biased model to learnmore bias continuously.
Subsequently, it eradicates the bias uncovered by the bias model
in the target model by assigning more attention to bias-conflicting
samples. Experiments demonstrate its effectiveness in improving
fairness and accuracy.
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