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(a) Human Mesh acquisition (b) Dual Canonical Fields Learning (c) Diverse Video Editing

Edit by Prompt: A man, black suit, In the church

Local Editing with user input 

Figure 1: We present HeroMaker, a new video representation with motion priors for human-centric video editing, which
contains human motion warping, margin refinements, and dual canonical fields. As illustrated in (a), our model employs the
body mesh to portray the structure information of people in the video. From (a) to (b), our model reconstructs the video with
explicit human motion warping and neural margin refinements between dual canonical fields and each human-centric video
frame. (c) shows the two editing results from HeroMaker, which are temporally consistent and plausible.

ABSTRACT
Video generation and editing, particularly human-centric video
editing, has seen a surge of interest in its potential to create immer-
sive and dynamic content. A fundamental challenge is ensuring
temporal coherence and visual harmony across frames, especially
in handling large-scale human motion and maintaining consistency
over long sequences. The previous methods, such as diffusion-based
video editing, struggle with flickering and length limitations. In
contrast, methods employing Video-2D representations grapple
with accurately capturing complex structural relationships in large-
scale human motion. Simultaneously, some patterns on the human
body appear intermittently throughout the video, posing a knotty
problem in identifying visual correspondence. To address the above
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problems, we present HeroMaker. This human-centric video edit-
ing framework manipulates the person’s appearance within the
input video and achieves inter-frame consistent results. Specifi-
cally, we propose to learn the motion priors, transformations from
dual canonical fields to each video frame, by leveraging the body
mesh-based human motion warping and neural deformation-based
margin refinement in the video reconstruction framework to ensure
the semantic correctness of canonical fields. HeroMaker performs
human-centric video editing by manipulating the dual canonical
fields and combining them with motion priors to synthesize tempo-
rally coherent and visually plausible results. Comprehensive exper-
iments demonstrate that our approach surpasses existing methods
regarding temporal consistency, visual quality, and semantic coher-
ence.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Human-centric Video Editing, Diffusion Model, Motion Priors
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1 INTRODUCTION
Human-centric video editing focuses on modifying the individual
within a given video and generating temporally coherent results.
This technique has numerous potential applications, such as media
content production, virtual reality, and video games. A pivotal
challenge in human-centric video editing is maintaining coherence
and harmonious results across frames when people can move freely
in the video.

Recent diffusion-based video editing explores extracting and in-
corporating various structural correspondences using infer-frame
attention maps [6, 8, 32, 55], optical flows [11, 58] and nn-fields [19].
Although the temporal consistency has improved, it still strug-
gles with flickering and length limitations. Alternatively, some
researchers have explored video-2D representations, storing the
information of the video in atlases [30] or canonical images [46] to
propagate changes over time. However, it grapples with accurately
capturing complex structural relationships in large-scale human
motion. Moreover, many studies have focused on reconstructing
a human body in 3D and attempting to edit it. While promising,
these methods often present challenges regarding cost, size, and
unfriendly user-controlled environments due to the semantic-less
texture maps and the requirement for long-term optimization pro-
cesses.

Since each human part is unique, patterns on the human body
appear intermittently throughout the video due to self-occlusion,
posing a knotty problem in identifying correspondence to ensure
consistent video editing. As a method of video-2D representation,
CoDeF[46] builds correspondence via learning a neural deformation
field from a canonical image to each frame and does the video edit-
ing on the canonical field, which improves the correspondence be-
tween frames. Although it achieves high-fidelity reconstruction, the
canonical image differs from natural images, leading to difficulties
when editing with image editing tools, including ControlNet [62],
and resulting in editing challenges to generate semantically plausi-
ble results.

In light of CoDeF’s success, we leverage the human body mesh to
obtain semantic human canonical images, which provide structural
and texture correspondence in 3D space. Our framework defines
motion priors, incorporating human motion warping, neural mar-
gin refinements, and dual canonical fields to achieve this goal. To
obtain the motion priors from a given video, our model employs an
off-the-shelf human mesh estimator to set up an initial body mesh.
Then, we refine the body mesh in a two-step optimization to close
its shape to the person’s in videos to ensure more accurate human
motion warping. Resorting the motion priors, our model defines
the dual canonical fields with a frontal and back body mesh under
the A-pose to obtain the vast majority of human body information.
Subsequently, it reconstructs the video with explicit human motion
warping and neural margin refinements between dual canonical
fields and each human-centric video frame. Additionally, our model
supports diverse user interactions for modifying the videos. Hero-
Maker performs human-centric video editing by manipulating the
semantic-aware dual canonical fields. Together with the motion
priors, it synthesizes temporally coherent and visually plausible
results.

We summarize our contributions as follows:

• We propose a new human-centric video representation com-
bining motion priors and deformation fields to reconstruct
and edit the video.

• We leverage the motion priors with human motion warping
based on body mesh, neural margin refinements, and dual
canonical fields to identify accurate structural correspon-
dence and produce coherent results.

• Extensive experiments demonstrate that our model could
produce temporal coherent and plausible results, especially
during large-scale human motion.

2 RELATEDWORK
2.1 Text-to-Video Generation and Editing.
Recent works attempt to extend a latent diffusion model into a T2V
editing model [2, 5, 6, 15–17, 19, 21, 22, 24, 25, 27, 32, 34, 35, 38, 41,
44, 48, 49, 52, 55, 56, 59–61, 65]. Tune-A-Video [55] and Control-A-
Video [8] extend a latent diffusion model to the spatial-temporal
domain and finetune it with source videos. However, they still
have difficulties in modeling complex motions and long sequences.
Text2Video-Zero [32] and ControlVideo [64] use ControlNet [62]
to preserve the per-frame structure but struggle to temporal consis-
tency. FateZero [48] and vid2vid-zero [53] use attention maps to en-
hance shape-aware editing based prompt-to-prompt [23], but they
still have temporal issues. Rerender-A-Video [58], TokenFlow [19],
and VideoControlNet [27] utilize optical flow to control inter-frame
relationships to improve consistency. However, they still face chal-
lenges when addressing large-scale human motion and rotation
issues. TokenFlow [19] enforces linear combinations between dif-
fusion features based on source correspondences. However, the
pre-defined combination weights are not adapted to all videos, re-
sulting in high-frequency flickering. Because TokenFlow [19] needs
to cache information for each framewhen processing long-sequence
videos, resulting in insufficient memory, we will not compare it
with this method.

The above methods explore the augmentation of inter-frame
attention modeling on a diffusion model. They ensure the correct
spatial structure but still challenge temporal consistency. Recently,
AnimateDiff [21] presented a motion module trained on extensive
video datawithout a fineturing diffusionmodel, improving temporal
consistency. Furthermore, human-centric videos have further ex-
plored some workss [26, 57] and achieved visually plausible results.
However, generating the same effect in videos in a small amount
of video data poses challenges. Unlike these works, our method
leverages human motion priors to achieve text-guided video editing
effectively.

2.2 Temporal Propagation in video editing.
Another significant line of video editing work relies on a power-
ful video representation. VideoSnap [66] compresses videos using
spatio-temporal feature maps into one or several images and then
trains an expansion network to transform these images back into
videos. The layered neural atlas [30] factorizes the input video us-
ing a layered presentation. It maps the subject/background of all
frames using 2D UVmaps as an intermediate editing representation.
Once the layered neural atlas is learned, editing can occur either on
keyframes or on the atlas itself, and the editing results consistently
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Figure 2: We propose a multi-stage framework for human-centric video editing. We first acquire the motion priors for each
frame based on SMPL-X [47] (a). Building upon the motion priors, we devise an editing-friendly video representation to
reconstruct the input video (b). Then, our optimized video representation enables superior editing performance as in (c).

propagate to other frames [4, 7, 13, 28, 33]. CoDeF [46] incorporates
the 3D deformation field with the 2D hash-based canonical image to
improve the video representative capability further. However, Video
Snapshot [66], atlas [30], and canonical image [46] all utilize optical
flow to help to predict the relationships between each frame. They
encounter difficulties in reconstructing and editing videos with
large-scale human motion. This leads to incorrect correspondence
and texture information, resulting in unnatural results.

2.3 3D Human Reconstruction and Editing
3D human reconstruction and editing are closely related to human-
centric video editing tasks. Many papers aim to reconstruct an
accurate human body and texture using the SMPL+D model [1, 18]
or implicit functions [20, 29, 54] through monocular videos. How-
ever, most focus on reconstructing and driving more accurate hu-
man models without considering editing effects and friendliness.
Some works attempt to edit in 3D, SINE [3] and SKED [42] sup-
port editing a local region of the base NeRF [43]. Dyn-E [63] and
Control4D [51] propose to edit the contents of dynamic NeRFs.
However, Dyn-E [63] can only edit the local appearance with user
manipulation. Control4D [51] needs multi-view videos as input
and can only handle videos with small motions and short video
lengths. Recently, DynVideo-E [37] has attempted to edit monocu-
lar videos in 3D through text. However, it is not user-friendly for
reconstruction and editing operations to take tens of hours to com-
plete. Although these methods can produce high-fidelity results,
their cost, size, and controlled environment are unfriendly to users.
Instead, video or image editing frameworks are more likely to avoid
these shortcomings. Our method introduces the motion priors to
the human body. Then, we convert it into pixel position relationship
conversion between each frame. While retaining the correctness
of the 3D structure, it transforms the task into 2D image editing,
which is also one of the primary motivations of our work. Our work

focuses on proposing a new human-centric video representation to
solve problems with the image or video editing task. Meanwhile,
we will not compare these methods. [37, 51, 63]. due to some recent
work not being open-source yet.

3 METHOD
Given a human-centric video, we aim to modify its visual attributes
based on diverse user interactions while maintaining correct struc-
tural correspondence and temporal consistency. We tackle this
problem with a multi-stage framework, namely reconstructing and
editing. As shown in Fig. 2, HeroMaker introduces a novel video
representation by leveraging the motion priors based on the SMPL-
X [47], which establishes the transformation correspondence from
the canonical field to each video frame. In the following, we first
illustrate the motion priors in Sec.3.1, and then our novel video rep-
resentation is elaborated in Sec.3.2, followed by details of the editing
procedure and applications of the whole framework in Sec.3.3.

3.1 Preliminary: Motion Priors
As previously stated, the visual quality of video editing largely
depends on the established video representation. To learn a bet-
ter video representation for facilitating subsequent video editing,
we resort to readily accessible motion priors. Specifically, we mit-
igate the deformation ambiguity by breaking it down into two
components: known human motion warping and neural margin
refinement. Thus, our first step is to obtain reliable motion priors.

As depicted in 2 (a), starting with a human-centric video {𝐼𝑖 }𝑁−1
𝑖=0

consists of 𝑁 frames, we apply the off-the-shelf OSX [36] to predict
the camera parameters 𝑃𝑖 and SMPL-X [47] coefficients due to its
robustness toward partial observations and high efficiency. SMPL-
X [47] is defined as a differentiable function 𝑆 (𝛽, 𝜃,𝜓 ) → (𝑉 , 𝐹 ) that
outputs a 3D human body mesh with 10475 vertices 𝑉 ∈ R10475×3,
20908 faces 𝐹 ∈ R20908×3, where 𝜓 ∈ R10 is the facial expression
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Figure 3: Qualitative analysis of video editing by the prompt. We compare our method against baselines regarding video
editing by a prompt. The first row is the input video, and the colorful description is the corresponding editing prompt. The
results indicate that the first three methods suffer from self-occlusion and large-scale movements, thus producing temporal
inconsistent results. CoDeF’s canonical images differ from the natural ones, leading to results lacking semantics. The results of
our method, in the last row, are temporally coherent and plausible.

parameters, 𝛽 ∈ R10 and 𝜃 ∈ R22×3 are the body shape parameters
and pose parameters, respectively. In order to enhance the accuracy
of the transformation correspondence, instead of directly utilizing
the regression-based estimation provided by OSX [36], we adopt
a two-step optimization strategy to obtain a more accurate SMPL-
X [47] fit.

Firstly, we refine the SMPL-X coefficients with 2d keypoints.
Specifically, we leverage mmpose [12] to attain 2D keypoints 𝑃𝑖 (2D)
for each frame 𝑖 . We optimize over the learnable parameters 𝜃𝑁−1

𝑖=0
by minimizing the difference between estimated 2D keypoints
𝑃𝑖 (2D) and corresponding projected 2D joints 𝑃𝑖 (𝐽sub), where 𝑃𝑖 is
the projection matrix. Additionally, we employ a temporal regular-
ization term L1

reg on output mesh vertices 𝑉 𝑖
𝑚 to ensure continuity.

The optimization objective of the first stage is:

L1 = Lkps + 𝜆1
regL1

reg (1)

Lkps = ∥𝑃𝑖 (2D) − 𝑃𝑖 (𝐽sub)∥2
2 (2)

L1
reg = ∥𝑉 [0:𝑛−2]

𝑚 −𝑉
[1:𝑛−1]
𝑚 ∥2

2 (3)

To further improve the flexibility of the SMPL-X [47] model’s ex-
pression ability, making it able to match the clothed human better
in the video, rather than a skinned person. In the second stage, we
added a per-vertex offset 𝐷 ∈ R10475×3, to capture the details of
each frame and define the model as:

𝑆 (𝛽, 𝜃,𝜓, 𝐷) = LBS(𝑇 (𝛽, 𝜃,𝜓, 𝐷), 𝐽 (𝛽), 𝜃,𝑊 ) (4)

𝑇 (𝛽, 𝜃,𝜓, 𝐷) = 𝑇 (𝛽, 𝜃,𝜓 ) + 𝐷 (5)

𝑇 (𝛽, 𝜃,𝜓 ) = 𝑇 + 𝐵𝑠 (𝛽) + 𝐵𝑝 (𝜃 ) + 𝐵𝑒 (𝜓 ) (6)
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where T is a mean shape template, 𝐵𝑠 , 𝐵𝑝 and 𝐵𝑒 are shape,
pose and expression blend shapes, respectively. LBS denotes linear
blending skinning and𝑊 is the vertices’ skinning weights. We only
optimize 𝐷 in this stage to avoid overfitting. Since we expect the
rendered human outline to align with the foreground mask, we
utilize mask loss as a supervision. We use SAM-Track [10] to get a
per-frame binary mask𝑀𝑖 of human and minimize the difference
between the silhouette of the rendered body 𝑅𝑠 (𝑃𝑖 , {𝑉𝑖 , 𝐹 }) and the
obtained mask𝑀𝑖 , where 𝑅𝑠 denotes the differentiable silhouette
rasterizer. To ensure mesh smoothness, we regulate the offset with
Laplacian smoothing loss [14, 45] 𝐿Laplacian and 𝐿2 regularization.
The optimization objective of the second stage is:

L2 = Lsilhouette + 𝜆2
regL2

reg (7)

Lsilhouette = ∥𝑅𝑠 (𝑃, {𝑉𝑖 , 𝐹 }) −𝑀𝑖 ∥2
2 (8)

L2
reg = 𝐿Laplacian (𝐷) + 𝛾 ∥𝐷 ∥2

2 (9)

Finally, we acquire motion priors that is sufficiently expressive
for the video.

3.2 Video Reconstruction with Motion Priors
We find a powerful video presentation with better temporal conti-
nuity than the inter-frame attention model. With the motion priors
described in Sec. 3.1, we target a more editing-friendly video repre-
sentation, which could effectively convert the human-centric video
editing problems into image editing problems. While overfitting
the observed video using neural representation is relatively acces-
sible, it often leads to a noisy canonical field due to the ill-posed
nature of solving the deformation field. Intuitively, the prerequisite
for promising editing is establishing a meaningful canonical field.
Meanwhile, a well-defined deformation field can relieve the ambigu-
ity in the canonical field, subsequently benefiting high-quality edit-
ing outcomes. The previous methods were mainly divided into two
types. The first type [30] uses a UV mapping relationship between
pixel space and layered neural atlas, which caused inconvenience
during editing. The second type [46] wanted to compress video con-
tent onto images, but finding the correspondence between frames
in large-scale human motion is challenging. Thus, we devise the
canonical fields and decompose the temporal deformation in video
based on the motion priors. As shown in 2, our video representation
comprised of three components:
Dual canonical fields.We define the canonical human body as the
A-posed SMPL-X+D, 𝑆𝑐 = 𝑆 (𝛽, 𝜃𝐴,𝜓 ) +�̄� with mean estimated coef-
ficients across video frames. Specifically, we adopt a dual canonical
fields design in which we choose the front view𝐶front and back view
𝐶back of the canonical human body for information complemen-
tarity. As for the network structure, our dual canonical fields are
constructed using two 2D multi-resolution hash encodings, which
map a 2D position (𝑥,𝑦) to (𝑅,𝐺, 𝐵) color.
Human motion warping. To alleviate the issue of overfitting
resulting from directly learning a deformation field [46], we ex-
pect that explicit human motion warping dominates the overall
deformation, while neural deformation serves as a refinement. Hu-
man motion warping is parametric-free, yet it provides semantic
correspondences across frames in video representation.

copy

A

B

𝑇 𝑥!, 𝑦! = 𝑥"! , 𝑦"! + (∆𝑥! + ∆𝑦!)

𝑇 𝑥# , 𝑦# = (𝑥"! , 𝑦"!) + (∆𝑥! + ∆𝑦!)
copy

Figure 4: Margin refine method. Our method deals with the
transformation relationships of points outside the mesh
transformation matrix region and inside the human mask.

Inspired by Liquid Warping GAN [39, 40], we build human mo-
tion warping using the Neural Mesh Renderer (NMR) [31]. To re-
construct a target frame 𝐼𝑖 , we first query the canonical fields to
acquire two canonical images 𝐼front and 𝐼back, and then we embed
them into texture space using a weak-perspective camera as 𝑆𝑐 .
Since our motion priors are topologically consistent, we can easily
obtain the transformation 𝑇 tr

front and 𝑇
tr
back, which warp the infor-

mation from the canonical fields to the target frame. Moreover,
we compute a mask to fuse the information from 𝐶front and 𝐶back.
For more details, please refer to the supplementary materials. It
is worth noting that we define the deformation in a canonical-to-
observation direction, which naturally prevents the drawback of
backward deformation [9].
Neural Margin refinement. Now, we can make approximate
transformations with human motion warping. However, be aware
that human motion warping only accounts for rigid transformation,
insufficient for clothes and fine-grained non-rigid deformations. In
other words, the information in the position 𝐼𝑖 (𝑥,𝑦) is not solely
determined by the transformation relationship 𝑇 𝑡𝑟

𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 . To this
end, we design a small refinement field and padding strategy to
refine the margin part of the human in a video.

As for the refinement field, we implement 2D multi-resolution
hash encoding as the backbone. Specifically, we feed in a triplet
(𝑥,𝑦, 𝑖) into the refinement field and produce the residual Δ𝑇 :
(Δ𝑥,Δ𝑦). Formally, the full transformation from front or back-
canonical image to each target frame 𝑇 = 𝑇 tr

front |back + Δ𝑇 , where
𝑇 tr
front |back is estimated based on SMPL-X [47].
As shown in Fig. 4, we set the final transformation relationship

to be related to the transformation relationship obtained by the
human motion warping and margin refinement module.

For points within the transformation relationship 𝑇 𝑡𝑟
𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 ,

we set the full transformation relationship 𝑇𝑖𝑛 as the result of the
current point’s transformation relationship𝑇 𝑡𝑟

𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 (𝑖𝑛) and add
the result Δ𝑇𝑖𝑛 refined by the margin refinement module.

𝑇𝑖𝑛 = 𝑇 𝑡𝑟
𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 (𝑖𝑛) + Δ𝑇𝑖𝑛 (10)

For points outside the transformation relationship 𝑇 𝑡𝑟
𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘

and inside the human mask𝑀 , we set the full transformation rela-
tionship𝑇𝑜𝑢𝑡 as the transformation relationship of the point nearest
to the effective transformation matrix 𝑇𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 (𝑛𝑒𝑎𝑟𝑒𝑠𝑡−𝑖𝑛) , and
add the result Δ𝑇𝑜𝑢𝑡 refined by the margin refinement module.

𝑇𝑜𝑢𝑡 = 𝑇 𝑡𝑟
𝑓 𝑟𝑜𝑛𝑡 |𝑏𝑎𝑐𝑘 (𝑛𝑒𝑎𝑟𝑒𝑠𝑡−𝑖𝑛) + Δ𝑇𝑜𝑢𝑡 (11)
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We select the two frames 𝐼nn_front, 𝐼nn_back from the video closest
to the front-view and back-view canonical field as regularization
for training. Specifically, we additionally reconstruct the target
frame 𝐼 ′

𝑖
with the information from 𝐼nn_front or 𝐼nn_back according

to the orientation similarity of the pelvis. In this way, we can largely
preserve the semantic information. Our representation is jointly
trained by minimizing the reconstruction loss 𝐿rec between the
predicted image 𝐼 and the original one 𝐼 using mean square error.
Moreover, we constrain the output of the deform field using 𝐿2
norm empirically. Overall, the loss function of video reconstruction
with motion priors can be written as:

L3 = Lrec (𝐼𝑖 , 𝐼𝑖 ) + 𝜆deform∥Δ𝑇 ∥2
2 + 𝜆3

regL3
reg (12)

L3
reg =

∑︁
𝐼𝑖 ∈front

𝐿rec (𝐼
′
𝑖
, 𝐼𝑖 ) +

∑︁
𝐼𝑖 ∈back

𝐿rec (𝐼
′
𝑖
, 𝐼𝑖 ) (13)

3.3 Video Editing Module
Upon the optimized video representation, we can obtain the trained
front canonical image 𝐼front and back canonical image 𝐼back by
querying the 𝐶front and 𝐶back with position (𝑥,𝑦). Although our
dual canonical fields design retains semantic and structural infor-
mation, they also introduce a new challenge in terms of semantic
consistency. For the randomness during the diffusing and denoising
process, editing two canonical images separately using Control-
Net [27] may yield inharmonious results. We suggest resolving
this issue through a simple yet effective strategy to ensure editing
coherence. Specifically, we concatenate the 𝐼front and 𝐼back along
the width axis and feed it into ControlNet [27]. The self-attention
mechanism implicitly builds the correlation between two canonical
images.

As shown in Fig. 2 (c), we explore two different editing scenes:
1) Video editing by prompt. Users could modify the content of
the human and background separately using text inputs. 2) Video
editing with user input. Users could directly draw on the canoni-
cal images at their will. For example, they can attach a logo to their
clothes and automatically propagate it throughout the video.

Moreover, HeroMaker supports editing a person individually
within a multi-person video, which differs from most competing
methods.

4 EXPERIMENTS
4.1 Experimental Setup
Implementation Details. HeroMaker is implemented in PyTorch.
In the first stage, we optimize themeshwith theAdamoptimizer(𝑙𝑟 =
0.0001, 𝛽 = (0.9, 0.99)) for 200 iterations. The regularization param-
eter, denoted as 𝜆1

𝑟𝑒𝑔 = 0.2. In the second stage, We optimize for
20 iterations per frame with a learning rate of 0.0005, 𝜆2

𝑟𝑒𝑔 = 0.2
and 𝛾 = 10. During video reconstruction, we jointly trained dual
canonical fields and neural margin refinement field together with
the Adam optimizer(lr=0.0001, 𝛽 = (0.9, 0.99)) for 15000 iterations.
We employ the pre-trained Stable Diffusion v1.5 model, and Con-
trolNet [62] provides structure guidance regarding edges. For image
editing, we implement 30 timesteps for DDIM sampling.
Dataset. We validate the effectiveness of our full pipeline using
two datasets, including selected videos from the iPER [39, 40] and

Method 𝐸vertices ↓ CLIP↑
Text2Video-Zero [32] 27.61 25.00
Rerender-A-Video [58] 25.85 26.05

StableVideo[7] 10.53 26.43
CoDeF [46] 26.22 27.48

Ours 7.81 27.70

Table 1: Quantitative comparison on prompt-based video
editing. We estimate and compute the average mesh vertices
error as 𝐸vertices in the original and edited videos. For textual
alignment, we report the average CLIP [50] score.

Method Textual fidelity
consistency ↑

Shape
preservation↑

Visual
effect↑

Text2Video-Zero [32] 0.531 0.500 0.469
Rerender-A-Video [58] 0.594 0.438 0.563

StableVideo[7] 0.375 0.500 0.469
CoDeF [46] 0.375 0.344 0.344

Ours 0.813 0.625 0.625

Table 2: User study on prompt-based video editing.

Method NLA [30] CoDeF [46] Ours

Visual effect ↑ 0.375 0.365 0.750

Table 3: User study on user interactive video editing.

in-the-wild internet videos. These videos encompass individuals
with diverse body shapes, each performing with different speeds
and amplitudes. All videos consist of 50 to 200 frames, and we
employ 2 ∼ 4 prompts during editing.
Baselines. We compare our method with five baselines: NLA [30],
Text2Video-Zero [32], Rerender-A-Video [58], StableVideo [7] and
CoDeF [46].We compare ourmethodwith NLA [30] and CoDeF [46]
in video editing with the user input task to validate the ability of the
model to represent the video in a structure-aware correspondence.
For video editing by prompt task, we compare our model with
Text2Video-Zero [32], Rerender-A-Video [58], StableVideo [7] and
CoDeF [46] to show the temporal consistency and ability to match
the prompts.
Evaluation Metrics. Human-centric video editing aims to faith-
fully reflect the editing prompt while maintaining original shape
coherency and temporal consistency. We further propose to mea-
sure the shape coherency. In detail, we estimate the human mesh
in the original and edited video using OSX [36] and compute the
average mesh vertices error as 𝐸vertices. For textual alignment, we
report the average CLIP [50] score, which computes the cosine
similarity between the prompts’ CLIP [50] embedding and each
frame’s image embedding in the edited video. However, simply
using these metrics cannot fully represent the visual quality of
edited videos. We thus conducted a user study. We show the textual
descriptions and editing results of different methods, asking them
to rate in three aspects: textual fidelity with temporal continuity,
shape preservation, and comprehensive visual effect.
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4.2 Comparison with Baselines
Quantitative Comparison. Following previous works, we eval-
uated our method and baselines with different metrics. As indi-
cated in Table. 1, our method surpasses previous works in all met-
rics, demonstrating that our editing results align closely with the
prompts and maintain the original body shape. We further con-
duct user studies as described in Sec.4.1. As shown in Table. 2 and
Table. 3, the participants exhibit a clear preference for our results.

CoDeF NLAInput Ours

Figure 5: Qualitative analysis of video editing with user input.
Our method supports local editing and allows users to add
customized icons accurately into the region of interest. We
compare our method against NLA [30] and CoDeF [46].

QualitativeComparison. Fig.3 presents the visual results of prompt-
based video editing. Text2Video-Zero [32] and Rerender-A-Video [58]
generate outputs semantically aligned with the text description but
fail to maintain temporal consistency. For instance, the body shapes
are flickering, and the arms are distorted (see Spider-Man and Su-
perman in Fig. 3). StableVideo [7] exhibits satisfactory temporal
consistency. However, it is prone to generating outputs with re-
duced fidelity. Since CoDeF learns the deformation field and the
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Figure 6: Multiple people editing results. Our method can ex-
tend to the reconstruction and editing, where the input video
sequence supports multiple people. In the subsequent stage,
users can edit one or more people in the scene individually,
providing greater flexibility.

canonical image without structure information, it generates dif-
ferent results from natural images when handling human-centric
videos. According to Fig. 3, by leveraging the motion priors, our
method successfully achieves temporal consistency while preserv-
ing fidelity.

Furthermore, representing the video with motion priors allows
our model to edit the human body locally. It enables users to edit
regions of interest while maintaining the other parts. In Fig. 5, we
compare our method to NLA [30] and CoDeF [46] in user interac-
tive video editing. NLA [30] and CoDeF [46] models use optical
flow to maintain the correspondence between frames. However, es-
timating optical flow for complex human motion is difficult, which
leads to visual flaws. Although NLA [30] shows good textured re-
sults, it fails to maintain geometry consistency between human
motion. CoDeF [46] leads to information losses when encoding the
video into a canonical content field. In some cases, the correspon-
dence of body deformation deviates, causing unpleasant editing
results. In contrast, our model utilizes motion priors and thus learns
human-aware canonical fields, ensuring that the editing contents
are attached to the appropriate positions.

Additionally, unlike most previous methods, HeroMaker offers
the ability to easily modify any character within a video containing
multiple people, as illustrated in Fig. 6. This capability enhances
the appeal and flexibility of human-centric video editing, providing
users with a unique and engaging experience.
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Figure 7: Qualitative ablation results. Compared to method (a), method (b) benefits from a neural deformation module to correct
estimation errors from the SMPL-X network. The method (c) further improves the results using first-stage SMPL-X refinement
that effectively improves motion priors. Our full uses a neural deformation module and two stages of SMPL-X refinement
to achieve precise mesh deformation. Additionally, we demonstrate the necessity of learnable canonical fields by comparing
method (e) versus method (f).

4.3 Ablation Studies
To verify the contributions of different modules to the overall per-
formance, we systematically deactivate specific modules in our
framework and present the visual comparison in Fig.7. In this sec-
tion, we mainly analyzed the impact of varying degrees of SMPL-X
refinement, whether to add a deform module and the necessity
of learning canonical fields. We define method (a) as the model
without SMPL-X refinement and the neural deformation module.
Method (b) incorporates the neural deformation module into the
baseline. Considering that our framework performs SMPL-X refine-
ment in two stages, method (c) applies only the first refinement
stage, whereas method (d) represents our full model.
Neural deformation module. The neural deformation module
aims to correct estimation errors from the SMPL-X network by
ensuring the alignment of frame images with the canonical fields
under motion priors. The comparison between methods (a) and
(b) demonstrates improvements in clarity and reduction in edge
deviations, highlighting the module’s efficacy in enhancing visual
quality by learning accurate correspondences.
SMPL-X refinement. The refinement process mitigates mesh de-
viations detected by the SMPL-X network and utilizes 2D keypoints
and inter-frame mesh deviations for optimization in the first stage.
It is visible that the improvement in image quality in method (c)
indicates that the correctness of motion priors has a positive impact
on the results. The second refinement stage further rectifies edge
artifacts, underscoring the refinement’s critical role in achieving
precise mesh deformation.

Learnable canonical fields. Additionally, to demonstrate the ne-
cessity of learnable canonical fields, we select the two images closest
to the front and back view as canonical images and then optimize
the deform network to obtain the final results. We believe that this
can extract as much information as possible from the video while
ensuring semantic information. However, as shown in Fig. 7, by
comparing method (e) versus method (f), we observe that learnable
canonical fields capture more detailed and relevant information
from video sequences, thereby reducing reconstruction errors and
improving edge definition. Constant canonical images, despite their
simplicity, fail to accommodate the complexity and randomness of
motion, leading to artifacts in reconstructed images.

5 CONCLUSION
In this paper, we present HeroMaker, an innovative human-aware
framework that prioritizes human-centric video editing. Our ap-
proach utilizes motion priors based on human body mesh to estab-
lish the transformation correspondence from human-aware canon-
ical fields to each video frame. Powered by our devised video repre-
sentation, we maintain meaningful and structural canonical fields
that facilitate the subsequent synthesis of temporal coherent and
plausible results in response to diverse user interactions. Exten-
sive experiments and visual results demonstrate the superior per-
formance of our HeroMaker, while ablation studies confirm the
effectiveness of our design.
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