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Abstract

In this paper, we investigate the question: Given a small number of datapoints, for
example N = 30, how tight can PAC-Bayes and test set bounds be made? For
such small datasets, test set bounds adversely affect generalisation performance by
withholding data from the training procedure. In this setting, PAC-Bayes bounds
are especially attractive, due to their ability to use all the data to simultaneously
learn a posterior and bound its generalisation risk. We focus on the case of i.i.d.
data with a bounded loss and consider the generic PAC-Bayes theorem of Germain
et al. While their theorem is known to recover many existing PAC-Bayes bounds,
it is unclear what the tightest bound derivable from their framework is. For a
fixed learning algorithm and dataset, we show that the tightest possible bound
coincides with a bound considered by Catoni; and, in the more natural case of
distributions over datasets, we establish a lower bound on the best bound achievable
in expectation. Interestingly, this lower bound recovers the Chernoff test set bound
if the posterior is equal to the prior. Moreover, to illustrate how tight these bounds
can be, we study synthetic one-dimensional classification tasks in which it is
feasible to meta-learn both the prior and the form of the bound to numerically
optimise for the tightest bounds possible. We find that in this simple, controlled
scenario, PAC-Bayes bounds are competitive with comparable, commonly used
Chernoff test set bounds. However, the sharpest test set bounds still lead to better
guarantees on the generalisation error than the PAC-Bayes bounds we consider.

1 Introduction

Generalisation bounds are of both practical and theoretical importance. Practically, tight bounds
provide certificates that algorithms will perform well on unseen data. Theoretically, the bounds
and underlying proof techniques can help explain the phenomenon of learning. Among the tightest
known bounds are PAC-Bayes (McAllester, 1999) and test set bounds (Langford, 2002). In this paper,
we investigate their numerical tightness when applied to small datasets (N ≈ 30–60 datapoints).
The comparison between PAC-Bayes and test set bounds is particularly interesting in this setting
as one cannot discard data to compute a test set bound without significantly harming post-training
performance due to a reduced training set size. PAC-Bayes on the other hand provides valid bounds
while using all of the data for learning, since it provides bounds that hold uniformly. The small
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data setting can also be quite different from the big data setting, as lower-order terms in PAC-Bayes
bounds have a non-negligible contribution, and the detailed structure of the bound becomes important.

Fortunately, we do not have to study each PAC-Bayes bound separately: remarkably, Germain et al.
(2009) showed that a wide range of bounds can be obtained as special cases of a single generic
PAC-Bayes theorem that captures the central ideas of many PAC-Bayes proofs (see also Bégin et al.
(2016)). This theorem has a free parameter: it holds for any convex function, ∆. By choosing
∆ appropriately, one can recover the well-known bounds of Langford and Seeger (2001), Catoni
(2007) and other bounds. We focus on two questions related to this set-up. First, what is the tightest
bound achievable by any convex function ∆? An answer would characterise the limits of the generic
PAC-Bayes theorem, and thereby of a wide range of bounds, by telling us how much improvement
could be obtained before new ideas or assumptions are needed. Second, since test set bounds are
the de facto standard for larger datasets, but PAC-Bayes has benefits when N is small, we ask: in
the small data regime, can PAC-Bayes be tighter than test set bounds?

In Section 3, Theorem 4, we show that in the (artificial) case when ∆ can be chosen depending on
the dataset (without taking a union bound), the tightest version of the generic PAC-Bayes theorem
is obtained by one of the Catoni bounds (Catoni, 2007). In the more realistic case when ∆ must
be chosen before sampling the dataset, we do not fully characterise the tightest bound, but in
Corollary 3 we lower bound the tightest bound achievable (in expectation) with any ∆. We also
provide numerical evidence in Figure 2 that suggests this lower bound can in some cases be attained,
by flexibly parameterising a convex function ∆ with a constrained neural network. Interestingly,
this lower bound coincides with removing a lower-order term from the Langford and Seeger (2001)
bound (something that Langford (2002) conjectured was possible), and relaxes to the well-known
Chernoff test set bound (see Theorem 2 below) when the PAC-Bayes posterior is equal to the prior.

In Section 4, we investigate the tightness of PAC-Bayes and test set bounds in synthetic 1D
classification. The goal of this experiment is to find out how tight the bounds could be made
in principle. We use meta-learning to adapt all aspects of the bounds and learning algorithms,
producing meta-learners that are trained to optimise the value of the bounds on this task distribution.
We find that, in this setting, PAC-Bayes can be competitive with the Chernoff test set bound,
but is outperformed by the binomial tail test set bound, of which the Chernoff bound is a
relaxation. This suggests that, for standard PAC-Bayes to be quantitatively competitive with the
best test set bounds on small datasets, a new proof technique leading to bounds that gracefully
relax to the binomial tail bound is required. Code to reproduce all experiments can be found at
https://github.com/cambridge-mlg/pac-bayes-tightness-small-data.

2 Background and Related Work
We consider supervised learning. Let X and Y denote the input space and output space, and let
Z = X×Y . Assume there is an (unknown) probability measure2 D overZ , with the dataset S ∼ DN .
Denote the hypothesis space by H ⊆ YX . A learning algorithm is then a map ZN → H. In PAC-
Bayes, we also consider maps ZN →M1(H), whereM1 is the set of probability measures on its
argument. The performance of a hypothesis h ∈ H is measured by a loss function ` : Z ×H → [0, 1].
The (generalisation) risk of h is RD(h) := E(x,y)∼D[`((x, y), h)] and its empirical risk on S is
RS(h) := 1

N

∑
(x,y)∈S `((x, y), h). For Q ∈ M1(H) its (generalisation Gibbs) risk is RD(Q) :=

Eh∼Q[RD(h)] and its empirical (Gibbs) risk is RS(Q) := Eh∼Q[RS(h)]. In PAC-Bayes, we usually
fix a prior P ∈ M1(H), chosen without reference to S and learn a posterior Q ∈ M1(H) which
can depend on S. The KL-divergence between Q and P is defined as KL(Q‖P ) =

∫
log dQ

dP dQ
if Q � P and∞ otherwise. Let C denote the set of proper, convex, lower semicontinuous (l.s.c.)
functions R2 → R ∪ {+∞}; if a convex function’s domain is a subset of R2, extend it to all of R2

with the value +∞. See Appendix C for more details on convex analysis, which we use in Section 3.

Test Set Bounds. Test set bounds rely on a subset of data which is not used to select the hypothesis,
called a test set or held-out set. Let S = Strain ∪ Stest, with |S| = N , |Strain| = Ntrain and
|Stest| = Ntest. In Theorems 1 and 2, we assume h is chosen independently of Stest. For the zero-
one loss, `((x, y), h) := 1[h(x) 6= y], we have that NtestRStest

(h) is a binomial random variable
with parameters (Ntest, RD(h)). This leads to the following simple bound, which, for ` ∈ {0, 1}, is
tight among test set bounds:

2We will colloquially refer to measures on sets without specifying a σ-algebra. We implicitly assume
functions are measurable with respect to the σ-algebras on which the relevant measures are defined.
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Theorem 1 (Binomial tail test set bound, Langford, 2005, Theorem 3.3).
Let e(M,k, δ) := sup

{
p : δ ≤

∑k
i=0

(
M
i

)
pi(1−p)M−i

}
. For any h ∈ H, ` ∈ {0, 1} and δ ∈ (0, 1),

Pr
(
RD(h) ≤ e(Ntest, NtestRStest

(h), δ)
)
≥ 1− δ. (1)

Often, looser bounds with a simpler form are applied. These can be obtained via the Chernoff method:

Theorem 2 (Chernoff test set bound, Langford, 2005, Corollary 3.7).
For q, p ∈ [0, 1], let kl(q, p) := q log q

p + (1− q) log 1−q
1−p . For any h ∈ H, ` ∈ [0, 1], and δ ∈ (0, 1),

Pr
(

kl(RStest(h), RD(h)) ≤ 1
Ntest

log 1
δ

)
≥ 1− δ. (2)

PAC-Bayes Bounds. The PAC-Bayes approach bounds the generalisation Gibbs risk of stochastic
classifiers, and does not require discarding data, as all the data can be used to choose the posterior,
while still obtaining a valid generalisation bound. Since the seminal paper of McAllester (1999), a
large variety of PAC-Bayes bounds have been derived. Germain et al. (2009) prove a very general
form of the PAC-Bayes theorem which encompasses many of these (see also Bégin et al. (2016)
and Rivasplata et al. (2020)). Their proof technique consists of a series of inequalities shared by
PAC-Bayes proofs (Jensen’s, change of measure, Markov’s, supremum over risk3), and reveals their
common structure. Thus understanding the properties of this generic theorem can give insight into
many PAC-Bayes bounds at once:

Theorem 3 (Generic PAC-Bayes theorem, Bégin et al. (2016) and Germain et al. (2009)).4 Fix
P ∈ M1(H), ` ∈ [0, 1], δ ∈ (0, 1), and ∆ a proper, convex, l.s.c. function [0, 1]2 → R ∪ {+∞}.
Then

Pr
(

(∀Q) ∆(RS(Q), RD(Q)) ≤ 1
N

[
KL(Q‖P ) + log I∆(N)

δ

])
≥ 1− δ, (3)

where I∆(N) := supr∈[0,1]

∑N
k=0

(
N
k

)
rk(1− r)N−keN∆(k/N,r).

Remark 1. We lose no generality in assuming ∆(q, ·) is monotonically increasing for all q ∈ [0, 1],
i.e. for any convex ∆ we can define a ∆′ that is monotonically increasing in its second argument and
produces a bound that is at least as tight as the bound produced by ∆. See Appendix D for a proof.

Note that the PAC-Bayes bound holds simultaneously for all posteriors Q, and hence is valid even
when Q is chosen by minimising the bound. For completeness, we provide a proof of Theorem 3
in Appendix B. Following Germain et al. (2009), we briefly recap some of the bounds that can
be recovered as special cases (or looser versions) of Theorem 3. Setting ∆(q, p) = Cβ(q, p) :=
− log(1 + p(e−β − 1))− βq for β > 0, we recover the Catoni bounds:

Corollary 1 (Catoni, 2007, Theorem 1.2.6). For any β > 0,

Pr
(

(∀Q) RD(Q) ≤ 1
1−e−β

[
1− exp

(
−βRS(Q)− 1

N

(
KL(Q‖P ) + log 1

δ

))])
≥ 1− δ. (4)

This specifies a bound for every value of β > 0. If we instead choose ∆(q, p) = kl(q, p), we obtain
the bound of Langford and Seeger (2001), also called the PAC-Bayes-kl bound, but with the slightly
sharper dependence on N established by Maurer (2004):

Corollary 2 (Langford and Seeger, 2001, Theorem 3, Maurer, 2004, Theorem 5).

Pr
(

(∀Q) kl(RS(Q), RD(Q)) ≤ 1
N

[
KL(Q‖P ) + log 2

√
N
δ

])
≥ 1− δ. (5)

Corollary 2 is actually very slightly looser than Theorem 3 with ∆ = kl, since Maurer (2004) upper
bounds Ikl(N) by 2

√
N using Stirling’s formula.5 The Catoni and PAC-Bayes-kl bounds are among

the tightest PAC-Bayes bounds known and have been applied in settings where numerical tightness
is key, such as obtaining generalisation bounds for stochastic neural networks (Dziugaite & Roy,
2017; Zhou et al., 2019). Many other bounds can be obtained by loosening these bounds. Applying
Pinsker’s inequality kl(q, p) ≥ 2(q − p)2 to Equation (5) yields the “square-root” version of the

3The supremum over risk step was introduced in Bégin et al. (2016), although for certain ∆ it can be omitted.
4We state a simpler version of their result WLOG, absorbing a free parameter into the function ∆.
5Maurer (2004) only proves this bound for N ≥ 8, but the cases where 1 ≤ N ≤ 7 can be easily verified

numerically (Germain et al., 2015, Lemma 19).
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∆

E[p∆]
(Theorem 3)

∃∆ ?

conjectured PAC-B.-kl
(Corollary 3)

≥ Chernoff
(Theorem 2)

Binomial tail
(Theorem 1)

Potential limits of the generic PAC-Bayes theorem (Theorem 3) Test set bounds

Catoni: ∆ = Cβ
(Corollary 1)

PAC-B.-kl: ∆ = kl
(Corollary 2)

≥
Q=P

@∆

Q=P

Figure 1: Illustration of the relationship between various PAC-Bayes and test set bounds; see Section 3. It
is unclear if there always exists a ∆ that recovers the conjectured PAC-Bayes-kl bound (and hence the Chernoff
bound when Q=P ; see Open Problem 1), but there certainly does not exist a ∆ that recovers the Binomial tail
bound when Q=P .

PAC-Bayes theorem (McAllester, 1999, 2003). The “PAC-Bayes-λ” (Thiemann et al., 2017) and
“PAC-Bayes-quadratic” bounds (Rivasplata et al., 2019) can be derived as loosened versions of the
PAC-Bayes-kl bound using the inequality kl(q, p) ≥ (q − p)2/(2p), valid for q < p. The “linear”
bound in McAllester (2013) can be derived by loosening the Catoni bound using: Cβ(q, p) ≤ A =⇒
p ≤ 1

1−β/2 (q + 1
βA), which is valid for β ∈ (0, 2).

How Tight Are PAC-Bayes Bounds? A fundamental question we can ask about a generalisation
bound is how tight it is, and whether it can be tightened. Comparing the PAC-Bayes-kl and Chernoff
test set bounds when Q = P (so the PAC-Bayes bound essentially becomes a test set bound) shows
they are identical except for a log(2

√
N)/N on the RHS of the PAC-Bayes-kl bound. Whether this

term (or similar discrepancies between PAC-Bayes and Occam bounds (Langford, 2002, Corollary
4.6.2); see Appendix A) can be removed has been an open question since Langford (2002, Problem
6.1.2). Maurer (2004) reduced this term to its current form, improving on work by Langford and
Seeger (2001). Interestingly, Germain et al. (2009, Proposition 2.1) shows that the expression obtained
by dropping log (2

√
N)/N from the PAC-Bayes-kl bound is identical to that obtained by illegally6

minimising the Catoni bound with respect to β; Catoni (2007, Theorem 1.2.8) shows that a union
bound can be used to, in a legal way, approximately optimise with respect to β at the cost of an
additional lower order term. The Chernoff test set bound is itself a looser version of the binomial tail
bound, raising the question of whether a PAC-Bayes bound can be found that reduces to the binomial
tail bound when Q = P . We provide new insights into these problems in Section 3.

Researchers have also compared PAC-Bayes bounds numerically on actual learning problems. Lang-
ford (2005) and Germain et al. (2009) were able to obtain reasonable guarantees on small datasets.
However, Langford (2005) found that on datasets with N ≈ 145, PAC-Bayes was outperformed
by test set bounds. Dziugaite and Roy (2017), Langford and Caruana (2001), and Pérez-Ortiz et al.
(2021) provide non-vacuous bounds for neural networks using PAC-Bayes. Even so, Dziugaite et al.
(2021) states that tighter bounds would be obtained using a test set instead. In Section 4 we find that
if the bounds and learning algorithms are optimised for a task distribution, PAC-Bayes can be tight
enough to compete with the Chernoff test set bound, but not the binomial tail test set bound.

3 Characterising the Limits of the Generic PAC-Bayes Proof Technique

This section establishes our main theoretical contributions, which characterise the limits of the generic
PAC-Bayes theorem (Theorem 3). For a convex ∆ ∈ C, Theorem 3 gives a high-probability upper
bound on ∆(RS(Q), RD(Q)). Define B[f, y] := sup {p ∈ [0, 1] : f(p) ≤ y} for f : [0, 1] → R
and y ∈ R, where we take sup∅ = 1. This upper bound (Theorem 3) can be “inverted” to obtain a
high-probability upper bound on RD(Q): with probability at least 1− δ, for all Q ∈M1(H),

RD(Q) ≤ p∆ where p∆ := B
[
∆(RS(Q), · ), 1

N

(
KL(Q‖P ) + log I∆(N)

δ

)]
. (6)

Since (6) holds for all ∆ ∈ C, a natural question is: Which ∆ minimises p∆? This would characterise
how tight, numerically, PAC-Bayes theorems can be made without introducing ideas beyond those
needed to prove the bounds stated in Section 2. Before considering the case when ∆ is selected
before observing S ∼ DN , we first characterise the optimal ∆ in the simplified scenario where ∆
can depend on the dataset S and the posterior Q (Theorem 4). This setting is artificial, since choosing

6That is, optimising β depending on the dataset S without taking a union bound.
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Figure 2: The tightest Catoni bound is the optimal generic PAC-Bayes bound for a fixed dataset, but not
the optimal expected bound for a random dataset. We optimise a convex function with H hidden units to
minimise p∆ with δ = 0.1, N = 30. (a) and (b) consider fixed q and KL (precise values below) and show
the difference with the best Catoni bound (Theorem 4); (c) and (d) consider random q and KL and show the
expected difference with the conjectured PAC-Bayes-kl bound (Corollary 3). Shaded regions show the minimum
and maximum over ten initialisations. All plots show the PAC-Bayes-kl bound (dotted red) and (c) and (d)
show the optimal Catoni bound with parameter β∗ (dashed orange). All runs quickly converged to non-vacuous
values. (a): (q,KL) = (2%, 1), β∗ ≈ 2.24, H = 256. (b): (q,KL) = (5%, 2), β∗ ≈ 1.84, H = 256.
(c): (q,KL) ∈ {(2%, 1), (5%, 2)} uniformly, β∗ ≈ 1.99, H = 512. (d): (q,KL) ∈ {(30%, 1), (40%, 50)}
uniformly, β∗ ≈ 2.32, H = 1024.

∆ based on S (without taking a union bound) does not yield a valid generalisation bound. However,
using Theorem 4 as a building block, we later derive a lower bound on the best possible generic
PAC-Bayes bound (in expectation) in the more realistic case when we cannot choose ∆ based on S
(Corollary 3). We then connect this lower bound to various existing PAC-Bayes and test set bounds.
An overview is shown in Figure 1. We now state our first result:

Theorem 4. Given any fixed dataset S and any Q,P ∈ M1(H), the tightest Catoni bound is as
tight as the tightest bound possible within the generic PAC-Bayes theorem (Theorem 3). Precisely,
let ∆ ∈ C and δ ∈ (0, 1). Choose some fixed values for RS(Q) =: q ∈ [0, 1] and KL(Q‖P ) =:
KL ∈ [0,∞). If q > 0, then there exists a β ∈ (0,∞) such that p∆ ≥ pCβ , where p is defined in
Equation (6). Moreover, if q = 0, then p∆ ≥ limβ→∞ pCβ .

Remark 2. By Theorem 4, for all ∆ ∈ C, we have p∆ ≥ infβ>0 pCβ , and, by Proposition 2.1 of
Germain et al. (2009), infβ>0 pCβ = B[kl(q, · ), 1

N (KL + log 1
δ )]. Hence, for all ∆ ∈ C, it holds

that p∆ ≥ B[kl(q, · ), 1
N (KL + log 1

δ )], which is also shown directly in the proof of Theorem 4
(Equation (17)). Note that optimising β in this way is illegal in the general case when the dataset S
(and hence q and KL) is stochastic, and would typically require a union bound to be valid.

We defer the proof of Theorem 4 to the end of this section. We numerically verify Theorem 4 by
optimising p∆ with respect to an arbitrary convex ∆ for various settings of fixed q and KL. To
parametrise a convex ∆, we use a one-hidden-layer neural network with positive weights at the output
layer and softplus nonlinearities. The inversion performed by B is approximated numerically by
discretising the second argument of ∆ and detecting an upcrossing. Gradients are then approximated
using the inverse function theorem: d

dθB[fθ, c(θ)] = (∂θc(θ)− ∂θfθ(x))/∂xfθ(x). See Appendix F
for details.7 Figures 2a and 2b show the difference between the numerically optimised ∆ and the best
Catoni bound for two settings of fixed q ∈ [0, 1] and KL ∈ [0,∞). In both cases, p∆ − infβ>0 pCβ
appears to converge to zero from above, as expected from Theorem 4. Interestingly, Appendix F
shows that the learned ∆ can deviate substantially from Cβ , suggesting that there are choices for ∆
besides Catoni’s which achieve inf∆∈C p∆.

For any fixed dataset S, Theorem 4 states that the tightest bound is one of the Catoni bounds;
precisely: inf∆∈C p∆ = infβ>0 pCβ . Note that the optimal value of β may depend on the dataset
S. The more interesting question is whether, when S ∼ DN is sampled randomly, one of the
Catoni bounds can still achieve the tightest bound (in expectation) for a single value of β that is
chosen before sampling S. The answer is no: Figure 2d gives a numerical counterexample where
inf∆∈C E[p∆] < E[pkl] < infβ>0 E[pCβ ]. Since the Catoni family of bounds cannot generally
achieve the tightest bound in expectation, which ∆ do? And how tight is inf∆∈C E[p∆]? Whilst we
do not have a full answer, we establish a simple lower bound on inf∆∈C E[p∆]. Define the conjectured

7Numerical inversion of ∆ when ∆ = kl has been considered by many authors, including Dziugaite and Roy
(2017) who use Newton’s method and Majumdar and Goldstein (2018) who propose using convex optimisation
methods. However, to our knowledge, the specific inversion algorithm we propose for general convex ∆, along
with the method for backpropagating through the inverse, are novel in the PAC-Bayes setting.
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PAC-Bayes-kl bound p as the quantity from Remark 2, which equals the PAC-Bayes-kl bound without
the 1

N log Ikl(N) term on the RHS:

p := B[kl(RS(Q), · ), 1
N (KL(Q‖P ) + log 1

δ )]. (7)

The conjectured PAC-Bayes-kl bound has not been proven to be a valid generalisation bound. When
S ∼ DN is random, Remark 2 tells us that inf∆∈C p∆ = p a.s. Taking expectations and interchanging
the expectation and infimum yields the following corollary:

Corollary 3. Consider the setting from Theorem 3. Then the expected conjectured PAC-Bayes-kl
bound E[p] gives a lower bound on all expected generalisation bounds obtained through the generic
PAC-Bayes theorem (Theorem 3). That is, for any distribution over datasets, any prior, and any
learning algorithm,

inf∆∈C E[p∆] ≥ E[p] (8)

Moreover, there exists a distribution over datasets, a prior, and a posterior such that equality holds.
For example, let (x, y) be constant almost surely, which reduces to the setting of Theorem 4. Note
that in (8), ∆ is chosen not depending on S, which leads to a valid generalisation bound on the LHS.

Figure 1 shows how Corollary 3 fits into the picture so far. The conjectured PAC-Bayes-kl bound is
at least as tight as the bound achieved by any ∆, but Corollary 3 does not establish the existence of
a ∆ which achieves it. Corollary 3 has practical utility: the conjectured PAC-Bayes-kl bound can
be used to prove optimality of a choice of ∆. Specifically, if a practitioner computes a valid bound
based on the generic PAC-Bayes theorem, and finds that it is close to the conjectured PAC-Bayes-kl
bound, they can be assured by Corollary 3 that they would not have gotten a much better bound
(in expectation) with any other choice of ∆. Conversely, the conjectured PAC-Bayes-kl bound can
quantify potential slack in the bound due to a suboptimal choice of ∆. Appendix H considers an
example of this application of Corollary 3 in the simplified scenario where RS(Q) = 1

2 almost surely.

The conjectured PAC-Bayes-kl bound also recovers the Chernoff test set bound (Theorem 2) when
setting Q = P . Since the binomial tail bound (Theorem 1) is strictly tighter than the Chernoff bound,
this shows there does not exist a ∆ such that the generic PAC-Bayes bound (Theorem 3) recovers the
Binomial tail bound when Q = P ; this is illustrated in Figure 1. What is unclear, however, is whether
there always exists a ∆ such that Theorem 3 recovers the Chernoff test set bound; or, alternatively,
such that the conjectured PAC-Bayes-kl bound is attained. A positive answer to the latter would
establish that the conjectured PAC-Bayes-kl bound is a valid generalisation bound.8 As a first piece
of evidence, the traces from Figures 2c and 2d suggest that a convex function could actually achieve
E[p]; see Appendix G for more traces. We leave a full resolution of this question as an open problem;
see Section 5. Interestingly, Figure 2c shows that a Catoni bound is sometimes nearly optimal even
in the stochastic case; we will see another example of this in Figure 3.

We end this section with the proof of Theorem 4. Recall that the Catoni family of bounds follows from
Theorem 3 by considering ∆(q, p) = Cβ(q, p) := Fβ(p)−βq with Fβ(p) := − log(p(e−β−1) + 1)
and β > 0. To simplify the notation, we denote α = 1

N (KL + log 1
δ ) ∈ (0,∞).

Proof of Theorem 4. The proof proceeds in three steps. In the first two steps, we lower bound
1
N log I∆(N) and upper bound ∆. In the third step, we use these bounds to lower bound
B[∆(q, · ), α+ 1

N log I∆(N)] and identify the result with a particular Catoni bound.

Lower bound on 1
N log I∆(N): Since ∆ ∈ C, it is equal to its own double convex conjugate:

∆(q, p) = ∆∗∗(q, p) = supcq,cp∈R (cqq + cpp−∆∗(cq, cp)), where ∗ denotes convex conjugation.
Let X ∼ Bin(r,N). Then

I∆(N) = supr∈[0,1] E[eN∆(X/N,r)] = supr∈[0,1] E[esupcq,cp∈R(cqX+Ncpr−N∆∗(cq,cp))] (9)

≥ supr∈[0,1] supcq,cp∈R e
Ncpr−N∆∗(cq,cp)E[ecqX ] (10)

where E[ecqX ] = (r(ecq − 1) + 1)N is the moment-generating function of X . Consequently, taking
log, dividing by N , and noting that 1

N logE[ecqX ] = −F−cq (r),

1
N log I∆(N) ≥ A where A := supcq,cp∈R[−∆∗(cq, cp) + supr∈[0,1](cpr −F−cq (r))]. (11)

8By Remark 2, p∆ ≥ p, so E[p∆] = E[p] implies that p∆ = p a.s., meaning that p is a valid gen. bound.
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Upper bound on ∆: We upper bound ∆ by making ∆∗ as small as possible without exceeding
the supremum from (11). Note that A is finite, because ∆∗ is proper. Define ∆̃∗ as follows:
∆̃∗(cq, cp) = −A + supr∈[0,1](cpr − F−cq (r)). Note that ∆̃∗ is proper, convex as a pointwise
supremum of convex functions, and l.s.c. as a supremum of l.s.c. functions. In fact, ∆̃∗ is finite for
all inputs. As the notation suggests, define ∆̃ := (∆̃∗)∗. Then ∆̃∗ is indeed the convex conjugate of
∆̃, because ∆̃∗ ∈ C, so it is equal to its own double convex conjugate. Moreover,

∆̃(q, p) = A+ supcq,cp∈R[cqq + cpp− supr∈[0,1](cpr −F−cq (r))] (12)

= A+ supcq∈R [cqq + supcp∈R [cpp−F∗−cq (cp)]] (13)

= A+ supcq∈R [cqq + F−cq (p)], (14)

by observing that p 7→ F−cq (p) ∈ C, so it is equal to its own double convex conjugate. Therefore,

∆̃(q, p) = A+ supcq∈R C−cq (q, p)
(i)
= A+ kl(q, p) (15)

where (i) follows from a direct computation; see Lemma E.1 (Appendix E). Claim: For all q, p ∈ [0, 1],
∆̃(q, p) ≥ ∆(q, p). This follows from the definitions and finiteness of ∆̃∗ and A: for all cq, cp ∈ R,

−∆̃∗(cq, cp)+supr∈[0,1](cpr −F−cq (r)) = A ≥ −∆∗(cq, cp)+supr∈[0,1](cpr −F−cq (r)), (16)

which means that ∆̃∗ ≤ ∆∗, so ∆̃ ≥ ∆ by the order-reversing property of the convex conjugate.

Conclusion: Assume that p∆<1; otherwise, any β>0 works. To begin with, use the previous steps:

p∆ = B[∆(q, · ), α+ 1
N log I∆(N)]

(11), claim
≥ B[∆̃(q, · ), α+A]

(15)
= B[kl(q, · ), α] = p. (17)

Since α > 0, clearly p > q, so 0 ≤ q < p < 1. Hence, if q > 0, then there exists a β > 0 such that
kl(q, p) = Cβ(q, p) (Lemma E.2; Appendix E). Using that p 7→ Cβ(q, p) is continuous and strictly
increasing for all β > 0, we have that p = B[Cβ(q, · ), α], so

p∆ ≥ B[Cβ(q, · ), α]
(i)
= B[Cβ(q, · ), α+ 1

N log ICβ (N)] = pCβ , (18)

where (i) uses that 1
N log ICβ (N) = 0 (Lemma E.3; Appendix E). If q = 0, then kl(0, p) =

limβ→∞ Cβ(0, p) (Lemma E.2; Appendix E), so p∆≥B[ lim
β→∞

Cβ(0, ·), α], and conclude like in (18)
using Lemma E.4 (Appendix E).

4 Meta-Learning the Tightest Bounds for Synthetic Classification
We now consider, for a particular distribution over tasks, how tight each bound can be made in
expectation. Two questions naturally arise: Which PAC-Bayes bounds are tightest? and Can PAC-
Bayes bounds be tighter than test set bounds? While test set bounds have traditionally been considered
tighter than PAC-Bayes bounds, here we work in the small data regime where a substantial proportion
of the data must be removed to form a test set, which could impact generalisation performance and
hence lead to worse bounds. Our goal is not to compare these bounds when using standard practice,
but to see how tight they can be in principle if we use every tool in our toolbox to minimise the
expected bounds.9 While these optimisations will be impractical for large models and datasets, they
can provide some statistical insight.

Learning Algorithm. Certain learning algorithms may work better with test set bounds, and others
with PAC-Bayes bounds. Instead of choosing a fixed algorithm, we meta-learn (Schmidhuber, 1987;
Thrun & Pratt, 2012) separate algorithms to optimise each bound in expectation: we parametrise a
hypothesis space Hθ and a posterior map Qθ : ZN → M1(Hθ) by a finite dimensional vector θ,
which is trained to optimise the expected bound (we will amalgamate all meta-learnable parameters
into the single vector θ). This is explained in more detail below. This way, we obtain algorithms that
are optimised for each bound. After meta-learning, we can further refine each PAC-Bayes posterior
by minimising the PAC-Bayes bound, see Appendix I.4.

Task Distribution. In meta-learning, we refer to a data-generating distribution D and dataset
S ∼ DN as a task. We consider a distribution over tasks, D ∼ T , where T is a distribution over

9Our goal here is to minimise high probability PAC-Bayes and test set bounds in expectation. See Dziugaite
et al. (2021, Appendix J) for a relevant discussion.
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data-generating distributions, and aim to find the best expected bounds for this distribution achievable
by an optimised algorithm.10 We choose especially simple learning tasks — synthetic 1-dimensional
binary classification problems, generated by thresholding Gaussian process (GP) samples — which
allows us to fully control the task distribution and easily inspect predictive distributions visually to
diagnose learning. Appendix I.1 contains full details.

Priors. The choice of prior is crucial in PAC-Bayes, and the role of data-dependent priors (DDPs)
(Ambroladze et al., 2007; Parrado-Hernández et al., 2012; Pérez-Ortiz et al., 2021) has been gaining
increased attention. This involves splitting the dataset into N = Nprior + Nrisk datapoints. The
DDP is allowed to depend on the prior set of size Nprior (standard priors use Nprior = 0), and
the risk bound is computed on the risk set of size Nrisk. Crucially, the bound is valid when the
posterior depends on all N datapoints. Recently, Dziugaite et al. (2021) showed that DDPs can
lead to tighter expected bounds than the optimal non-data-dependent prior, and are sometimes even
required to obtain non-vacuous bounds. Pérez-Ortiz et al. (2021) also report much tighter bounds
when using DDPs. In our experiments we meta-learn a DDP as a map from the prior set to the
prior, Pθ : ZNprior →M1(H). To compare PAC-Bayes DDPs against test set bounds, we sweep the
prior/train set proportion from 0 to 0.8 and see what the tightest value obtained is. Strictly this would
require a union bound over the proportions, but here we are primarily interested in comparing the
various bounds against each other on an even footing and vary the proportion for illustrative purposes.

The Meta-Learning Objective. We now discuss meta-learning in more detail. During meta-training,
θ is trained to optimise the expected PAC-Bayes generalisation bound over the task distribution:

ED∼T ES∼DN B
[
∆θ(RSrisk

(Qθ(S)), · ), 1
Nrisk

(
KL(Qθ(S)‖Pθ(Sprior)) + log

I∆θ
(Nrisk)

δ

)]
, (19)

where the θ in ∆θ denotes that some bounds (Catoni and learned convex function) have meta-learnable
parameters. Alternatively, for a meta-learner that minimises a test set bound, the objective is simply
ED∼T ES∼DN RStest(Qθ(Strain)), since all test set bounds are monotonic in the test set risk. We
use the 0/1 loss. As the classifiers are stochastic, the empirical risk is still differentiable with
respect to θ. In contrast to PAC-Bayes, the predictor that minimises the test set bound can be made
deterministic after θ is learned, since it tends to eventually learn essentially deterministic classifiers;
see Appendix I.2. We sample T = 80 000 tasks Dt ∼ T , with associated datasets St ∼ DN

t . These
form the meta-trainset. Additionally, we sample 1024 tasks that form a meta-testset used to estimate
the average bounds over T after meta-training. For the PAC-Bayes bounds, we then Monte Carlo
estimate (19). Hence, the final objective for a PAC-Bayes meta-learner is (a minibatched version of):

1
T

∑T
t=1 B

[
∆θ(RSt,risk(Qθ(St)), · ), 1

Nrisk

(
KL(Qθ(St)‖Pθ(St,prior)) + log

I∆θ
(Nrisk)

δ

)]
. (20)

Similarly, the objective for the test set bound meta-learner is 1
T

∑T
t=1RSt,test

(Qθ(St,train)). The
bounds we compute on datasets in the meta-testset, after meta-training is complete and θ is frozen,
are valid even though θ was optimised on the meta-trainset. This highlights a contrast between
our procedure and the PAC-Bayes meta-learning in Amit and Meir (2018), Liu et al. (2021), and
Rothfuss et al. (2021) and Farid and Majumdar (2021). While those works use PAC-Bayes to analyse
generalisation of a meta-learner on new tasks, we use PAC-Bayes to analyse generalisation within
individual tasks.

Parametrising the Meta-Learner and Hypothesis Space. We now describe how to parametrise the
hypothesis spaceHθ and the maps Qθ, Pθ. We meta-learn a feature map φθ : R→ RK and choose11

Hθ = {hw : hw(x) = sign〈w, φθ(x)〉, w ∈ RK}. For Qθ and Pθ Gaussian, this hypothesis space
allows us to compute the empirical Gibbs risk without Monte Carlo integration; see Appendix I.3 for
details. For the form of Qθ, we take inspiration from Neural Processes (NPs) (Garnelo, Rosenbaum,
et al., 2018; Garnelo, Schwarz, et al., 2018; Kim et al., 2019). NPs use neural networks to flexibly
parametrise a map from datasets to predictive distributions that respects the permutation invariance of
datasets (Zaheer et al., 2017). They are regularly benchmarked on 1D meta-learning tasks, making
them ideally suited. We make a straightforward modification to NPs to make them output Gaussian
measures over weight vectors w ∈ RK . Hence, they act as parametrisable maps from ZN to the set
of Gaussian measures on RK .

10We could also consider drawing all datasets from a single task D, which would more directly match
Section 3. We regard this case as less interesting, since we would often want a bound to perform well on a
variety of tasks.

11The dimensionality K is fixed a priori.
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Figure 3: Average generalisation bound and actual generalisation risk (± two standard errors) for CNN-NP
meta-learners trained to optimise Catoni (H), PAC-Bayes-kl (�), conjectured PAC-Bayes-kl (•), learned convex
(�), Chernoff test set (J), and binomial tail test set (I) bounds. Catoni, conjectured PAC-Bayes-kl, and learned
convex overlap. The generalisation risks for Chernoff and binomial tail test set bounds are identical as they
share the same meta-learner; only the bound computation differs. The bounds are valid with failure probability
δ = 0.1 except for conjectured PAC-Bayes-kl, which should be a lower bound on the best bound achievable
with Theorem 3. Corresponding plots for the MLP-NP are in Appendix J.2.
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(a) Binomial tail/Chernoff test set bounds, showing
the learned hypothesis (—), the train set (#) of size 12
and the test set (#) of size 18.
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(b) Learned convex bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 12 and risk set (#) of size 18.

Figure 4: Predictions on one of the 1D datasets in the meta-test set with N = 30 and prior/train proportion
0.4. For each method, we report the generalisation bound and actual generalisation risk. For the test set model,
we also show the risk on the test set, and for the PAC-Bayes model we show the KL-divergence. The learned
convex bound meta-learner has learned a DDP that provides a “first guess” given the prior set, which is then
refined by the posterior. Figures for other PAC-Bayes bounds and datasets are provided in Appendix J.1.

We considered two kinds of NP, one based on multilayer perceptrons (MLP-NP) and another based on
convolutional neural networks (CNN-NP) (detailed in Appendices I.5 and I.6) Although the MLP-NP
is very flexible, the state-of-the-art in NPs on 1D tasks is given by CNN-based NPs (Bruinsma et al.,
2021a; Foong et al., 2020; Gordon et al., 2020). We use an architecture closely based on the Gaussian
Neural Process (Bruinsma et al., 2021a), which outputs full-covariance Gaussians. As expected, we
found the CNN-NP to produce tighter (or comparable) average bounds to the MLP-NP, while using
far fewer parameters, and training much more reliably and quickly. This is because the CNN-NP is
translation equivariant, and hence exploits a key symmetry of the problem. Hence, we focus on the
CNN-NP, but report some results for the MLP-NP in Appendix J.2. Hyperparameter details are given
in Appendix I.7.

Results. We show example classification tasks and average bounds on the meta-test set in Figures 3
and 4. Note that the test set classifier became deterministic and makes hard predictions whereas the
PAC-Bayes classifier shows uncertainty; see Appendix I.2 for a discussion. The PAC-Bayes-kl bound
is loosest, which is unsurprising as it has no optimisable parameters to adapt to T .12 Surprisingly,
the results for Catoni, conjectured PAC-Bayes-kl, and learned convex are nearly identical. As long
as optimisation has succeeded reasonably, this suggests empirically that, in light of Corollary 3,
one of the Catoni bounds may be very nearly optimal among all convex functions for this task
distribution — there is not much “slack” from choosing suboptimal ∆ here. We also see that the
Catoni and learned convex bounds with prior proportion 0.4 are tighter than any Chernoff test set
bound. Hence, PAC-Bayes can provide slightly tighter (or comparable) generalisation bounds to a
Chernoff test set bound. However, we see that the binomial tail test set bound with 40% of the data
used for the selecting the predictor and the remaining 60% used for evaluating the bound leads to

12This is in contrast with usual applications of PAC-Bayes, where one does not have a meta-dataset with
which to optimise parameters of the bound. In that setting, it can be an advantage to not have tunable parameters.
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the tightest generalisation bounds overall. Corollary 3 sheds light on this behaviour: the optimal
generic PAC-Bayes bound reduces, at best, to the Chernoff test set bound when the posterior equals
the prior. However, the Chernoff bound is itself looser than the binomial tail bound. Of course, the
posterior does not equal the prior here, but Corollary 3 indicates there is an extra source of looseness
that PAC-Bayes has to overcome relative to the binomial tail bound. Finally, although the test set
meta-learner leads to the tightest generalisation bounds, its generalisation risk is roughly double that
of the PAC-Bayes meta-learner when the prior/train set proportion is 0.4.

5 Conclusions, Open Problems, and Limitations
PAC-Bayes presents a potentially attractive framework for obtaining tight generalisation bounds in the
small-data regime. We have investigated the tightness of PAC-Bayes and test set bounds in this regime
both theoretically and experimentally. Theoretically, we showed that the generic PAC-Bayes theorem
of Germain et al. (2009) and Bégin et al. (2016) which encompasses a wide range of PAC-Bayes
bounds, cannot produce tighter bounds in expectation than the expression obtained by discarding the
log(2

√
N)/N term in the Langford and Seeger (2001) bound (i.e., the conjectured PAC-Bayes-kl

bound; Corollary 3). Although we did not prove that the conjectured PAC-Bayes-kl bound is a valid
generalisation bound, numerical evidence suggests (Figures 2c and 2d) that there may exist a convex
function ∆ which achieves it, at least for the distributions over empirical risk and KL-divergence we
considered. This suggests the following open problem:

Open Problem 1. For an arbitrary distribution over datasets, does there exist a choice of ∆ such
that the expected conjectured PAC-Bayes-kl bound is attained (Corollary 3)? If not, how close can
one get to the expected conjectured PAC-Bayes-kl bound?

If such a ∆ exists, then that would imply the conjectured PAC-Bayes-kl bound is a valid generalisation
bound (see Section 3) and resolve Problem 6.1.2 of Langford (2002) in the affirmative.

We then considered, in a controlled experimental setting where meta-learning all parameters of the
bounds and learning algorithms was feasible, whether PAC-Bayes bounds could be tighter than test set
bounds. Although we found PAC-Bayes competitive with Chernoff bounds, both were outperformed
by the binomial tail test set bound. This motivates a second open problem:

Open Problem 2. Can a PAC-Bayes bound be found that relaxes gracefully to the binomial tail test
set bound (Theorem 1) when the posterior is equal to the prior?

Resolving these problems could have a significant impact on the tightness of PAC-Bayes applied to
small-data, and clarify our understanding of the relationship between PAC-Bayes and test set bounds.

Limitations. In this paper, we concern ourselves with understanding the tightness of bounds in what
might be called the standard PAC-Bayes setting of supervised learning: bounded losses, i.i.d. data,
and Gibbs risk. We also focus on bounds that are first order in the sense that they rely only on
the empirical Gibbs risk, though extending the analysis to consider other PAC-Bayes theorems
(e.g. Rivasplata et al. (2020) and Tolstikhin and Seldin (2013)) would be of interest, especially with
regards to Open Problems 1 and 2. For many practical applications in which performance guarantees
are needed (e.g. health care), the i.i.d. assumption should be considered carefully, as it is likely an
unrealistic simplification. Furthermore, Gibbs classifiers are less commonly used than deterministic
classifiers in practice. To address these and other concerns, PAC-Bayes has been generalised in
many directions beyond the scope of the standard setting we consider. Examples include bounds for
non-i.i.d. data (Alquier & Guedj, 2018; Rivasplata et al., 2020; Seldin et al., 2012), unbounded losses
(Germain et al., 2016), derandomised classifiers (Blanchard & Fleuret, 2007; Viallard et al., 2021),
and Bayes risk (Germain et al., 2015; Masegosa et al., 2020). Bounds based on other divergences
besides the KL have also been proposed (Alquier & Guedj, 2018; Bégin et al., 2016). As our proof
relies primarily on tools from convex analysis, and Jensen’s inequality is ubiquitous in PAC-Bayes
bounds, it would be interesting to see if our arguments can be extended beyond the limited setting we
focus on.

Finally, our meta-learning experiments only considered 1D classification, and the results might not
necessarily be representative of more realistic datasets. We also only consider Gaussian prior and
posterior distributions in our experiments for the sake of tractability. Scaling up the experiments and
considering more flexible distributions is an important, but potentially challenging, avenue for future
work.
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A Relationship Between PAC-Bayes and Occam Bound

The well-known Occam bounds can be derived by a simple application of the union bound to a
countable hypothesis classH. In particular, we can consider a “prior” distribution P , which functions
similarly to the PAC-Bayes prior. Then by applying the union bound and weighting each hypothesis
h with a failure probability of P ({h})δ, we can convert any test set bound into a corresponding train
set bound. Applying this to Theorem 1, we obtain:
Theorem A.1 (Binomial tail Occam bound, Langford (2002), Theorem 4.6.1). LetH be countable,
and fix P ∈M1(H), ` ∈ {0, 1} and δ ∈ (0, 1). Then

Pr
(

(∀h) RD(h) ≤ e
(
N,NRS(h), P ({h})δ

))
≥ 1− δ, (21)

where e is defined in Theorem 1.

Alternatively, applying this procedure to Theorem 2 yields a looser bound:
Theorem A.2 (Chernoff Occam bound, Langford (2002), Corollary 4.6.2). LetH be countable, and
fix P ∈M1(H), ` ∈ [0, 1] and δ ∈ (0, 1). Then

Pr

(
(∀h) kl(RS(h), RD(h)) ≤ 1

N

[
log

1

P ({h})
+ log

1

δ

])
≥ 1− δ. (22)

Following Langford (2005, Sec 5.1), it is instructive to compare the Chernoff Occam bound with
the PAC-Bayes-kl bound (Corollary 2) whenH is countable and Q is constrained to be a point mass,
i.e. Q = Qh := δh, where δh denotes the Dirac measure at h. In that case, KL(Qh‖P ) reduces to
log(1/P ({h})), and the Gibbs risks RS(Qh), RD(Qh) simply reduce to the risks RS(h), RD(h).
Then the PAC-Bayes-kl bound states that:

Pr

(
(∀h) kl(RS(h), RD(h)) ≤ 1

N

[
log

1

P ({h})
+ log

2
√
N

δ

])
≥ 1− δ. (23)

Comparing Equation (23) with Theorem A.2, we see that the PAC-Bayes-kl bound leads to a bound on
kl(RS(h), RD(h)) which is looser by an additive constant of log(2

√
N)/N compared to the Chernoff

Occam bound. Hence the PAC-Bayes bound does not relax gracefully to the Occam bound in this
case, which motivates Open Problem 6.1.2 in Langford (2002). In fact, by Remark 2 and Corollary 3,
we know that if we could find a convex ∆ that allowed us to remove this log(2

√
N)/N term (i.e.,

the conjectured PAC-Bayes-kl bound), this would be the tightest possible bound obtainable from
the generic PAC-Bayes theorem (Theorem 3). This motivates Open Problem 1. Finally, noting that
Theorem A.2 is itself a looser version of Theorem A.1, we see that a PAC-Bayes bound that relaxes
gracefully to Theorem A.1 is not obtainable from Theorem 3, motivating Open Problem 2.

B Proof of Generic PAC-Bayes Theorem (Theorem 3)

We provide a proof of Theorem 3 here for convenience, which closely follows the proof given in
Bégin et al. (2016). We first require a well-known lemma:
Lemma B.1 (Kullback-Leibler change of measure inequality, Boucheron et al., 2013, Corollary 4.15).
For any setH, probability measures P,Q ∈M1(H), and measurable function φ : H → R,

Eh∼Qφ(h) ≤ KL(Q‖P ) + log
(
Eh∼P eφ(h)

)
. (24)

In order to deal with general bounded losses ` ∈ [0, 1], we also use a lemma proven in Maurer (2004):
Lemma B.2 (Maurer (2004), Lemma 3). For any [0, 1]-valued random variable z, let z′ denote the
unique Bernoulli random variable with E[z′] = E[z]. Let S = (z1, . . . , zN ) and S′ = (z′1, . . . , z

′
N )

denote tuples of N such random variables. Then for any convex function f : [0, 1]N → R,

E[f(S)] ≤ E[f(S′)]. (25)

We can now prove Theorem 3:
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Proof of Theorem 3. Applying Jensen’s inequality followed by Lemma B.1, we have, for all Q ∈
M1(H):

N∆(RS(Q), RD(Q)) = N∆(Eh∼QRS(h),Eh∼QRD(h)) (26)
≤ Eh∼QN∆(RS(h), RD(h)) (27)

≤ KL(Q‖P ) + log
(
Eh∼P eN∆(RS(h),RD(h))

)
. (28)

Applying Markov’s inequality to the random variable Eh∼P eN∆(RS(h),RD(h)) (which is random
through S ∼ DN ), we obtain, for any δ ∈ (0, 1):

Pr

(
Eh∼P eN∆(RS(h),RD(h)) ≤ ES∼DNEh∼P eN∆(RS(h),RD(h))

δ

)
≥ 1− δ. (29)

Combining this with Equation (28) yields, with probability at least 1− δ, for all Q simultaneously:

∆(RS(Q), RD(Q)) ≤ 1

N

[
KL(Q‖P ) + log

ES∼DNEh∼P eN∆(RS(h),RD(h))

δ

]
. (30)

Finally, we upper bound ES∼DNEh∼P eN∆(RS(h),RD(h)) by a quantity than can be computed without
knowing the true distribution D. By Tonelli’s theorem:

ES∼DNEh∼P eN∆(RS(h),RD(h)) = Eh∼PES∼DN eN∆(RS(h),RD(h)). (31)

We will now upper bound the inner expectation by a quantity that is independent of h. Denote the
datapoints in S as S = ((x1, y1), . . . , (xN , yN )). Recall that RS(h) := 1

N

∑N
n=1 `((xn, yn), h), and

note that `((xn, yn), h) is a [0, 1]-valued random variable. Let L denote the N -tuple of these random
variables for each datapoint in S, i.e. L = (`((x1, y1), h), . . . , `((xN , yN ), h)), and let M(L) :=
1
N

∑N
n=1 Ln be the arithmetic mean of L. Then the function f : L 7→ eN∆(M(L),RD(h)) is convex

since M(L) is linear in L, ∆ is convex and the exponential function is convex and nondecreasing.
Hence defining L′ as the N -tuple of Bernoulli random variables such that E[L′n] = E[Ln] = RD(h)
for 1 ≤ n ≤ N and applying Lemma B.2,

ES∼DN eN∆(RS(h),RD(h)) = E eN∆(M(L),RD(h)) (32)
= E f(L) (33)

≤ E f(L′) (34)

=
∑N
k=0 Pr

(
M(L′) = k/N

)
eN∆(k/N,RD(h)) (35)

=
∑N
k=0

(
N
k

)
RD(h)k(1−RD(h))N−keN∆(k/N,RD(h)) (36)

≤ supr∈[0,1]

∑N
k=0

(
N
k

)
rk(1− r)N−keN∆(k/N,r) (37)

= I∆(N). (38)

Substituting this into Equation (31) and then Equation (30) completes the proof.

C Basic Facts from Convex Analysis

A function f : Rn → R ∪ {+∞} is called proper if it not everywhere∞ and nowhere −∞. The
convex conjugate f∗ : Rn → R ∪ {+∞} of f is defined as f∗(c) = supx∈Rn (〈c, x〉 − f(x)). If
f is proper, convex, and l.s.c., then f∗ is also proper, convex, and l.s.c. Moreover, if f is proper,
convex, and l.s.c., then f is equal to its double convex conjugate: f(x) = supc∈Rn (〈c, x〉 − f∗(c)).
A pointwise supremum of convex functions is again convex; and a pointwise supremum of l.s.c.
functions remains l.s.c. Convex functions f : A→ R defined on only a convex subset A ⊆ Rn are
extended to the whole of Rn by setting f |Rn\A = +∞. See, for example, Rockafellar and Wets
(2010) for proofs of these results and an introduction to the topic.

D Monotonicity of ∆
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Proposition D.1. For ∆: [0, 1]2 → R∪{+∞} a proper, convex, and lower semi-continuous function,
q ∈ [0, 1], δ ∈ (0, 1], and KL ≥ 0, define

p∆ = sup

{
p ∈ [0, 1] : ∆(q, p) ≤ 1

N

(
KL + log

I∆(N)

δ

)}
(39)

Then there exists a proper, convex, lower semi-continuous ∆′ : [0, 1]2 → R ∪ {+∞} such that
p∆′ ≤ p∆, and for every q ∈ [0, 1], ∆′(q, ·) is monotonically increasing.

Proof. Define ∆′(q, p) = infp′≥p ∆(q, p′). We will prove that ∆′ has the desired properties. First,
∆′ is not infinity everywhere, as ∆′(q, p) ≤ ∆(q, p) and ∆ is proper. Second, since ∆ is l.s.c. and
proper, it obtains a minimum on the compact set [0, 1]2, hence ∆′ does not take the value −∞.
Therefore, ∆′ is proper.

Since ∆ is l.s.c., the strict sublevel sets of ∆ are open; that is, for all y ∈ R, {(q, p) : ∆(q, p) < y} is
open. Then,

{(q, p) : ∆′(q, p) < y} = {(q, p) : inf
p′≥p

∆(q, p′) < y} (40)

=
⋃

p′∈[p,1]

{(q, p′) : ∆(q, p′) < y}. (41)

The equality follows from noting that the infimum on the closed set [p, 1] must be achieved as ∆ is
l.s.c.13 As we have written {(q, p) : ∆′(q, p) < y} as a union of open sets, it is open. Hence, the
sublevel sets of ∆′ are open, implying ∆′ is l.s.c.

We next show that ∆′ is convex. Define the function D : R3 → R ∪ {+∞} by,

D(q, p′, p) =

{
∆(q, p) p′ ≥ p
+∞ otherwise.

D(q, p, p′) is convex since ∆ is convex and p′ ≥ p is a convex set. Also, infp∈RD(q, p′, p) =
infp′≥p ∆(q, p′) = ∆′(q, p). As the infimum projection of a convex function is convex (Rockafellar
& Wets, 2010, Proposition 2.22), ∆′ is convex. Also, ∆′(q, p) is monotonically increasing in p as the
infimum is taken over a smaller set for larger p.

It remains to show that p∆′ ≤ p∆. For all pairs (q, p), ∆′(q, p) = infp′≥p ∆(q, p′) ≤ ∆(q, p). From
this it follows that

1

N

(
KL + log

I∆′(N)

δ

)
≤ 1

N

(
KL + log

I∆(N)

δ

)
. (42)

Finally, for any β ∈ R ∪ {+∞},

p′β := sup {p ∈ [0, 1] : ∆′(q, p) ≤ β} = sup {p ∈ [0, 1] : ∆(q, p) ≤ β} =: pβ . (43)

One inequality follows from ∆′ ≤ ∆. For the other, for any p′ ≥ p ≥ pβ , we have ∆(q, p′) > β.
Taking an infimum over such p′, noting that ∆ is lower semi-continuous and therefore obtains a
minimum on the closed interval [p, 1], ∆′(q, p) > β. Hence p′β ≤ pβ . The result follows from
combining Equation (42) and Equation (43).

E Lemmas for Theorem 4

Let Cβ(p, q) := − log(p(e−β − 1) + 1)− βq for β > 0 and

I∆(N) = sup
r∈[0,1]

EX∼Bin(r,N)[e
N∆(X/N,r)] (44)

Lemma E.1. Consider q, p ∈ [0, 1]. Then

sup
β∈R

Cβ(q, p) = kl(q, p). (45)

13The equality holds if ∆ is not l.s.c by the definition of the infimum as well
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Proof. If q = p = 0, then Cβ(q, p) = 0 = kl(q, p); and, if q = p = 0, then also Cβ(q, p) = 0 =
kl(q, p). If, on the other hand, q = 0 but p = 1, then clearly supβ∈R Cβ(q, p) =∞ = kl(q, p); and
if q = 1 but p = 0, then also clearly supβ∈R Cβ(q, p) = ∞ = kl(q, p). It remains to deal with the
case that q, p ∈ (0, 1). In that case, to compute the supremum, set the derivative to zero:

q =
pe−β

p(e−β − 1) + 1
(46)

and verify that we indeed have a maximum. This gives

−β = log
1− p
1− q

+ log
q

p
, (47)

so
− log(p(e−β − 1) + 1) = β + log

q

p
= log

1− q
1− p

. (48)

Therefore,

sup
β∈R

Cβ(q, p) = − log
1− p
1− q

+ q log
1− p
1− q

+ q log
q

p
= kl(q, p). (49)

The following lemma is essentially Prop 2.1 from Germain et al. (2009), but stated in a slightly more
careful form:
Lemma E.2 (Germain et al. (2009)). Consider 0 ≤ q < p < 1. If q > 0, then there exists a unique
β > 0 such that

Cβ(q, p) = kl(q, p). (50)
On the other hand, if q = 0, then

lim
β→∞

Cβ(0, p) = kl(0, p). (51)

Proof. If 0 < q < p < 1, then the unique β follows from the proof of Lemma E.1:

β = log
1− q
1− p

+ log
p

q
∈ (0,∞). (52)

On the other hand, if q = 0 < p < 1, then
kl(0, p) = − log(1− p) = lim

β→∞
Cβ(0, p). (53)

Lemma E.3 (Catoni (2007) and Germain et al. (2009)). For every β > 0, it holds that ICβ (N) = 1.

Proof. Let r ∈ [0, 1] and X ∼ Bin(r,N). Note that

E[e−βX ] = (r(e−β − 1) + 1)N . (54)
Therefore,

E[eNCβ(X/N,r)] = E[e−N log(r(e−β−1)+1)−βX ] =
E[e−βX ]

(r(e−β − 1) + 1)N
= 1. (55)

Lemma E.4. Let y ≥ 0. Then B[limβ→∞ Cβ(0, · ), y] = limβ→∞B[Cβ(0, · ), y].

Proof. Note that
lim
β→∞

Cβ(0, p) = − log(1− p), Cβ(0, p) = − log(p(e−β − 1) + 1). (56)

Therefore,

B[limβ→∞Cβ(0, · ), y] = 1− e−y, B[Cβ(0, · ), y] = min

(
1− e−y

1− e−β
, 1

)
(57)

The result then follows from the observation that

lim
β→∞

1− e−y

1− e−β
= 1− e−y. (58)
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F Learning a Convex Function

In Section 3, we optimised an objective with respect to a function ∆: [0, 1]2 → R ∪ {+∞} that
was proper, l.s.c., and convex. In this appendix, we describe how a function ∆: [0, 1]2 → R that is
differentiable and convex can be generally parametrised. We also discuss two challenges encountered
during the optimisation: (1) computing and differentiating through a supremum and (2) computing
and optimising a partial inverse.

F.1 Parametrising a Convex Function

To generally parametrise a differentiable and convex ∆: [0, 1]2 → R, we use the sum of an affine
function and a one-hidden-layer neural network with softplus activation functions and positive weights
at the output layer. The combination of positive weights and softplus activation functions ensures that
the neural network is a convex function. The number of hidden units used is varied between 128 and
1024; the precise numbers are specified in the descriptions of the experiments.

F.2 Computing and Differentiating Through a Supremum

The generic PAC-Bayes theorem (Theorem 3) involves I∆(N), which in turn involves a supre-
mum of a function over r ∈ [0, 1]. When optimising with respect to ∆, we therefore need to
compute and differentiate through a supremum. To compute the supremum, we finely discretise
[0, 1] and compute the maximum over this grid. Technically, by approximating the supremum
in this way, the bound is approximate, which means that it might not be a valid generalisation
bound. However, by making the discretisation very fine, using an inter-point spacing of 10−5,
the error on the generalisation bound is negligible. To differentiate the supremum, we simply
run automatic differentiation on the approximation. In the remainder of this subsection, we give
a plausible explanation for why this procedure also approximates the gradients correctly. The
following discussion is based on https://math.stackexchange.com/questions/3753495/
derivative-of-argmin-in-a-constrained-problem.

Consider f : [0, 1]× R→ R continuously differentiable in its interior. We aim to compute

d
dθ

sup
x∈[0,1]

f(x, θ) =
d
dθ

max
x∈[0,1]

f(x, θ) (59)

where the supremum turns into a maximum by compactness of [0, 1] and continuity of f . We assume
that the maximum is uniquely obtained and write

z(θ) = arg maxx∈[0,1] f(x, θ). (60)

Then
sup
x∈[0,1]

f(x, θ) = f(z(θ), θ), (61)

so we can compute the derivative with respect to θ with the chain rule if we can compute z′(θ).

CASE 1: The constraint x ∈ [0, 1] is not binding. In that case, the stationarity condition is satisfied in
a neighbourhood of θ:

∂xf(z(θ), θ) = 0. (62)

Therefore,

d
dθ

sup
x∈[0,1]

f(x, θ) = ∂f(z(θ), θ)z′(θ) + ∂θf(z(θ), θ) = ∂θf(z(θ), θ). (63)

CASE 2: The constraint x ∈ [0, 1] is binding. In that case, ∂xf(z(θ), θ) 6= 0, so ∂xf(z(θ), θ) < 0
and you can argue that the optimum will remain to be attained at the constraint in a neighbourhood of
θ. Therefore, z′(θ) = 0, which means that again

d
dθ

sup
x∈[0,1]

f(x, θ) = ∂f(z(θ), θ)z′(θ) + ∂θf(z(θ), θ) = ∂θf(z(θ), θ). (64)
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In either case,
d
dθ

sup
x∈[0,1]

f(x, θ) = ∂θf(z(θ), θ), (65)

which shows that the derivative with respect to the maximiser can be ignored. Assuming that z(θ)
can be well approximated by computing the maximiser over the fine discretisation, and that in turn
leads to a good approximation of ∂θf(z(θ), θ), this provides justification for our approach of simply
running automatic differentiation on the approximation to the supremum.

Finally, we note that, although computing the derivative accurately is useful for the optimisation to
succeed, the bounds we compute are valid regardless of how accurate the derivative is (subject to
the computation of the supremum itself being sufficiently accurate). In practice, we observe that the
learned convex bound decreases steadily during optimisation (Figure 2), and that it approaches, but
never goes below, the conjectured PAC-Bayes-kl bound, as per Corollary 3, which provides evidence
that the implementation is sufficiently accurate for our purposes.

F.3 Computing and Optimising a Partial Inverse

The objective that we optimise with respect to ∆ is p∆. Recall from Equation (6) that

p∆ := B
[
∆(RS(Q), · ), 1

N

(
KL(Q‖P ) + log I∆(N)

δ

)]
. (66)

We now abbreviate f := ∆(RS(Q), · ) and c := 1
N

(
KL(Q‖P ) + log I∆(N)

δ

)
, so that the objective

is B[f, c] = sup {p ∈ [0, 1] : f(p) ≤ c} for f : [0, 1]→ R convex and c ∈ R. Assuming that f = fθ
and c = c(θ) depend on some parameters θ (i.e., the parameters of the neural network defining ∆),
our goal is to compute B[fθ, c(θ)] and optimise it with respect to θ.

A possible issue that can be run into during optimisation is that, if f(p) ≤ c for all p ∈ [0, 1], then
B[f, c] = 1 and the gradient with respect to θ may be zero, which means that the optimisation may
fail to make progress. A similar issue is discussed by Dziugaite and Roy (2017) when trying to
optimise the PAC-Bayes-kl bound: the derivative of the inverse Bernoulli KL can be zero if c is large
enough. In Dziugaite and Roy (2017, Sec 2.2) this is handled by upper bounding the inverse Bernoulli
KL using Pinsker’s inequality. This can lead to upper bounds which are greater than 1 (whereas the
exact computation of B[f, c] never allows this to happen), but has the advantage of always providing
a useful gradient signal.

Similarly, we can define B[f, c] := sup {p ∈ R≥0 : f(p) ≤ c} for f : R≥0 → R and c ∈ R,
which ignores the constraint that p ≤ 1. Note that in our case, since fθ is defined by a neural
network, it is trivial to extend its domain from [0, 1] to R≥0. This will allow us to obtain a useful
derivative even when the bound is vacuous. Moreover, in our case fθ will be convex, which means
that B[fθ, c(θ)] = B[fθ, c(θ)] if B[fθ, c(θ)] < 1: B[fθ, c(θ)] is characterised by an upcrossing14 of
c(θ) by fθ, and, by convexity, fθ can have at most one such upcrossing.

We now describe how B[fθ, c(θ)] can be (approximately) computed and differentiated with respect to
θ. To compute B[fθ, c(θ)], we evaluate fθ on a discretisation of the interval [0, u] using an inter-point
spacing of 10−4 and attempt to detect an upcrossing of c(θ). Assume that this procedure finds an
upcrossing; otherwise, either increase u (e.g., by doubling) and try again or return u and set the
derivative to zero (failure). Denote x = B[fθ, c(θ)] and note that fθ is continuously differentiable in
its interior, because it is a neural network with softplus activations. Assume that x > 0, which in
practice turns out to nearly always be the case. Using continuity of fθ, it holds that fθ(x) = c(θ). It
also holds that ∂xfθ(x) > 0 (fθ upcrosses c(θ) at x). Restricting fθ to an appropriate neighbourhood,
the derivative of B[fθ, c(θ)] with respect to θ comes down to computing the derivative of f−1

θ (c(θ))
with respect to θ. The latter derivative can be computed as follows:

∂θc(θ) =
d
dθ
fθ(f

−1
θ (c(θ))) = ∂xfθ(x)

d
dθ
f−1
θ (c(θ)) + ∂θfθ(x), (67)

which implies that
d
dθ
f−1
θ (c(θ)) =

∂θc(θ)− ∂θfθ(x)

∂xfθ(x)
, (68)

14We say that a function f : R→ R upcrosses y ∈ R at x ∈ R if there exists some ε > 0 such that f(x′) < y
for all x′ ∈ (x− ε, x) and f(x′) > y for all x′ ∈ (x, x+ ε).
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(b) (q,KL) = (5%, 2), β∗ ≈ 1.84, H = 256.
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(c) (q,KL) = (30%, 1), β∗ ≈ 0.976, H = 256.
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(d) (q,KL) = (40%, 50), β∗ ≈ 4.40, H = 256.

Figure 5: Although the tightest Catoni bound is the optimal generic PAC-Bayes bound for a fixed dataset,
evidence suggests that there are other choices for ∆ which also achieve the tightest bound. For various
settings of fixed q and KL, we optimise a convex function with H hidden units to minimise p∆ with δ = 0.1
and N = 30. We compare the optimal Catoni Cβ∗ (left sides) with the learned convex function (right sides).
For all runs, p∆ converged to infβ>0 pCβ within a small tolerance.

recalling that ∂xfθ(x) > 0.

Similarly to Appendix F.2, although computing the gradient through the partial inverse accurately is
useful for optimising the convex function, the bound itself will be valid as long as the value of the
partial inverse itself is computed sufficiently accurately.

G Additional Results for Numerical Verification of Theory

Figure 5 complements Figure 2 by comparing the optimal Catoni Cβ to examples of the learned
convex functions, which demonstrates that there are other choices than Cβ which achieve bounds
that are close to inf∆∈C p∆ within a small tolerance. Figure 6 complements Figure 2 by considering
three slightly more complicated cases of a random dataset. Note that, in Figures 6b and 6c, during
iterations 104–106, the optimiser struggles: the trace jumps around. The are various reasons for why
this might have happened: the neural network parametrising ∆ has too few hidden units, the learning
rate of the optimiser is too large, the various approximations that involve ∆ (Appendices F.2 and F.3)
introduce too much error, or Open Problem 1 might be false.

H Worked Example for Corollary 3

In this section, we illustrate an application of Corollary 3 to determine when, in the simplified
scenario where RS(Q) = 1

2 almost surely, the expected PAC-Bayes-kl bound is tighter than the
tightest expected Catoni bound. This verifies with an analytic example, that, as we claim in Section 3,
although the Catoni bound is optimal for a fixed dataset and learning algorithm, it is not optimal in
expectation in the general case of a random dataset. To make the example more concrete, we also
compute the bounds for KL = 1 with probability 1

2 and KL = 100 otherwise. This choice for KL is
motivated with the conclusion at the end the section.

Denote α = 1
N (KL(Q‖P ) + log 1

δ ). We can solve for the optimal expected Catoni bound:

inf
β>0

1

1− e−β

(
1− e−

1
2βE[e−α]

)
. (69)

Denote u = E[e−α] and set the derivative with respect to β to zero:

(1− e−β) 1
2ue
− 1

2β − e−β(1− ue−
1
2β) = 0. (70)
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Figure 6: Extra results indicating that the tightest expected Catoni bound is not the optimal generic
PAC-Bayes bound for a random dataset. We optimise a convex function with H hidden units to minimise
p∆ with δ = 0.1 and N = 30. All plots consider random q and KL and show the expected difference
with the conjectured PAC-Bayes-kl bound (Corollary 3). In (a), the shaded regions show the minimum and
maximum over ten initialisations. Due to computational considerations, (b) and (c) only show one repetition,
since they are run for much longer than (a) (roughly 25 hours for each run). All plots show the PAC-Bayes-kl
bound (dotted red) and (c) and (d) show the optimal Catoni bound with parameter β∗ (dashed orange). All
runs quickly converged to non-vacuous values. (a): (q,KL) ∈ {(35%, 5), (45%, 30), (40%, 7), (43%, 25)}
uniformly, β∗ ≈ 2.23, H = 1024. (b): (q,KL) ∈ {(3.0%, 46.0), (9.6%, 0.52), (14.2%, 48.9)} (rounded
values) uniformly, β∗ ≈ 3.21, H = 1024. (c): (q,KL) ∈ {(18.1%, 2.56), (8.0%, 5.83), (16.8%, 30.0)}
(approximate values) uniformly, β∗ ≈ 2.20, H = 1024.

Letting x = e−
1
2β , this equation becomes a quadratic equation:

x2 − 2

u
x+ 1 = 0 =⇒ x =

1

u
±
√

1

u2
− 1. (71)

Therefore,

β = 2 log
u

1±
√

1− u2
= 2 log

E[e−α]

1±
√

1− E[e−α]2
, (72)

so the positive solution for β is given by

β = 2 log
E[e−α]

1−
√

1− E[e−α]2
≈ 2.803. (73)

Plugging this back into the Catoni bound gives that

inf
β>0

E[pCβ ] =

√
1− u2

1−
(

1−
√

1−u2

u

)2 = 1
2

(
1 +

√
1− E[e−α]2

)
≈ 0.943. (74)

We compare this with the choice ∆ = kl, which corresponds to the PAC-Bayes-kl bound. In that
case, the expected bound is given by

E[pkl] = EB[kl( 1
2 , · ), α+ γ] (75)

where

γ =
1

N
log Ikl(N) =

1

N
log

N∑
n=0

(
N

n

)(
N

n

)n(
1− N

n

)N−n
. (76)

To compute B[kl( 1
2 , · ), α+ γ], note that

1
2 log

1
2

p
+ 1

2 log
1
2

1− p
= y =⇒ y± = 1

2

(
1±

√
1− e−2y

)
. (77)

Therefore,
E[pkl] = 1

2

(
1 + E

√
1− e−2(α+γ)

)
≈ 0.836. (78)

This is better than the Catoni bound by more than 10%. Finally, by omitting γ, we find the conjectured
PAC-Bayes-kl bound:

E[p] = 1
2

(
1 + E

√
1− e−2α

)
(79)
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Note how similar the computed bounds are:

inf
β>0

E[pCβ ] = 1
2

(
1 +

√
1− E[e−α]2

)
, (optimal Catoni) (80)

E[pkl] = 1
2

(
1 + E

√
1− e−2(α+γ)

)
, (PAC-Bayes-kl) (81)

E[p] = 1
2

(
1 + E

√
1− e−2α

)
. (conjectured PAC-Bayes-kl) (82)

Define
φ(x) = 1− 1

2

√
1− x2, (83)

which is convex. Define the φ-entropy of a random variable X by

Hφ(X) = E[φ(X)]− φ(E[X]). (84)

Observe that Hφ(X) quantifies the slack in Jensen’s inequality, which, in particular, means that
Hφ(X) ≥ 0. We then find that

inf
β>0

E[pCβ ]− E[p] = Hφ(e−α), (85)

E[pkl]− E[p] = E[φ(e−α)− φ(e−γe−α)]. (86)

Therefore, the PAC-Bayes-kl bound is tighter if and only if

E[φ(e−α)]− E[φ(e−γe−α)] ≤ Hφ(e−α). (87)

In words, the expected PAC-Bayes-kl bound is tighter than the tighest expected Catoni bound if the
slack in Jensen’s inequality is more than the slack introduced by scaling by e−γ , which, for example,
will be the case if KL(Q‖P ) attains both small and large values.

I Additional Details for Synthetic Classification

I.1 Data Generation Details

We now provide details of the task generation for the 1D classification experiments. For each
task, we sample a 1D function f from a Gaussian process (GP) with an exponentiated quadratic
kernel with lengthscale 0.7 and variance 1. This is then turned into a classification problem by
thresholding: S =

(
(xn, sign(f(xn)))

)N
n=1

, where xn ∼ U [−2, 2]. Finally, we only select tasks that
are approximately balanced, so that the risk of a trivial predictor is ≈ 0.5. This is done in a way that
preserves the i.i.d. assumptions. In more detail, when sampling from the GP, in addition to sampling
the N points that make up the dataset, we also sample an additional 300 points that make up an
extra held-out set which is unseen by any of the meta-learners, and whose sole purpose is for us to
be able to estimate the actual generalisation risk of each posterior, which is what we report under
“Generalisation Risk” in, e.g., Figure 3. Furthermore, jointly with the N + 300 datapoints already
sampled, we sample an additional 300 datapoints which form a “balance set”. The sole purpose of
the balance set is for us to check if the dataset is roughly balanced between positive and negative
examples. If the prevalence of each class in the balance set is not ≈ 0.5, then we discard the entire
GP sample. Since the balance set is disjoint from the original dataset N (and also the 300 datapoints
forming the extra held-out set), doing this does not jeopardise the i.i.d. property within each dataset.15

Approximately balancing the datasets in this way is convenient because it allows us to interpret
results more easily, since the risk of the trivial classifier that always predicts the majority class in the
observed dataset is ≈ 0.5. We generate two disjoint meta-train sets (along with their corresponding
meta-test sets) this way: one with N = 30 and another with N = 60. The meta-learners are either
meta-trained and meta-tested exclusively with N = 30 or exclusively with N = 60.

I.2 Deterministic Classification for Test Set Model

PAC-Bayes bounds naturally lead to stochastic classifiers (also known as Gibbs classifiers), whereby
a fresh sample h ∼ Q is drawn whenever the classifier is presented with an input. However, this does

15The tasks themselves are also still i.i.d. from the same task distribution, although this does not affect the
validitiy of our bounds, which only requires the i.i.d. assumption to hold within each dataset.
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not need to be the case for test set bounds. In fact, it may be easier to bound the risk of a deterministic
classifier with a test set bound than a stochastic one, since for a deterministic classifier, each term in
the sum defining the empirical risk is a Bernoulli random variable, and hence it is trivial to apply
Theorem 1, which leads to significantly tighter bounds than Theorem 2 in the small data regime.
Additionally, we observed that when optimising 1

T

∑T
t=1RSt,test(Qθ(St,train)) as in Section 4,

the learned posterior map Qθ eventually became essentially deterministic once meta-training was
complete.

Another way to use the binomial tail test set bound in the case when ` ∈ [0, 1] (as it effectively is for
Gibbs classifiers, once the zero-one loss is integrated over Q to form Eh∼Q[`0/1((x, y), h)] ∈ [0, 1]),
is to randomise the computation of the empirical loss. In particular, for each z ∈ Stest, one could
sample a Bernoulli random variable with parameter `(z, h) and set the empirical risk in Theorem 1 to
be the average of these Bernoulli random variables. For test set bounds, these are i.i.d. hence the sum
is binomially distributed and Theorem 1 can be applied directly. We do not pursue this here, as it
does not make a significant difference when the classifier is nearly deterministic, as we found.

For these reasons, at meta-test time we convert the test set bound meta-learners into deterministic
classifiers by using a Bayes classifier instead of a Gibbs classifier. That is, the final predictor for a
test set bound meta-learner with posterior Q is given by

ŷ(x) := sign
(
Ew∼Q[wTφθ(x)]

)
(88)

The risk of this predictor on a dataset S, which is the quantity we report and upper bound for the
test set bound meta-learners in Section 4, is then simply the usual (non-Gibbs) risk: RS(ŷ) =
1
N

∑
(x,y)∈S `0/1((x, y), ŷ). We emphasise that this change primarily serves to simplify the test set

bound computation (and allow the use of the tighter Theorem 1 instead of just Theorem 2), and
essentially does not affect the performance of the test set classifiers — the Gibbs and Bayes risks are
nearly identical because the Gibbs classifier learned by the test set meta-learners was already nearly
deterministic.

I.3 Computing the Empirical Risk

In this section we provide additional details on how to compute the empirical risk term for the
meta-learners. This applies for the PAC-Bayes meta-learners at both meta-train time and meta-test
time, but only applies to the test set bound meta-learners during meta-train time — at meta-test time
we use a Bayes classifier for the test set bound meta-learners instead of a Gibbs one; see Appendix I.2
for a discussion. Recall that we consider hypotheses of the form hw(x) := sign(wTφθ(x)). Then the
loss function is:

`0/1((x, y), hw) = 1[y 6= sign(wTφθ(x))] (89)

We can then compute the empirical Gibbs risk as

RS(Q) =
1

|S|
∑

(x,y)∈S

Ew∼Q[1[y 6= sign(wTφθ(x))]] (90)

=
1

|S|
∑

(x,y)∈S

Pr
(
ywTφθ(x) < 0

)
(91)

We now specialise to the case of Gaussian Q := N (µ,Σ). In this case, we can compute the
empirical Gibbs risk in Equation (91) in closed form (up to the error function, which has a standard
implementation in PyTorch (Paszke et al., 2017)):

ywTφθ(x) ∼ N (yµTφθ(x), φθ(x)TΣφθ(x)), (92)

Pr
(
ywTφθ(x) < 0

)
= Φ

(
−yµTφθ(x)√
φθ(x)TΣφθ(x)

)
(93)

where Φ is the standard normal cumulative distribution function and where we have used the fact
that y ∈ {−1,+1} so y2 = 1. Now recall that Φ is related to the error function erf(x) (as defined in
PyTorch) by Φ(x) = 1

2 [1 + erf( x√
2
)], which gives:

RS(Q) =
1

|S|
∑

(x,y)∈S

1

2

[
1 + erf

(
−yµTφθ(x)√

2φθ(x)TΣφθ(x)

)]
. (94)
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Hence we can backpropagate through the empirical Gibbs risk without the need for Monte Carlo
integration over Q.

I.4 Post-Hoc Optimisation of Posteriors

It is well-known that when performing amortised variational inference (VI) (Kingma & Welling,
2014), there is an amortisation gap (Cremer et al., 2018), which is the gap between the performance
of the amortised inference network, and the performance obtained when optimising each variational
problem separately. The meta-learners we consider in Section 4 have similarities with amortised
VI, except that PAC-Bayes bound minimisation is being amortised, rather than VI. Similarly, there
is an amortisation gap for our meta-learners, which is the gap between the bound obtained by the
meta-learner when the posterior that was outputted by the posterior map is directly used, versus the
bound we obtain when optimising, for each dataset, the posterior using gradient-based methods (in our
case, ADAM (Kingma & Ba, 2015)). Optimising the posterior for each dataset individually is costly,
but since we are concerned with obtaining the tightest bounds possible, we perform this post-hoc
optimisation for all of our meta-learners (including the results reported in Section 4). Fortunately,
each optimisation does not take too long, since we can initialise the posterior at the distribution output
by the meta-learner.

So far, we have discussed post-hoc optimisation of the PAC-Bayes bound. However, we can also
run post-hoc optimisation for the test set bound, as long as the optimised posterior does not depend
on the test set. We consider post-hoc optimising the train risk for each dataset. In principle, this
could possibly lead to overfitting the train set. In practice, we observe that this improves performance
slightly for the MLP-NP (indicating that the MLP-NP test set meta-learner was underfitting the
train set somewhat), and leaves performance essentially completely unaffected for the CNN-NP,
because the train set risk is already essentially zero for the CNN-NP test set meta-learner before
post-optimisation. Note that post-hoc optimisation is completely legal as a means of obtaining bounds
— it does not affect the validity of the bounds we consider, but merely closes the amortisation gap.

As an ablation study, we can compare the performance of the meta-learners with and without
post-hoc optimisation. Figures 7 and 14 show the performance of the CNN-NP and MLP-NP meta-
learners without post-hoc optimisation, which should be compared to Figures 3 and 13, which show
their performance with post-optimisation. Comparing Figure 7 with Figure 3 we see that post-hoc
optimisation improves the performance of the PAC-Bayes meta-learners slightly but leaves the test
set meta-learners essentially unaffected for the CNN-NP. Comparing Figure 14 with Figure 13,
we see that post-hoc optimisation tightens the generalisation bounds for all meta-learners slightly.
In conclusion, post-hoc optimisation sometimes leads to a small benefit, so we perform it for all
meta-learners.
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(a) N = 30 datapoints.
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(b) N = 60 datapoints.

Figure 7: Average generalisation bound and actual generalisation risk for CNN-NP without post-hoc optimisa-
tion (± two standard errors) for Catoni (H), PAC-Bayes-kl (�), optimisitc PAC-Bayes-kl (•), learned convex
(�), Chernoff test set bound (J), and binomial tail test set bound (I). All bounds hold with failure probability
δ = 0.1 except for conjectured PAC-Bayes-kl which is not proven to be a valid generalisation bound.

I.5 The Multilayer Perceptron Neural Process

We now describe the multilayer perceptron (MLP)-NP model, which is closely related to (but not
identical with) the conditional neural process model first described in Garnelo, Rosenbaum, et al.
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(2018).16 When using the MLP-NP, we use an MLP to implement the feature map φθ. Additionally,
each of the maps Qθ/Pθ consists of two MLPs: the encoder and decoder. The encoder eθ maps
R × {−1,+1} → RM , where RM , M ∈ N is the representation space. The decoder dθ maps
RM → G(RK), where G(RK) is the set of all Gaussian distributions over RK (in practice, the
decoder outputs a vector in RK+K(K+1)/2, which is converted into the mean of the Gaussian, and
also the lower-triangular part of the Cholesky decomposition of the covariance matrix). When
given a dataset S, the encoder computes a permutation-invariant representation of the dataset as
rθ(S) := 1

N

∑
(x,y)∈S eθ((x, y)). The decoder dθ then computes a Gaussian posterior distribution

over the hypothesis space as dθ(rθ(S)).

I.6 The CNN-Based Gaussian Neural Process

In contrast to the MLP-NP, which uses MLPs to implement the feature map φθ, the CNN-Based
Gaussian Neural Process (Bruinsma et al., 2021a) (CNN-NP) lets the kth component of the feature
map be φθ,k(x) = exp(− 1

2`2 (x− xk)2), a Gaussian basis function centred at some fixed input xk,
with a learnable lengthscale `. The centres of the Gaussian basis functions (xk)Kk=1 are evenly spread
out through the interval [−2, 2]. The CNN-NP lets Qθ and Pθ be parametrisations of maps from
datasets to full-covariance Gaussian posteriors over the weights of these basis functions where the
maps incorporate a symmetry called translation equivariance: if all inputs of the observed data are
shifted by some amount, then the posterior over the weights for the basis functions should be shifted
accordingly. Translation equivariance enables the CNN-NP to use CNNs for Qθ and Pθ instead of
MLPs.

We now give a brief high-level description how the CNN architecture for the posterior mean of
the Gaussian works. This follows the way that the mean of the Convolutional Conditional Neural
Process (ConvCNP) is computed,17 and we refer the reader to Sec 4 and especially Fig 1 of Gordon
et al. (2020) for a full description. First, the dataset is embedded into a 1D function with two
channels, known as the data channel and the density channel. This 1D function is then evaluated
on a discretised grid, and then fed into a CNN. The CNN output then defines mean of the Gaussian
predictive distribution over functions. However, unlike in Gordon et al. (2020) and Bruinsma et al.
(2021a), we modify this setup slightly, so that, instead of interpreting the CNN output as the mean of
the Gaussian predictive over functions, it is interpreted as the mean of the Gaussian posterior over
weights of the basis functions in φθ. Defining the posteriors in weight space instead of function space
makes it much easier to compute the KL-divergence.

We also give a brief description of how the CNN architecture for computing the posterior covariance
works. As this computation is more involved than the computation for the mean, we refer the reader
to Sec 3 and App E.2 of Bruinsma et al. (2021a) for a detailed description, https://github.com/
wesselb/NeuralProcesses.jl for a full implementation, and Bruinsma et al. (2021b) for a useful
visual description of the Gaussian neural process architecture, on which we base our CNN-NP
architecture used in Section 4. To compute the covariance matrix of the weights of the basis functions,
the dataset S is first embedded into three images on [−2, 2]× [−2, 2]. The embedding is performed
by placing a Gaussian basis function18 corresponding to each datapoint along the diagonal of the
[−2, 2] × [−2, 2] square. These three images are known as the data channel, density channel and
source channel respectively. As explained in Bruinsma et al. (2021a), the data channel incorporates
information about the y-values of the observations in S, the density channel records information about
how many points in S are observed at any particular x-location, and the source channel is simply in
the shape of an identity matrix which, intuitively speaking, allows CNN-NP to begin with a “white
noise” covariance matrix that afterwards is modulated to include correlations. These continuous
images, after being appropriately discretised on a regular 2D grid19 are passed through a 2D CNN,
which outputs an image which is interpreted as a covariance matrix over the interval [−2, 2]. In order

16The original conditional neural process outputs a Gaussian distribution directly in function space. This
leads to complications when considering the KL term in the PAC-Bayes bounds, hence we modify it to output a
Gaussian distribution over the parameters of a linear model.

17The predictive mean of the ConvCNP (Gordon et al., 2020) and that of the later, full-covariance Gaussian
Neural Process (Bruinsma et al., 2021a) are computed in the same way.

18These basis functions are distinct from the basis functions used to define the feature map φθ .
19This discretisation need not be the same as the spacing used for the Gaussian basis functions which make up

the feature map φθ .
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to ensure that the covariance matrix output is positive semi-definite, we multiply the output by itself:
Σ := MMT, where Σ is the covariance matrix and M is the K ×K matrix output by the CNN. This
covariance matrix is finally interpolated onto the grid defined by the locations of the basis functions
in φθ, which then defines the covariance of the weights of the basis functions.

I.7 Hyperparameters

General meta-learner training details. We fix the failure probability at δ = 0.1 for all of the
meta-learning experiments. During meta-training, for the PAC-Bayes models we found it was
more numerically stable to optimise the logarithm of the objective described in Equation (20). In
particular, for the Catoni bound model, we used the numerically stable implementation of log(1−e−x)
referenced in https://github.com/pytorch/pytorch/issues/39242. For all meta-learners,
we use a mini-batch estimate of the objective in Equation (20), with a batch size of 16 datasets. We
use a weight decay of 1× 10−5 for all meta-learners.

MLP-NP hyperparameters. We use a relatively large architecture for the MLP-NP, as we found
during preliminary experiments that larger architectures performed better. The feature dimension of
the linear model (see Appendix I.5) was set at K = 256. The MLPs implementing the feature map
φθ, encoder eθ and decoder dθ all had two hidden layers, each with a width of 512. The MLP-NP
was trained for 100 epochs on the meta-train set, with a learning rate of 2 × 10−5 (we found that
higher learning rates could lead to instabilities during training) with the ADAM optimiser (Kingma
& Ba, 2015). We did some manual hyperparameter tuning to choose these hyperparameters, but
they were not selected exhaustively. To avoid overfitting to the meta-train set when doing manual
hyperparameter tuning, we also sampled a meta-validation set of datasets, which we used when
tuning hyperparameters.

CNN-NP hyperparameters. For the CNN in the architecture, we use a U-Net (Ronneberger
et al., 2015). The U-Net, we use has 12 layers, with the number of channels in each layer being
8, 16, 16, 32, 32, 64, 64, 64, 64, 32, 32, 16 respectively. This architecture matches that used by Gordon
et al. (2020). The number of Gaussian basis functions per unit of input space (which determines the
number of features in φθ) was set at 16. The discretisation of the Gaussian Neural Process (i.e., the
spacing at which the continuous representation is evaluated before passing it through the CNN) is set
at 32 points per unit. Then CNN-NP was trained for 10 epochs on the meta-train set, with a learning
rate of 1× 10−3 with the ADAM optimiser. We did very little manual hyperparameter tuning for the
CNN-NP, because we found that it was fairly robust to the choice of learning rate and basis function
spacing. In all cases, the CNN-NP optimised much more quickly than the MLP-NP.

Post-hoc optimisation. We perform post-hoc optimisation at meta-test time, as discussed in Ap-
pendix I.4. Given a dataset, we initialise the posterior at the Gaussian distribution which is output by
the NP. We then use the ADAM optimiser (Kingma & Ba, 2015) with a learning rate of 3× 10−4

for a maximum of 3 000 optimisation steps to target either the PAC-Bayes bound (for PAC-Bayes
meta-learners), or the train risk (for test set meta-learners). If, after 100 optimisation steps, the
generalisation bound has not decreased by at least 0.0001, then the optimisation is ended early.

Compute. We used roughly 500–1000 GPU-hours divided NVIDIA Tesla V100 and GeForce
RTX 2080 graphics cards using both an internal cluster and Amazon Web Services. Most of the
computational budget was spent on the meta-learning experiments. Of these, the MLP-NP was more
costly to run than then CNN-NP, since it took longer to train.

J Additional Plots for Synthetic Classification

J.1 Predictive Distributions

In this appendix we include extra plots of 1D classification tasks from the meta-test set, similar to
Figure 4.
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(a) PAC-Bayes-kl bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 12 and risk set (#) of size 18.
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Figure 8: Predictions and bounds on one of the 1D datasets with 30 datapoints. The bounds hold with failure
probability δ = 0.1.
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(a) Test set bounds, showing the learned hypothesis,
(—), the train set (#) of size 12 and the test set (#) of
size 18.
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Figure 9: Predictions and bounds on one of the 1D datasets with 30 datapoints. The bounds hold with failure
probability δ = 0.1.
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(a) PAC-Bayes-kl bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 12 and risk set (#) of size 18.
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showing the prior (—) and posterior (—) predictive,
prior set (#) of size 12 and risk set (#) of size 18.

Figure 10: Predictions and bounds on one of the 1D datasets with 30 datapoints. The bounds hold with failure
probability δ = 0.1.

J.2 Performance of MLP-NP

In the main body, we considered the CNN-NP model, since it performed better while training much
faster and requiring fewer parameters then the MLP-NP. In Figures 13 and 14 we also show the
performance of the MLP-NP for the test set meta-learners and also the Catoni bound meta-learner,
both with and without post-hoc optimisation (see Appendix I.4). We see that the MLP-NP test
set meta-learner performs very similarly to the CNN-NP one when N = 30, but performs slightly
worse when N = 60. The MLP-NP Catoni meta-learner is either as tight as the CNN-NP Catoni
meta-learner, or slightly looser, except when N = 30 and the prior proportion is 0 or 0.8, in which
case the MLP-NP seems to have encountered learning difficulties. Also note that generalisation risk
is generally higher for the MLP-NP than the CNN-NP.
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Figure 11: Predictions and bounds on one of the 1D datasets with 60 datapoints. The bounds hold with failure
probability δ = 0.1.
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(a) PAC-Bayes-kl bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 24 and risk set (#) of size 36.
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(b) Learned convex bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 24 and risk set (#) of size 36.

Figure 12: Predictions and bounds on one of the 1D datasets with 60 datapoints. The bounds hold with failure
probability δ = 0.1.
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(a) N = 30 datapoints.
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(b) N = 60 datapoints.

Figure 13: Average generalisation bound and actual generalisation risk for MLP-NP with post-hoc optimisation
(± two standard errors) for Catoni (H), Chernoff test set bound (J), and binomial tail test set bound (I). All
bounds hold with failure probability δ = 0.1.
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(a) N = 30 datapoints.
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Figure 14: Average generalisation bound and actual generalisation risk for MLP-NP without post-hoc optimi-
sation (± two standard errors) for Catoni (H), Chernoff test set bound (J), and binomial tail test set bound (I).
All bounds hold with failure probability δ = 0.1.
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