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This supplementary materials consist of a PDF file and a video to
provide more details of our methods and additional results, orga-
nized as follows:

• The pipeline of thewholemodel as in themain paper. (video.mp4
00:00 ∼ 00:42)

• Implementation details of themotionwarping acquisition (Sec. 1).
• Performance comparison (Sec. 2). (video.mp4 00:42 ∼ 02:37)
• Multiple persons editing results (Sec. 3). (video.mp4 02:37 ∼
03:20)

• User study details(Sec. 4). (video.mp4 03:20 ∼ 03:35)

We also give explanations aligned with the video and list below.

1 IMPLEMENTATION DETAILS OF THE
HUMAN MOTIONWARPING

In the humanmotionwarpingmodule, we can integrate information
from both frontal and back canonical images into each frame.

For each image, we possess the camera parameters, the weight
index map of the mesh W, and C as the correspondence map of
the mesh, and the value in each pixel indicates the face index of
the mesh. For canonical images and the 𝑖𝑡ℎ frame’s image, we first
project their mesh to image coordinate using the corresponding
camera parameters and determine the barycentric coordinates of
each mesh face 𝑓𝑓 , 𝑓𝑏 , and 𝑓𝑠𝑖 .

Subsequently, the matching correspondence is established be-
tween correspondence map 𝐶 and the coordinates of the mesh face
𝑓 and get transformation matrix 𝑇𝑠→𝑡 ∈ R𝐻×𝑊 ×2. So we can also
get transformation matrix 𝑇𝑓𝑖→𝑡 or 𝑇𝑏𝑖→𝑡 through replace 𝑓𝑠𝑖 with
𝑓𝑓 or 𝑓𝑏 .

Because both the front and back view images need to be warped
into each frame, we need to specify the sources of information in
different locations.

Initially, considering the transformation matrices from a source
image to a target image, there are two types. The first is to transform
the visible part, and the second is to complete the original mesh
texture before the transformation.

The mask corresponding to the human mesh is 𝑆𝑐 for a frame.
First, we choose to use the transformation involving only the visible
parts as𝑀𝑓1 , converting the texture of the front view canonical mesh
into the mesh of the video frame, and get 𝑇𝑓→𝑖 . Subsequently, we
employ the transformation involving only the visible parts𝑀𝑏𝑡 from
the back to convert the texture of the back view canonical mesh
into the video frame’s mesh in the remaining part and get 𝑇𝑏→𝑖 .
Finally, we use the front view image information for completion
the remaining small regions𝑀𝑓2 that are not covered. Overall, the
motion warping as:

𝑀𝑏 = 𝑀𝑏𝑡 ∩𝑀′
𝑓1

(1)

𝑀𝑓2 = 𝑆𝑐 ∩𝑀′
𝑓1
∩𝑀′

𝑏
(2)

𝑀𝑓 = 𝑀𝑓1 ∪𝑀𝑓2 (3)

𝑇 𝑡𝑟
𝑓 𝑟𝑜𝑛𝑡

= 𝑇𝑓→𝑖 ×𝑀𝑓 (4)

𝑇 𝑡𝑟
𝑏𝑎𝑐𝑘

= 𝑇𝑏→𝑖 ×𝑀𝑏 (5)

2 PERFORMANCE COMPARISON
We present the comparison results between our approach and all
baselines.

On the prompt-based video editing task in Fig. 1, videos edited by
Text2Video-Zero [5] maintain textual fidelity but encounter flick-
ering and inconsistent shapes. Rerender-A-Video [7] has achieved
some improvement in terms of flickering via hierarchical cross-
frame consistency constraints. However, it still lacks accurate corre-
spondences and leads to issues of rotation cases. Rerender-A-Video
use canny as a condition for ControlNet [3] resulted in the inability
to capture rotational correspondences. Therefore, in Text2Video-
Zero, we use openpose [1] as a condition for ControlNet [8] but
found it still needs to work on addressing issues effectively. Sta-
bleVideo [2] relies on the NLA [4] method, which faces challenges
in effectively separating foreground and background atlases, lead-
ing to a weaker textual fidelity. CoDeF [6] utilizes optical flow but
encounters inaccuracies in detecting large-scale motions, result-
ing in semantic-less canonical images, yielding results differing
from natural video. Our approach demonstrates superior temporal
consistency and accurate correspondence, yielding commendable
results in two editing cases.

In Fig. 2, we attempted to edit videos using editing frames and
editing layers in NLA [4] model. The results show that this method
needs help distinguishing between foreground and background
atlas for human motion videos. Establishing correspondences in
complex human motion is challenging for CoDeF [6], which leads
to visual flaws. Additionally, our method has achieved better user
interactive video editing performance with motion priors.

3 MULTIPLE PERSONS EDITING RESULTS
Compared to other methods, our approach, along with CoDeF [6],
enables flexible editing of multiple persons according to specific
requirements. In Fig. 3, we show the results of all baselines and our
methods for editing the entire video. Our and CoDeF [6] method
have high textual fidelity, outperforming other baseline methods
slightly. CoDeF [6] learns the deformation field and the canon-
ical image without structure information, causing semantic-less
canonical images. Additionally, we achieve better visual effects with
motion priors.



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

O
ur

s
R

er
en

de
r

A
 V

id
eo

In
pu

t
Te

xt
2V

id
eo

Ze
ro

C
oD

eF
St

ab
le

V
id

eo

Spider man, the room with painting A man, black suit, on the beach

Figure 1: More qualitative results of the prompt-based video editing. We present two more visual comparisons of our approach
against all baselines regarding prompt-based video editing. Compared to other methods, our method is temporally coherent
and plausible. (video.mp4 00:42 ∼ 01:35)

4 USER STUDY DETAILS
Since the edited video is very subjective, we conducted a user study
to show the effectiveness of the proposed method over all base-
lines. Specifically, we ask 17 subjects on five different methods(𝑖 .𝑒 .,
Text2Video-Zero [5], Rerender-A-Video [7], StableVideo [2], CoDeF [6],
NLA [4] and ours). We provide eight samples of the results and let
them score videos based on three aspects: textual fidelity & consis-
tency, shape preservation, and visual effect for the prompt-based
video editing and visual effects for the user interactive video editing.
Fig. 4 and Fig. 5 show the example in our questionnaires.
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(a) Comparison of our method with NLA [4](frame editing) and
CoDeF [6] in local editing. (video/mp4 02:14 ∼ 02:27)

In
pu
t

C
oD
eF

O
ur

N
LA

(b) Comparison of our method with NLA [4](layer editing) and
CoDeF [6] in local editing. (video.mp4 02:27 ∼ 02:37)

Figure 2: More qualitative results of the user interactive video editing. We present two more visual comparisons of our approach
against all baselines regarding local editing. (video.mp4 01:35 ∼ 02:37)

Prompt: Iron man, Spider man, super man, on the beach

Input Text2Video
Zero

Rerender
A Video StableVideo CoDeF Our

Figure 3: Performance comparison of multiple persons editing. We present a visual comparison of our approach against all
baselines. Text2Video-Zero [5], Rerender-A-Video [7], and StableVideo [2] have insufficient textual fidelity, and CoDeF [1] lack
motion priors. Our method has a high textual fidelity and visually natural result. (video.mp4 02:37 ∼ 03:20)
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Prompt: spider man, the room with painting

Textual fidelity & consistency: The video has a high matching degree with the prompt, and there is a smooth 
transition between video frames. The texture of the same position on the human body does not change over time.
Shape preservation: The structure of the human body is intact, and there are no phenomena such as missing limbs or 
distortion.
Visual effect: After comprehensive evaluation, the video having an overall better effect.
Please watch the above videos and score each video based on three aspects: textual fidelity & consistency, shape 
preservation, and visual effect. The scores should range from 0 to 1.

Figure 4: An example of our user study. For prompt-based video editing, we provide a prompt for users to score videos based on
three aspects: textual fidelity & consistency, shape preservation, and visual effect.

A B C

Edited Icon:

Visual effect: Pay attention to whether the position of the pattern during person movement is 
correct, and whether the masking of relationship is correct.
Please watch the above videos and score each video based on  visual effect. The scores 
should range from 0 to 1.

Figure 5: An example of our user study. For the user interactive video editing, we provide an icon for users to score videos
based on visual effects.
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