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Abstract

Due to the discrete nature of words, language GANs require to be optimized from
rewards provided by discriminator networks, via reinforcement learning methods.
This is a much harder setting than for continuous tasks, which enjoy gradient
flows from discriminators to generators, usually leading to dramatic learning
instabilities. However, we claim that this can be solved by making discriminator
and generator networks cooperate to produce output sequences during training.
These cooperative outputs, inherently built to obtain higher discrimination scores,
not only provide denser rewards for training, but also form a more compact artificial
set for discriminator training, hence improving its accuracy and stability. In this
paper, we show that our SelfGAN framework, built on this cooperative principle,
outperforms Teacher Forcing and obtains state-of-the-art results on two challenging
tasks, Summarization and Question Generation.

1 Introduction

Natural Language Generation encompasses tasks such as Machine Translation, Summarization or
Data To Text generation. The real life applications are numerous, but require highly reliable and
fluent models. Despite significant advances, state-of-the-art models are still known to be de-generated,
with outputs containing repetitions and even nonfactual information i.e. hallucination [13].

Among the culprits is a limitation of Teacher Forcing [39]: the loss is computed at a token level
while the aim is to produce complete sequences. Moreover, while a single ground-truth reference is
considered correct, several realizations of the same content may exist. Finally, the model is subject to
Exposure Bias [28], i.e. a mismatch between training and inference distributions – in the latter, the
model has no access to ground truth for the previously generated tokens. The literature has considered
this mismatch responsible for the lower quality observed when generating longer sequences [2, 16].

To overcome such Teacher Forcing limitations, a consensus has emerged: a sequence level objective
should be introduced [28, 43]. A body of work has proposed to use Reinforcement Learning (RL)
with standard NLG metrics like BLEU [41] or ROUGE [24]. However, NLG metrics are known to not
reflect well human judgement [22], which explains why the resulting models tend to be qualitatively
worse than their MLE baselines [3]. To move toward less biased metrics, a natural alternative is to
evaluate the output with a learned discriminator. An ideal discriminator would not be biased w.r.t. to
its training set, and could therefore be considered as a perfect metric that matches human consensus.
Note that discriminators are already reported to be highly accurate to distinguish human written texts
from machine generated ones [32, 45].
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In light of this observation, two concurrent approaches have been explored: i) at training time, using
Generative Adversarial Networks [44]; and ii) at inference time, via cooperative decoding [11]: a
discriminator guides the search algorithm, such that the generator and the discriminator cooperate
to select the generated tokens. These approaches pursue the same objective: producing texts more
similar to what a human writes.

Both methodologies suffer from specific limitations. Cooperative decoding algorithms rely on a
discriminator that re-ranks a limited set of candidates selected by the generator.1 Hence, cooperative
decoding algorithms are limited by the generator ability to rank relevant tokens in a good enough
position. On the other hand, language GANs are learned via reinforcement learning due to the discrete
nature of text. This makes them particularly unstable to train, and usually fall short compared to
Teacher Forcing [3]. In standard Language GANs, the discriminator provides a reward for the entire
sequence, which can be difficult to exploit by the generator due to its sparsity [6].

In this paper, we propose SelfGAN, a framework to learn language GANs in a Self -training process
where the signal from the discriminator is passed to the generator in a completely new way. We
consider cooperative algorithms as a way to infuse the discriminator signal. We start from a simple
observation: outputs obtained via cooperative decoding are more human-like, compared to their
generator-only counterparts. Inspired by recent knowledge distillation approaches, we propose to
consider cooperative outputs as targets in a Teacher Forcing training process: cooperative decoding
stands as a teacher we attempt to imitate through the generator network. Just like a standard GAN,
both the generator and the discriminator are trained at each step. While the generator improves,
it becomes adversarial to the discriminator, which benefits from the cooperative generation. The
discriminator, now trained on improved sequences, also contributes to improve the cooperative
generation, and so forth. Note that in SelfGANs the discriminator is only used to drive the cooperative
generation and never to provide a reward signal like in standard Language GANs.

SelfGAN can be implemented with any cooperative decoding algorithm. Current cooperative ap-
proaches [7, 32] rely on "myopic" algorithms like Beam Search or Sampling that generate the tokens
left-to-right. The model has to always predict the next word, and can never look back and revise
past choices. In some cases, despite all the candidates being judged to likely not be human by the
discriminator, the model is locked in a dead-end. This behavior is quite unnatural for humans – who
often proofread their texts. We refer to this phenomenon as the left-to-right curse.

To address this left-to-right curse, we introduce Coop-MCTS, a new decoding algorithm based on
Monte Carlo Tree Search (MCTS) [5, 14]. We compare Coop-MCTS to state-of-the-art cooperative
decoding algorithms in two scenarios: i) inference time, as the decoding algorithm; and ii) during
training, as the cooperative algorithm in SelfGAN. In both scenarios, we show that the respective
resulting outputs are more likely to look like human texts and improve all the automatic metrics.

All in all, our contributions can be summarized as follows:

1. SelfGAN We propose a new training framework based on cooperative decoding, wherein
the generated sequences are used as ground truth;

2. Coop-MCTS We improve cooperative decoding with a new decoding algorithm, Coop-
MCTS, offering a solution to the left-to-right limitation of current search methods;

3. We show that combining SelfGAN and Coop-MCTS compare favorably to prior state-of-the-
art results on two challenging tasks, Summarization and Question Generation.

2 Related Work

Beyond Teacher Forcing To mitigate the limitations inherent to Teacher Forcing, various alternatives
have been proposed. In Scheduled Sampling, Bengio et al. [2] proposed to condition the generation
not only on the ground truth tokens, but also the generated ones. Given that only one reference is
available, this introduces a new mismatch when computing the loss, this time between the generated
tokens used to condition the model, and the target tokens. To take into account multiple possible

1Opposed to a generator that outputs probabilities for the entire vocabulary V at once, a discriminator outputs
the likelihood for a specific sequence to be human-written or machine-generated. Calculating the discriminator
probability for every possible sequence is therefore not realistic, as the computation grows exponentially at a
pace of V l where V is the vocabulary size and l the sequence length.
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references, using a sequence level metric is a potential alternative. In Mixer, Ranzato et al. [28] chose
BLEU, the standard metric to evaluate Machine Translation. Since it is not differentiable, the task is
framed in a Reinforcement Learning setup where the reward corresponds to the BLEU score given a
sampled sequence of tokens. Paulus et al. [24] applied the same method to Summarization, using this
time ROUGE. While the results improved in terms of ROUGE, the human evaluation found that the
generated summaries were rated worse in term of fluency than the MLE baseline. The model learns
to take advantage of metric biases, while being less correct according to human judgement.

Language GANs In theory, a perfect discriminator would be able to judge if an output corresponds
to the data distribution or not. Discriminators could therefore be an interesting alternative reward
compared to other metrics. In practice, we need to train the discriminator jointly with the generator,
framing the task as a GAN. Language GANs are known to underperform MLE [3], due to the
unavoidable sparsity of a discriminator reward. A large body of works have proposed denser rewards:
ranking or comparative discriminators [4, 18, 47], a sequential discriminator where the rewards are
provided at each time step of the generation [36, 6]. More recently, Scialom et al. [31] proposed to
stabilize the GAN training by lowering the Softmax temperature to explore more structured outputs,
and closer to the generator distribution.

In this work, our proposed framework allows to propagate the discriminator signal in a cooperative
way, which can be seen as an alternative solution to the sparsity of the reward and the training stability.

Knowledge Distillation SelfGAN has a connection with knowledge distillation [12], where a student
is trained on outputs from the teacher. In particular, self distillation using only a generator has
shown to improve generalisation on image GANs [46] by acting as label smoothing. To the best
of our knowledge, this work is the first to propose the idea of augmenting the teacher by coupling
a discriminator to a generator. Beyond GANs, SelfGAN could serve for other applications using
distillation, e.g. in semi-supervised methods that use a teacher model to create synthetic labels for
unlabeled examples [34, 42].

Monte Carlo Tree Search in NLG Despite important successes in games [30, 38], very few works
have attempted to apply MCTS to NLG. Kumagai et al. [15] proposed to employ context-free grammar
rules combined with a n-gram language model and explore the space of grammatically correct texts
via a MCTS. In the context of commercial e-commerce agents, Mukherjee [20] proposed to optimise
with a MCTS a scoring function designed to reward grammatical correctness.

3 SelfGAN

Algorithm 1 SelfGAN
1: Input: a generator gen, a discriminator discr, and a cooperative decoding method decodcoop
2: for n epochs do
3: for X , Sref in training set do . Start Training
4: Scoop ← decodcoop(X, gen, discr)
5: gen.train(srcs=X , tgts=Scoop) . Standard maximum likelihood but with Scoop as the

target, and not Sref
6: discr.train(srcs=X , human_exs= Sref , machine_exs=Scoop)

The difficulty of GAN-based approaches for NLP tasks lies in the fact that no gradient flow can
be propagated from the discriminator to the generator. As discussed above, approaches from the
literature circumvent this difficulty by employing RL approaches, using discriminator scores as
rewards to train the generator. However, such approaches induce great instabilities in the learning
process, due to the use of a non-stationary reward function in addition to the high variance associated
to monte-carlo estimations of RL.

The idea in our SelfGAN approach is to transfer the sparse signal of the discriminator, classically
used as rewards for a RL procedure, to the sampling mechanism of sequences that have to be favored
through MLE. In that way, SelfGAN starts from a pretrained generator, that we fine-tune using
sequences Scoop provided by a cooperative decoding process decodcoop for each condition in the
training set X . This process, detailed in the next section, uses both the generator and a discriminator
network to output human-like sequences Scoop, for which we improve the generator likelihood
via classical maximization: maxθ

∑
(x,s)∈(X,Scoop)

πθ(s|x), where πθ(s|x) =
∏|s|
t=1 πθ(st|s0:t−1, x)
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stands for the generator probability of sequence s given the conditioning input x, with πθ implemented
as a neural architecture with a softmax output function.

At each iteration of the training procedure, the discriminator network is optimized as a binary classifier
on i) the human references and ii) the machine generated via the cooperative sequences:

1

|H|
∑

(x,sref )∈H

log(D(x, sref )) +
1

|G|
∑

(x,scoop)∈G

log(1−D(x, scoop))

where x is the source input, H is the set of pairs associating x with a human written text sref from
the data distribution, and G is a set of pairs with generated outputs scoop. D(x, s) stands for the
probability, provided by the discriminator network, that sequence s is a human reference for condition
x. In order to effectively guide the cooperative process at each step, the discriminator needs to be
sequential: consistently with [32], we use a left-to-right mask during training, allowing discriminator
predictions for unfinished sequences.

Please note that, by construction of the cooperative decoding process, we have with high probability
at each iteration D(x, scoop) >= D(x, sgen) for any condition x ∈ X , with scoop a cooperative
decoded sequence for x and sgen a sequence directly sampled from the generator according to πθ(s|x).
Based on this observation, and provided that the discriminator is sufficiently trained at each step, the
generator is trained such that the probability of predicting human-like sequences is maximized. This
process i) allows us to consider a sequence level metric, and ii) offers more stability compared to
Reinforcement Learning, as we observe in our experiments (see section 6). Note also that, contrary to
RL approaches which have to find a good balance between discriminator and generator capacities, our
approach does not suffer from Vanishing Gradient [1], since discrimination is only used for decoding,
in a cooperative process for generator training. We depict the SelfGAN in Algorithm 1.

4 Decoding Mechanisms

4.1 Standard Practices: Generator-only

At decoding time, two different approaches are commonly used in NLG: Sampling and Beam Search.
They respectively correspond to two different objectives.

Sampling To obtain diverse outputs, it is common to sample tokens from the model distribution.
In particular, this is mandatory when there is no input at all, i.e. Unconditional NLG, for instance
GPT [25]. However, the longer the sequence, the more likely to sample a token from the tail of the
distribution, causing degeneration [13]. To mitigate this issue, common practices are to lower the
Softmax Temperature and keeping only the Top K tokens [10] / the Top P probability mass [13].

Beam Search is the standard algorithm to approximate the sequence maximising the output probabil-
ity, by maintaining K candidates at each step. Its usage suits better conditional NLG tasks, where the
diversity arises from the variety of conditioners inputs, e.g. in Summarization.

4.2 Cooperative Decoding: Combining a Discriminator and a Generator

Subject to exposure bias, neither Sampling or Beam Search are satisfying: the outputs produced are
easily identified by a discriminator [32], indicating that they differ from human written text. In light
of this, two concurrent works have recently proposed to use the discriminator during the decoding.

DASlocal - Reranking Step By Step In Discriminative Adversarial Search [32] a discriminator
re-ranks the sub-sequence candidates at each decoding step of a Beam Search, in order to favor
human-like outputs.

DASglobal - Reranking Complete Sequences In a concurrent work [7] a very similar cooperative
method is proposed: this time, N complete sequences are sampled from the auto-regressive model.
The N sequences are scored by a discriminator, allowing to select the one with the highest probability
to be human-like. Since the discriminator re-ranking is computed on a complete sequence, we refer
to this method as DASglobal, as opposed to DASlocal.
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4.3 Coop-MCTS: Cooperative Decoding beyond the Left-To-Right Curse

It can happen that all sequence candidates are judged by the discriminator to be machine-like rather
than human-like. In such case, the cooperative decoding is stuck in a dead end; such limitation is
unsatisfactory. Neither DASlocal or DASglobal have the ability to revise their previous decisions.

To cope with those limitations of myopic decoding strategies, we propose to consider an adaptation of
MCTS for NLG. Just like in the context of games [38], we consider a policy network π, the generator,
that outputs a probability over all the possible actions (tokens) at each step of the sequence. The
discriminator D corresponds to the value network. In MCTS, the trajectories are explored to build a
tree following three steps:

1. Selection starting from the root, children nodes tokens ω are selected among the vocabulary V
recursively w.r.t. the PUCT algorithm [29, 38]:

ω = argmax
ω∈V

(
Q(s, ω) + cpuctπτ (ω | s)

√∑
bN(s, b)

1 +N(s, ω)

)
(1)

where Q is the value of taking action ω in state s: in NLG, this corresponds to selecting a token
among the vocabulary at step i given the source context and the sub-sequence ω0, ..., ωi−1. cpuct
is a constant, τ the temperature that scales the Softmax, and N(s, ω) the number of times the
token ω has been chosen in state s. We stop the loop when a node so has not been expanded yet,
i.e. the discriminator D has not calculated its value.

2. Extension Given the selected node, we calculate the distribution probability from the generator
π(ω | so). We apply nucleus sampling [13] to filter out the less likely tokens and reduce the number
of actions. The remaining tokens constitute the children nodes, associated to their corresponding
probability. At the same time, we calculate the value of the current state D(so) that allows to
compute the backup step.

3. Backup we update Q for all the nodes that led to so such that Q← max (Q,D (so)). Note that
we choose to use the max instead of the average for the following reason: the value network, i.e.
a discriminator, becomes more accurate as the candidate sequence grows (see Figure 2 in [32]),
hence if a long sequence is judged human by the discriminator, any of its sub-sequences should be
considered human-like as well. In contrast, a long sequence can be machine-like despite starting
in a very human-like manner: the beginning sub-sequence should keep its human-like score.

These three steps are computed for a restricted number of simulations. Then, the next token corre-
sponds to the root child with the most visit counts. The process continues step by step to generate the
next token, until reaching either the special token End Of Sentence, or the maximum length.

5 Experimental Details

5.1 Datasets

To measure the effectiveness of SelfGAN, we experiment on two standard conditional NLG tasks:
Question Generation (QG) and Summarization, consistently with previous works [8, 31]:

• Question Generation: we used the SQuAD dataset [27], consisting of 100K triplets of Wikipedia
paragraphs, factual questions, and their answers.

• Summarization: we used the CNN/Daily Mail dataset (CNNDM) [21], consisting of 300K news
articles, paired with their corresponding summaries. The summaries are formed of multiple
sentences, making the amount of tokens to generate much larger than for Question Generation.

5.2 Models Reported

MLE the first baseline we consider is a standard model trained via teacher forcing. As for all our
experiments, we initialised the seq2seq with T5 [26], as detailed in Section 5.4.

ColdGAN we consider as a second baseline the current state-of-the art for language GANs,
ColdGAN [31]. The authors proposed to lower the temperature when sampling the sequences during
training, with the objective of stabilizing the training process.
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SelfGAN can be based on any cooperative decoding algorithm. To train SelfGAN, we there-
fore experiment the three different cooperative algorithms described in Section 4 (DASLocal,
DASGlobal, and Coop-MCTS) and report the results for the corresponding SelfGAN: SelfGANDAS-Local,
SelfGANDAS-Global, and SelfGANCoop-MCTS.

Decoding Method at inference time For each model, any decoding method can be applied at
inference time, independently from the training scheme. Therefore, for all the models described
above, we report the results given each decoding method previously described (Section 4): Beam
Search, DASLocal, DASGlobal, and Coop-MCTS.

To the best of our knowledge, GANs and Cooperative decoding have never been directly compared
before this work. A fortiori, this is the first time that a GAN model is tested with a Cooperative
decoding method at inference. We investigate possible distillation effects in Section 6.

5.3 Metrics

To compare the different models, we report two type of metrics: n-gram based and discriminator.

N-gram based We report the standard BLEU [23] and ROUGE [19]. Both measure an overlap of
n-grams between the reference and the evaluated text. They differ in that BLEU is precision oriented
while ROUGE is rather recall oriented.

Discriminators Both BLEU and ROUGE suffer from the aforementioned limitations. We therefore
propose to consider discriminators for model evaluation. Intuitively, they measure how model outputs
are similar to what a human would have written. We consider two different discriminators:

• Base is a discriminator trained on the MLE baseline outputs generated via beam search. It allows
to measure the corresponding improvement from the MLE baseline. Note that it corresponds to the
initial discriminator in all the GANs experiments, and the discriminator used in the cooperative
search for the MLE baseline.

• Base+ Since the Base discriminator plays a role in all our experiments (except MLE+Beam Search),
it is possible that a model that makes use of this Base obtains better Base results, despite bringing
new biases and de-generation behaviors. For this reason, we also report Base+, a discriminator
fine-tuned on all the different model outputs together. Base+ is never used by any model at training
or inference time. It is thus more robust toward an undesirable adversarial generation mode, while
still being comparable for the different experiments. We argue that a higher Base+ score indicates
a real improvement beyond potential bias.

5.4 Implementation Details

For all experiments, we used the T5-small [26] architecture.2 Using 4 Nvidia V100 SXM2 GPUs,
SelfGANCoop-MCTS training and evaluation takes respectively 26 hours and 1 hour on CNN/DM; 6
and 0.5 hours on SQuAD. Compared to 2 (0.5) hours to train via MLE on CNN/DM (SQuAD), we
identify in the computational cost the main limitation of our work.

6 Results and discussion

6.1 Conditional Text Generation

In Table 1, we report the results for all the previously trained generators, with the different decoding
algorithms presented in Section 4. By ‘model’, in the following, we refer to the couple composed by
a trained generator and a decoding algorithm.

We report BLEU4, ROUGE-1, ROUGE-L along with scores for the discriminators Base and Base+,
computed as the percentage of outputs considered as human by a given discriminator model. Base
was only trained on MLE+Beam Search outputs. As expected, by further training on the outputs
generated by all the different models, Base+ has a higher accuracy, which consistently results in
lower scores compared to Base.

2As implemented in HuggingFace transformers [40].
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Generator Question Generation Summarization
Decoder B4 R1 RL Base Base+ B4 R1 RL Base Base+

MLE
BeamSearch [26] 19,7 45,2 41,1 15% 15% 15,9 42,3 40,4 9% 8%
DASlocal [32] 19,9 45,2 41,1 28% 19% 16,6 43,8 40,9 17% 11%
DASglobal [7] 20,0 45,2 41,2 20% 17% 16,2 44,1 41,9 12% 9%
Coop-MCTS 19.8 45,3 41,5 33% 21% 16,3 42,5 40,6 20% 12%

ColdGAN
BeamSearch [31] 19.9 45,2 41,4 26% 17.9% 16,3 42,8 40,7 15% 10%
DASlocal 19,8 45,3 41,1 31% 20% 15,9 42,5 42,0 19% 11%
DASglobal 20,2 45,6 41,5 26% 18% 16,6 44,6 41,2 16% 10%
Coop-MCTS 19,9 45,4 41,2 39% 22% 15,9 44,2 41,2 23% 12%

SelfGANDASloc
BeamSearch 20,2 45,4 41,6 27% 21% 16,9 44,2 42,5 16% 11%
DASlocal 20,5 45,5 41,7 30% 23% 16,9 44,4 41,9 18% 13%
DASglobal 20,1 45,4 41,7 33% 20% 16,6 44,0 42,3 19% 11%
Coop-MCTS 20,4 45,5 41,8 39% 23% 16,4 43,8 42,8 23% 13%

SelfGANDASglob
BeamSearch 20,4 45,5 41,7 24% 19% 16,9 43,0 41,5 14% 11%
DASlocal 19,9 45,4 41,3 32% 22% 15,9 42,7 40,6 18% 12%
DASglobal 20,7 45,6 41,9 29% 20% 17,0 43,7 42,6 17% 11%
Coop-MCTS 20,0 45,3 41,4 40% 24% 16,1 43,4 42,3 23% 13%

SelfGANCoop-MCTS
BeamSearch 20,5 46,6 42,6 34% 21% 17,0 42,8 41,5 20% 13%
DASlocal 20,6 46,7 41,7 42% 24% 16,6 43,7 42,8 25% 13%
DASglobal 20,5 46,6 41,7 39% 21% 16,5 42,8 40,9 23% 12%
Coop-MCTS 21,1 48,9 44,7 40% 26% 17,5 43,5 42,3 23% 15%

Table 1: Results of our experiments on QG (left) and Summarization (right). For each generator, we
report the results with the four different decoders. The reported metrics correspond to BLEU4 (B4),
ROUGE-1 (R1), ROUGE-L (RL) and the discriminators Base and Base+ as described in Section 5.3.
For Base and Base+ the scores correspond to the probability of being human, so higher is better for
all the metrics. For SelfGANMCTS, we experimented with 5 different seeds and the standard deviation
is always inferior to 0.1 for BLEU4 and ROUGE, and inferior to 0.5% for Base and Base+.

We start by focusing on the MLE results to compare the different decoding mechanisms. We observe
that all the cooperative searches outperform Beam Search. Regarding Base and Base+ metrics,
DASLocal compares favorably to DASGlobal. We hypothesize that invoking the discriminator to rank
at each step can have more impact than using it only once on fully decoded sequences. Finally, our
proposed Coop-MCTS obtains the best results by a large margin.

Regarding the different GANs, we first compare them given the default decoding mechanism, i.e.
Beam Search. The three versions of SelfGAN compare favorably to MLE and ColdGAN on both
n-gram based metrics and discriminators metrics. Among SelfGANs, SelfGANCoop-MCTS obtains the
best results: given a Beam Search decoding, it obtains the best BLEU, ROUGE-1 and ROUGE-L
on the two tasks (respectively 17.2; 44.3; 40.6 on QG and 12.3; 38.6; 36.7 on Summarization). The
performance in term of Base and Base+ for SelfGANCoop-MCTS is even more important in comparison
to the other models (34.1%; 21.9% on QG and 20.2%; 12.7% on Summarization).

Both GAN at training time and Cooperative decoding at inference time pursue the same objective: to
obtain better outputs that look like human texts. Would a generator trained via GAN, coupled with a
Cooperative Decoding mechanism for inference result into a cumulative improvement from the two
methods? First, on both ColdGAN and three SelfGANs, we can observe that adding a Cooperative
Decoding method allows to gain significant improvement on Base and Base+. In particular, it is
interesting to note that for SelfGAN an additional pattern seems to emerge: using the same cooperative
decoding algorithm both during training and inference seems to provide additional gains. The best
performance is achieved with the generator SelfGANCoop-MCTS paired with the decoding Coop-MCTS.
Compared to MLE via Beam Search, it obtains a final improvement superior to 1 point in term of
ROUGE and BLEU. The relative improvement for Base+ is significant: from 15.2% to 26.2% on
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Model T=0.5 T=1 T=2
MLE+Sample 0.42;0.29 0.31;0.11 0.18;0.07
ColdGAN+Sample 0.47;0.21 0.33;0.08 0.22;0.06
MLE+Coop-MCTS 0.45;0.22 0.34;0.10 0.21;0.06
SelfGANCoop-MCTS+Coop-MCTS 0.48;0.20 0.37;0.09 0.24;0.05

Table 2: Results on Unconditional Text Generation for samples realized at three different temperatures,
in terms of BLEU Vs Self-BLEU (higher better;lower better).
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Figure 1: Average difference for Summarization between human references and model outputs for
the Length (Left), the Novelty (Middle), and the 3-grams repetitions (Right) during training. The
closer to 0 the less differences w.r.t. gold-references.

QG and from 8.6% to 15.3% on Summarization. This corresponds to almost twice more outputs that
sound human according to the Discriminator metric.

6.2 Unconditional Text Generation

We follow the ColdGAN setup: we compared our proposed approaches on the EMNLP2017 News
dataset. The evaluation takes into account both the quality and the diversity. Consistently with
previous works (e.g. ColdGAN, ScratchGAN, LeakGAN), we use the following metrics:i) BLEU-5
for measuring the quality (higher better); ii) Self-BLEU-5 for measuring the diversity (lower better).

To obtain a finer comparison between models, Caccia et al. [3] proposed to draw the curve of BLEU
vs self-BLEU, by sampling with various temperatures at inference.

We denote as the standard method to generate text in this setup, as used in all the previous works we
are comparing to. It is a simple left to right decoding where, at each step, a token is sampled among
the Softmax probabilities scaled by the temperature.

In our Coop-MCTS, the probability of a token is given by its visit counts during the simulations. In
Conditional generation, we select at each step the token with the maximum number of counts. In
Unconditional generation, we sample from the tokens counts distribution.

Overall, the results are consistent with the experiments on Conditional Generation: the MLE generator
decoded with our proposed MCTS (3rd row) obtains:

1. significantly better slightly lower results than ColdGAN decoded with Sample(2nd row)

2. results than when the same MLE decoded with Sample(1st row);

3. SelfGAN decoded with MCTS (4th row) obtains the best results.

6.3 Discussion

Human-like features during training In NLG, various rules are often integrated into the Beam
Search to improve the quality of the outputs, for instance a length penalty [35] or an interdiction for
3-grams repetitions [24, 8]. Such a need to hard code these rules indicates a discrepancy between
the human output characteristics and what the model has learned. In particular, Scialom et al. [32]
reported the difference between DAS and the human reference for: i) Length: the average number of
tokens per output; ii) Novelty: percentage of tokens in the output that were not present in the source
text; iii) N-gram repetition: percentage of N-grams that occur more than once in the output. To
measure how SelfGAN learns these features by itself, we report in Figure 1 the evolution of these
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Generator Decoder Consistency Coherence Fluency Relevance

MLE BeamSearch 3.9 3.1 4.1 3.2
MLE Coop-MCTS 3.4** 3.5** 3.8 3.6**
ColdGan BeamSearch 3.8 3.3 4.2 3.5
ColdGan Coop-MCTS 3.4** 3.6** 4.0 3.7**
SelfGANCoop-MCTS BeamSearch 4.0 3.5** 4.3* 3.9**
SelfGANCoop-MCTS Coop-MCTS 3.9 3.9** 4.0 4.2**

Table 3: Human Evaluation on Summarization. Two tailed t-test results are reported for each model
compared to MLE+BeamSearch (*: p < .01, **: p < .001).

statistics during training: we observe that SelfGAN constantly reach statistics more similar to human
references than ColdGAN.

Human Evaluation We conduct a human evaluation to measure the models performances beyond au-
tomatic metrics. We limit the evaluation to three generators (MLE, ColdGAN, and SelfGANCoop-MCTS)
and two decoding methods (Beam Search and Coop-MCTS), for a total of 6 different models. Three
professional English speakers rated 300 sampled summaries and followed the same protocol from
Fabbri et al. [9]. Four dimensions are evaluated on a Likert scale from 1 to 5 (the higher the better):

1. Consistency: the proportion of facts in the summary correct w.r.t. the source text;
2. Coherence: how well-structured and well-organized is the summary;
3. Fluency: how fluent the summary is to read;
4. Relevance: the ratio between important and excess information in the summary.

From Table 3 we observe significantly better results for SelfGANCoop-MCTS w.r.t. both MLE and
ColdGAN. While Coop-MCTS decoding appears overall beneficial in terms of Coherence and
Relevance, but scores lower on Consistency and Fluency, its combination with SelfGANCoop-MCTS
allows to obtain significant improvements on the former two dimensions while still maintaining
comparable scores on the latter.

Analysis To further understand the benefits of selfGAN, we propose to analyze the evolution of the
generator and discriminator networks through the learning process. In figure 2 (left), we first plot the
average magnitude (L2 norm) of the discriminator gradients w.r.t. its parameters. We observe that
ColdGAN induces important instabilities for its discriminator over time, with a highly fluctuating
gradient magnitude. Conversely, thanks to its cooperative decoding process, SelfGAN produces
sequences that form a more compact set for discriminator training, a variance of gradient magnitude
twice lower than ColdGAN , for a comparable magnitude in average. This discriminator stability is
a first explanation for the improvements of the proposed approach.

In a second plot, given on the right of Figure 2, we report the collinearity of generator gradients for the
generated samples from the model with those for the corresponding human references. Higher values
indicate sampling strategies that induce a useful gradient flow for the generator. For ablation purposes,
we first report values for a "SelfGANBeamSearch" approach, where we used a standard Beam Search to
generate the training examples: note that it has no discriminator, hence it is not a GAN anymore. We
can observe its divergence, as opposed to SelfGANCoop-MCTS, which emphasizes the importance of
the cooperative decoding for producing the example used to train the model. For SelfGANCoop-MCTS
and ColdGAN, the gradients become more co-linear with human references through time, indicating
a convergence of the process towards the human distribution. We observe that SelfGANCoop-MCTS
produces more useful sequences for achieving this convergence.

Coop-MCTS as an alternative to the dead-end search When analysing the behavior for the Coop-
MCTS decoding, we observed in different examples that it provides an effective mean to revise
generations that eventually ended up to be unlikely. To illustrate this, we report in Table 6.3 the
different MCTS steps for an ambiguous example: the conditioned answer, Super Bowl, occurs at
different places of the the input. Therefore, the model has to decide which specific mention of Super
Bowl to focus on: at step 17, it considers its current generation as a dead end and decides to start on
new node (How). The final output is a question that arguably sounds better than the initial one.

Societal Impact Reliable NLG models can have significant societal impact with beneficial appli-
cations such as efficient information access via automatic summarization or personalized student
evaluation through question generation. Still, malicious actors can use the same technology to build
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Figure 2: Left: Moving Average of the magnitude of the discriminators gradients during training.
Right: collinearity of the generators gradients between the sampled texts and their corresponding
human reference for SelfGANCoop-MCTS, ColdGAN and SelfGANBeamSearch. Both on Summarization.

Conditioned Answer: Super Bowl
Context:

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015
season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference
(NFC) champion Carolina Panthers 24â€“10 to earn their third Super Bowl title. The game was played on February 7, 2016,
at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league
emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily suspending the tradition of
naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so
that the logo could prominently feature the Arabic numerals

Step 01: What

...

Step 16: What was the name of the game that would have been known as "Super Bowl
Step 17: How

...

Step 46: How is called the American football game that determines the NFL champion?

Table 4: Progressive results obtained by our Coop-MCTS decoding method on Question Generation
during a simulation. Until the 16th step, the generation is left-to-right. Then, the cooperation
mechanism kicks in, allowing the model to safely abort this beam, by restarting a new question with
How. We report the cross-attention weights on the input context for step 16 (red) and 17 (blue).

tools detrimental to society, e.g. large scale creation of misleading (fake) news [25]. As argued by
Zellers et al. [45], keeping this research open and under public scrutiny can be an effective defense.

7 Conclusion

In this paper we propose SelfGAN, a new framework to train Generative Adversarial Networks based
on a cooperative decoding search. To overcome the left-to-right curse that limits standard search
algorithms, we propose Coop-MCTS. We conducted extensive experiments on two challenging tasks:
Summarization and Question Generation, obtaining state-of-the-art performance for SelfGAN both in
terms of automatic metrics and within a human evaluation. As the stability of the discriminator looks
to be crucial for language GANs, we plan for future works to still focus on increasing it through
the definition of dynamic regularization mechanisms. Finally, we will explore how reference-less
metrics, e.g. [33], can be combined to help the exploration during the decoding.
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[9] Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., and Radev, D. Summeval:
Re-evaluating summarization evaluation. arXiv preprint arXiv:2007.12626, 2020.

[10] Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

[11] Gabriel, S., Bosselut, A., Holtzman, A., Lo, K., Çelikyilmaz, A., and Choi, Y. Cooperative
generator-discriminator networks for abstractive summarization with narrative flow. 2019.

[12] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[13] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

[14] Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

[15] Kumagai, K., Kobayashi, I., Mochihashi, D., Asoh, H., Nakamura, T., and Nagai, T. Human-like
natural language generation using monte carlo tree search. In Proceedings of the INLG 2016
Workshop on Computational Creativity in Natural Language Generation, pp. 11–18, 2016.

[16] Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., and Bengio, Y. Professor forcing: A
new algorithm for training recurrent networks. arXiv preprint arXiv:1610.09038, 2016.

[17] Leblond, R., Alayrac, J.-B., Sifre, L., Pislar, M., Lespiau, J.-B., Antonoglou, I., Simonyan,
K., and Vinyals, O. Machine translation decoding beyond beam search. arXiv preprint
arXiv:2104.05336, 2021.

[18] Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. Adversarial learning for neural
dialogue generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2157–2169, 2017.

[19] Lin, C.-Y. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

[20] Mukherjee, S. An unsupervised approach to automatic response generation for conversational
e-commerce agents using monte carlo tree search. 2019.

[21] Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. Abstractive text summarization using
sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

11

https://openreview.net/forum?id=BJgza6VtPB


[22] Novikova, J., Dušek, O., Cercas Curry, A., and Rieser, V. Why we need new evaluation
metrics for NLG. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2241–2252, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1238. URL https://www.aclweb.org/
anthology/D17-1238.

[23] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual meeting on association for computational
linguistics, pp. 311–318. Association for Computational Linguistics, 2002.

[24] Paulus, R., Xiong, C., and Socher, R. A deep reinforced model for abstractive summarization.
arXiv preprint arXiv:1705.04304, 2017.

[25] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are
unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[26] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[27] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 2383–2392, 2016.

[28] Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. Sequence level training with recurrent
neural networks. arXiv preprint arXiv:1511.06732, 2015.

[29] Rosin, C. D. Multi-armed bandits with episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203–230, 2011.

[30] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., et al. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604–609, 2020.

[31] Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., and Staiano, J. Coldgans: Taming
language gans with cautious sampling strategies. Advances in Neural Information Processing
Systems, 2020.

[32] Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., and Staiano, J. Discriminative adversarial
search for abstractive summarization. arXiv preprint arXiv:2002.10375, 2020.

[33] Scialom, T., Dray, P.-A., Gallinari, P., Lamprier, S., Piwowarski, B., Staiano, J., and Wang, A.
Questeval: Summarization asks for fact-based evaluation. arXiv preprint arXiv:2103.12693,
2021.

[34] Scudder, H. Probability of error of some adaptive pattern-recognition machines. IEEE Transac-
tions on Information Theory, 11(3):363–371, 1965.

[35] See, A., Liu, P. J., and Manning, C. D. Get to the point: Summarization with pointer-generator
networks. arXiv preprint arXiv:1704.04368, 2017.

[36] Semeniuta, S., Severyn, A., and Gelly, S. On accurate evaluation of gans for language generation.
arXiv preprint arXiv:1806.04936, 2018.

[37] Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
464–468, 2018.

[38] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[39] Williams, R. J. and Zipser, D. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

12

https://www.aclweb.org/anthology/D17-1238
https://www.aclweb.org/anthology/D17-1238


[40] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., et al. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771, 2019.

[41] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q., Macherey, K., et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[42] Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational linguistics, pp. 189–196, 1995.

[43] Yu, L., Zhang, W., Wang, J., and SeqGAN, Y. Y. Sequence generative adversarial nets with
policy gradient. arxiv e-prints, page. arXiv preprint arXiv:1609.05473, 2016.

[44] Yu, L., Zhang, W., Wang, J., and Yu, Y. S. Sequence generative adversarial nets with policy
gradient. 489 in. In AAAI conference on artificial intelligence, volume 490, 2017.

[45] Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., and Choi, Y. Defending
against neural fake news. arXiv preprint arXiv:1905.12616, 2019.

[46] Zhang, Z. and Sabuncu, M. Self-distillation as instance-specific label smoothing. Advances in
Neural Information Processing Systems, 33, 2020.

[47] Zhou, W., Ge, T., Xu, K., Wei, F., and Zhou, M. Self-adversarial learning with comparative
discrimination for text generation. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=B1l8L6EtDS.

A Appendix

A.1 Implementation Details

In MCTS, sequence lengths are not aligned as in a standard left-to-right decoding algorithm. There-
fore, we used a simple trick to enable efficient batching of sequences, that can be applied to any
Language Model benefiting from a relative positional embedding [37]. We used a custom left padding
that shifts the start of each sequences from a batch, so that all of their last tokens are aligned. In all
our experiments, we used the T5-small [26] generator,3 in which the embedding is relative.

For the discriminators, we frame the classification task as a text2text task where the model has to
generate either the token human or machine. This allows to use again T5-small for all experiments,
removing possible bias from architecture differences between the generator and the discriminator.

We start by training via Teacher Forcing a model corresponding to the MLE baseline. All our GANs
are initialized from this MLE model. During training, we used a learning rate fixed to 5e-6 for both
the discriminator and the generator, and a number of epochs set to 5.

We tested on a validation set different values for our hyper parameter Cpuct ∈ [1.0, 2.0, 3.0, 4.0] and
found that 3.0 gives the best results. We thus only report the results with Cpuct = 3.0. For the budget
allocated to the MCTS we tested different number of simulations per token for the MLE model with
(n ∈ [5, 10, 25, 50, 100] and observed no significant improvement between 50 and 100. We hence
used n = 50 for all our experiments.

We used 4 Nvidia V100 SXM2 GPUs for this project. SelfGANCoop-MCTS training and evaluation
takes respectively 26 hours and 1 hour on CNN/DM; 6 and 0.5 hours on Question Generation.

A.2 Differences with [17]

In a concurrent work Leblond et al. [17] proposed MCTS as an alternative to Beam Search. There are
two differences with our work.

First, the authors limit their study to MCTS as a decoding algorithm at inference time, and use a
standard generator trained via MLE.

3As implemented in HuggingFace transformers [40].
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Secondly, for the value network in the MCTS, they proposed to optimise a static metric, the
BERTScore. However, we argue that these metrics are not reflecting human judgement [22], and
models that maximise them are found to perform poorly [24]. Therefore, in their setup, improving
BERTScore does not mean that the resulting model is better. Conversely, we chose a dyanmic metric,
i.e. A discriminator, for our value network in our proposed Coop-MCTS, or any other cooperative
decoding algorithm.

A.3 Cooperation VS Competition

SelfGAN can be seen as an implicit solution for the reward sparsity problem, whereby the gradient
from the reward is not tractable in language GANs. Conversely to prior works that have focused
on denser rewards, in SelfGAN the sequence generation is directly driven by the discriminator to
produce scoop.

In addition, standard GANs are known to be particularly unstable for several reasons. In particular,
a fine balance has to be found between the generator and the discriminator performance. If the
discriminator becomes too strong compared to the generator, the reward is null, a phenomenon
known as the Vanishing Gradient [1]. We emphasize that our proposed approach does not suffer from
Vanishing Gradient: while the discriminator improves, the cooperative generation improves as well.

Given that D(scoop) >= D(sgen), the generator will almost surely improve when trained on scoop,
for a large number of training steps, as long as the discriminator has an advantage, without requiring
it to be optimal.

A.4 Beyond A Unique Reference

In NLG, given an input, there are arguably many different possible outputs. To illustrate this, we
measure the score for human written summaries compared to other gold-references: in average it
obtains a ROUGE-1 of only 29.5 (std: 5.2). 4 This indicates that humans are likely to produce
different sequences when given the same input. In particular, the probability to write the same exact
sequence than the only gold-reference available in the training set is very low.

Should this behavior be penalized? Obviously not. And yet, this is what happens under Teacher
Forcing, where, during training, any generated token that is different from the target will increase
the loss. The model can therefore be exposed to contradictory information, which might limit its
effectiveness. Note that this issue does not apply to a discriminator, as only two output categories
(machine or human) are possible.

We argue that SelfGAN offers a theoretical solution to this multi-reference limitation. Lets denote
Shuman the universe of possible correct outputs, where sref ∈ Shuman. Then, given a perfect
discriminator (optimal to distinguish real data distribution from a different distribution), and an
infinite computational capacity, we have scoop ∈ Shuman. Indeed, given an infinite computational
capacity, all the possible sequences can be explored. A perfect discriminator classifies a sequence s as
human only if s ∈ Shuman. It results that scoop ∈ Shuman: the sequence generated via a cooperative
mechanism is guaranteed to be indistinguishable from any human output, just like the reference.

In addition, since the generator probability is also taken into account in a cooperative decoding, we
have scoop = argmax(Pπ(Shuman)). We note that this is guaranteed only if all possible sequences
are explored via an infinite computation. If we stop searching when one sequence is accepted by the
decoder, it is pseudo-guaranteed since a Beam Search is only an approximation of the argmax.

scoop is the sequence among all the human sequences that maximise the likelihood according to
the generator π. Therefore, is the generator outputs a human-level sequence (i.e. s ∈ Shuman), is
will actually correspond to scoop. It results that considering scoop as the gold-reference in Teacher
Forcing, the generator will not be subject to an artificial loss.

In conclusion, SelfGAN can be interpreted as a generalisation of Teacher Forcing that takes into
account the multiple possible references and trains the model on the reference the highest to its
likelihood.

4We used a validation set of 100 articles from the CNN/DM corpus paired with 11 different gold-references
released by Fabbri et al. [9].
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A.5 Human Validation

Raters for the human validation study devoted in average 5 hours to the task and were rewarded with
vouchers.
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