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A APPENDIX

A.1 BACKGROUND ON NEURO-SYMBOLIC Al

Neuro-symbolic systems are hybrid models that leverage the robustness of connectionist methods
and the soundness of symbolic reasoning to effectively integrate learning and reasoning|Garcez et al.|
(2015);Besold et al.|(20177). Research to combine logic and the neural network has received renewed
attention over the last few years[Lamb et al.|(2020); [De Raedt et al. (2020)); [Badreddine et al./(2022).
According to the taxonomy provided in[Lamb et al.|(2020)), there are six variants of neuro-symbolic
systems depending on how the neural and symbolic components of the model interact with each
other. The Type 1 models are standard deep learning models where the input and output are made
of symbols. For example, a machine translation model is a type 1 system that deals with words
in the input and output. In type 2 systems, the neural network is loosely coupled with a symbolic
component. An example is DeepMind’s AlphaGo, where the symbolic component is a Monte Carlo
tree search. In a Type 3 system, the neural component responsible for a specific task interacts via its
input and output with a symbolic component responsible for a complimentary task (e.g
(2019); |Lu et al.|(2019)). In Type 4 systems, the Neural and symbolic components of the model are
more integrated, i.e. the symbolic knowledge is compiled into the training set of the neural network
(e.g., [Arabshahi et al. (2018);[Cample & Charton| (2019))). In Type 5 systems, symbolic logic rules
are mapped to embeddings that act as a soft constraint on the network’s loss function [Huang et al.
(2018); |Arabshahi et al.| (2021b)). Finally, the neural and symbolic components of the model in a
Type 6 system (arguably the most capable) are fully integrated such that the model is capable of
actual symbolic reasoning inside the neural component [Arabshahi et al.|(2021a).

A.2 DATASETS

CUB-200 The Caltech-UCSD Birds-200-2011 (Wabh et al.|(2011)) is a fine-grained classification
dataset comprising 11788 images and 312 noisy visual concepts. The aim is to classify the correct
bird species from 200 possible classes. We adopted the strategy discussed in |[Koh et al.| (2020) to
extract 108 denoised visual concepts. Also, we utilize training/validation splits shared in |Barbiero

(2022)). Finally, we use the state-of-the-art classification models Resnet-101 (2016))
and Vision-Transformer (VIT) (Wang et al.| (2021)) as the blackboxes f.

Animals with attributes2 (Awa2) AwA?2 dataset Xian et al. (2018)) consists of 37322 images of
total 50 animals classes with 85 numeric attribute. We aim to classify the correct animal species
from 200 possible classes. We use the state-of-the-art classification models Resnet-101
(2016)) and Vision-Transformer (VIT) (Wang et al.|(2021)) as the blackboxes f.

HAM10000 HAMI10000 (Tschandl et al. (2018)) is a classification dataset aiming to classify a
skin lesion benign or malignant. Following|Daneshjou et al. (2021)), we use Inception |Szegedy et al.
2015) model, trained on this dataset as the blackbox f. We follow the strategy in
2020) to extract the 9 concepts from the Derm7pt (Kawahara et al.|(2018)) dataset.

MIMIC-CXR We use 220,763 frontal images from the MIMIC-CXR dataset|Johnson et al.| aim-
ing to classify cardiomegaly and effusion. We obtain the anatomical and observation concepts from
the RadGraph annotations in RadGraph’s inference dataset (2021)), automatically y gen-

erated by DYGIE++ (Wadden et al (2019)). We use the test-train-validation splits from
(2022)) and Densenet121|[Huang et al. (2017) as the blackbox f.

A.3 LOSS FUNCTION

In this section, we will discuss the loss function used in distilling the knowledge from the blackbox to
the symbolic model. We remove the superscript k for brevity. We adopted the optimization proposed
in |Geifman & EI-Yaniv| (2019).Specifically, we convert the constrained optimization problem in
equation 2] as
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Ly= R(ﬂ-7 g) + )‘S\I/(T - C(TF)) )]
TU(a) = max(0, a)?,

where 7 is the target coverage and ) is a hyperparameter (Lagrange multiplier). We define R(.)
and £, - (.) in equations andrespectively. ¢ in equation [3|is defined as follows:

0(f,9) = Lasstau(f 9) + Aiens y_ H(B), ©6)

i=1

where \je,,s and H(/3?) are the hyperparameters and entropy regularize, introduced in Barbiero et al.
(2022) with r being the total number of class labels. Specifically, 3° is the categorical distribution
of the weights corresponding to each concept. To select only a few relevant concepts for each target
class, higher values of A, will lead to a sparser configuration of 3. ¢ is the knowledge distillation
loss |Hinton et al. (2015)), defined as

g(f, g) :(aKD * T p * ,I’KD)I(L(LOgSOftH]aX(g(.)/T‘KD)7 Softmax(f(.)/TKD))+ (7
(1—akp)CE(g(.),y),

where Tk p is the temperature, CE is the Cross-Entropy loss, and ax p is relative weighting con-
trolling the supervision from the blackbox f and the class label y.

As discussed in |Geifman & El-Yaniv (2019), we also define an auxiliary interpretable model using
the same prediction task assigned to g using the following loss function

1 m T )
‘Cauw = E Zl gdistill(f(wj)a g(CJ)) + )\lens Zl H(/Bl)y (8)
J= i=
which is agnostic of any coverage. L, is necessary for optimization as the symbolic model will
focus on the target coverage 7 before learning any relevant features, overfitting to the wrong subset
of the training set. The final loss function to optimize by g in each iteration is as follows:

L=al;+(1-a)lays, )

where « is the can be tuned as a hyperparameter. Following |Geifman & EI-Yaniv| (2019), we also
use « = 0.5 in all of our experiments.

A.4 ALGORITHM

Algorithm[T|explains the overall training procedure of our method. Figure[§|displays the architecture
of our model in iteration k.

Selecting the number of experts We follow two principles to stop the recursive process.

1) Each expert should have enough data to be trained reliably (coverage ¢*). If insufficient samples
fallinto the expert, we stop the process.

2) If the latest residual (%) is under-performing, it is not a reliable black box to distill. We stop the
procedure to avoid degrading the overall accuracy.

A.5 CODE AVAILABILITY

We will upload the code upon the decision from the reviewers.

A.6 FLOW DIAGRAM TO ELIMINATE SHOTCUT

Figure[9 shows the flow digram to eliminate shortcut.
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Figure 8: Architectural details of our model in an iteration &k during inference. At inference, selector
routes the samples to go through the interpretable expert ¢* if the probability 7% > 0.5. If 7% < 0.5,
the selector routes the samples, through f*, the Blackbox for iteration k + 1. Note f* = h*(®(.) is
an approximation of the residual r* = f+=1 — gk,

Algorithm 1 Training the sparse mixture of experts to generate FOL explanations locally
Input: Training set: {X, ), S}; trained blackbox f° = h°(®(.)) using supervision of ); K as
the # iterations; Coverages 7y, ..., Tk
Output: Sparse mixture of experts and their selectors {g*, 7F} 5|
1: Fix .
2: Train ¢ by minimizing BinaryCrossEnt(t(®(x), S)
3: Form a concept bank C with p concepts after discarding the concepts whose validation auroc
(accuracy) < 0.7 (70%)

4: for iteration k=1...K do

5: Fix 7! ... 7k=1

6:  Minimize £* using equation[9]to learn 7* and g*.

7 Calculate r* = f*~1() — g*(.)

8 Minimize equation to learn f*(.), the new blackbox for the next iteration &k + 1

9: end for
10: for experts k=1...K do

11: for ecach sample in the test-set do

12: Sort the concepts according to their attention scores from different experts in descending
order.

13: Initialise FOL_bucket as empty list.

14: Select one concept {c'}Y_, at a time from the sorted concept bank in step until

g(c*) = g(c) and add those concepts in the FOL_bucket.

15: Construct the FOL expression from FOL_bucket using |Barbiero et al.| (2022).

16: end for

17: end for

A.7 ARCHITECTURAL DETAILS OF SYMBOLIC EXPERTS AND HYPERPARAMETERS

Table [T|demonstrates different settings to train the Blackbox of CUB-200, Awa2 and MIMIC-CXR
respectively. For the VIT-based backbone, we used the same hyperparameter setting used in the
state-of-the-art Vit-B_16 variant in Wang et al.| (2021). To train ¢, we flatten the feature maps
from the last convolutional block of ¢ using “Adaptive average pooling” for CUB-200 and Awa2

16



Under review as a conference paper at ICLR 2023

——————— D —
1. Train 3. Train mix 4. Finetune Blackbox
Blackbox of experts with MDN

Compare the
accuracies of
subsets
Waterbirds
on water vs
Waterbirds
on Land and
vice versa.

Use this step

to compute
the concept
values by
fixing the
backbone of
the
Blackbox.

Use this step
to retrieve
the FOL. In

FOL, the
spurious
background
concepts
show up.

( Use the background b
concepts as metadata
and using Metadata
Normalization, the
background bias is
eliminated. Thus, the
Blackbox becomes
robust.

Use this step
to compute
the concept
values by
fixing the
backbone of
the robust
Blackbox.

Use this step
to retrieve
the FOL. In

FOL, the
spurious
background
concepts do
not show up.

6. Train mix
of experts

Figure 9: The flow diagram to eliminate the shortcut from vision datasets using FOL by mixture of
interpretable experts.

Table 1: Hyperparameter setting of different convolution-based Blackboxes used by CUB-200,
Awa2 and MIMIC-CXR

Setting | CUB200 |  Awa2 | MIMIC-CXR
Backbone | ResNet-10 | ResNet-101 | DenseNet-121
Pretrained on ImageNet \ True \ True \ True
Image size \ 448 \ 224 \ 448
Learning rate \ 0.001 \ 0.001 \ 0.01
Optimization \ SGD \ Adam \ SGD
Weight-decay \ 0.00001 \ 0 \ 0.0001
Epcohs \ 95 \ 90 \ 50
Layers used as ¢ ‘ till 4*" ResNet ‘ till 4*" ResNet ‘ till 4*" DenseNet
Block Block Block
Flattening type for the input to ¢ ‘ Adap;g;;‘;erage Adap;g;;‘;emge Flatten

datasets.For MIMIC-CXR and HAM10000, we flatten out the feature maps from the last convolu-
tional block. For VIT-based backbones, we take the first block of representation from the encoder
of VIT. For HAM 10000, we use the same Blackbox in [Yuksekgonul et al. (2022). Tables [2] [3| {4 5]
enumerate all the different settings to train the interpretable experts for CUB-200, Awa2, HAM, and
MIMIC-CXR respectively. All the residuals in different iterations follow the same settings as their
blackbox counterparts.

A.8 MORE RESULTS

A.8.1 SUMMARY STATISTICS OF NO. OF CONCEPTS USED FOR VARIOUS ARCHITECTURES

Figure shows the summary statistics for multiclass classification vision datasets. For both
datasets, we observe that the VIT-based MolE uses fewer concepts for explanation than their ResNet-
based counterparts. For example, for the CUB-200 dataset, expert6 of VIT-backbone requires 25
concepts compared to 105 by expert6 of ResNet-101-backbone (Figure [I0p). The 105 concepts by
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Table 2: Hyperparameter setting of interpretable experts (g) trained on ResNet-101 (top) and VIT
(bottom) blackboxes for the CUB-200 dataset

Settings based on dataset Iteralltion Iterzzltion Itergtion Iterition Itergtion Iterztion
CUB-200 (ResNet-101)
+ Batch size 16 16 16 16 16 16
+ Coverage (1) 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Nens 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
+agp 0.9 0.9 0.9 09 0.9 0.9
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+Ag 32 32 32 32 32 32
+ Temperature
E-Lens (Tjens) 0.7 0.7 0.7 0.7 0.7 0.7
CUB-200 (VIT)
+ Batch size 16 16 16 16 16 16
+ Coverage (1) 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Nens 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
+aKp 0.99 0.99 0.99 0.99 0.99 0.99
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+Ag 32 32 32 32 32 32
+ Temperature
E-Lens (Tjens) 6.0 6.0 6.0 6.0 6.0 6.0

expert6 is the highest number of concepts utilized by any expert for CUB-200. Similarly, for Awa2,
the highest number concept used by an expert is 8 for the VIT-based backbone compared to 80 for
the ResNet-101-based backbone(Figure[I0p).

A.8.2 PERFORMANCE OF EXPERTS AND RESIDUAL FOR RESNET-DERIVED EXPERTS OF
AWA2 AND CUB-200 DATASETS

Figure[TT]shows the coverage (top row), performances (bottom row) of each expert and residual for
the ResNet-101-derived experts of Awa2 and CUB-200 dataset respectively.

A.8.3 COMPARISON OF PERFORMANCE WITH THE PROTOTYPE-BASED INTERPRETABLE
MODELS

Table[6]compares the performance of our model with the Prototype-based interpretable models (Pro-

toPNet [Chen et al.| (2019) and Prototree Nauta et al. (2021))). We list the following key differences
between MolE and the Prototype-based interpretable models:

1. Our method allows leveraging a blackbox and distilling it to any symbolic method (includ-
ing ProtoTree), while a Prototype-based approach should be trained from scratch. Training
from scratch can be a difficult optimization task, depending on the template or architecture
of the interpretable method.

2. The samples routed to the last residuals can be viewed as a subset of data for which the
template of the interpretable method is not appropriate. Neither Prototype nor ProtoTree
offers such flexibility.

3. Using prototype approaches to fix undesirable properties such as shortcuts is not straight-
forward. We have shown that our method can easily be used for such applications.
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Table 3: Hyperparameter setting of interpretable experts (g) trained on ResNet-101 (top) and VIT
(bottom) blackboxes for the Awa2 dataset

Settings based on dataset Iteralltion Iterzzltion Itergtion Iterition Itergtion Iterztion
Awa2 (ResNet-101)
+ Batch size 30 30 30 30 - -
+ Coverage (1) 0.4 0.35 0.35 0.25 - -
+ Learning rate 0.001 0.001 0.001 0.001 - -
+ Aens 0.0001 0.0001 0.0001 0.0001 - -
+agp 0.9 0.9 0.9 0.9 - -
+Tkp 10 10 10 10 - -
+hidden neurons 10 10 10 10 - -
+Ag 32 32 32 32 - -
+ Temperature
E-Lens (Tjens) 0.7 0.7 0.7 0.7 - -
Awa?2 (VIT)
+ Batch size 30 30 30 30 30 30
+ Coverage (1) 0.2 0.2 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
+ Aens 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
+agp 0.99 0.99 0.99 0.99 0.99 0.99
+Tkp 10 10 10 10 10 10
+hidden neurons 10 10 10 10 10 10
+Ag 32 32 32 32 32 32
+ Temperature
E-Lens (Tiens) 6.0 6.0 6.0 6.0 6.0 6.0

Table 4: Hyperparameter setting of interpretable experts (g) for the diseases - Effusion (top) and
Cardiomegaly (bottom) in the dataset HAM 10000

Settings based on dataset Iterelltion Itergtion Itergtion Iterition Iterasntion
HAM10000 (Inception-V3)

+ Batch size 32 32 32 32 32
+ Coverage (1) 0.4 0.2 0.2 0.2 0.2
+ Learning rate 0.01 0.01 0.01 0.01 0.01
+ Nens 0.0001 0.0001 0.0001 0.0001 0.0001
+agp 0.9 0.9 0.9 0.9 0.9
+TkD 10 10 10 10 10
+hidden neurons 10 10 10 10 10
+Ag 64 64 64 64 64
+ Temperature

E-Lens (Tjens) 0.7 0.7 0.7 0.7 0.7

A.8.4 PERFORMANCE OF EXPERTS AND RESIDUAL FOR MEDICAL IMAGING DATASETS

Figure @] shows the coverage (top row), auroc (middle row) and accuracy scores (bottom row) of
each expert and residual for all the medical imaging datasets (HAM 10000, Effusion of MIMIC-CXR
and Cardiomegaly of MIMIC-CXR).
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Table 5: Hyperparameter setting of interpretable experts (g) for the dataset MIMIC-CXR

Settings based on dataset Iteration 1 | Iteration 2 | Iteration 3
Effusion-MIMIC-CXR (DenseNet-121)

+ Batch size 64 64 64
+ Coverage (1) 0.5 0.2 0.1
+ Learning rate 0.01 0.01 0.01
+ Nens 0.0001 0.0001 0.0001
+axp 0.99 0.99 0.99
+ TKD 20 20 20
+hidden neurons 20, 20 20, 20 20, 20
+As 96 128 256
+ Temperature

E-Lens (Tiens) 7.6 7.6 7.6

Cardiomegaly-MIMIC-CXR (DenseNet-121)

+ Batch size 64 64 64
+ Coverage (7) 0.5 0.15 0.1
+ Learning rate 0.01 0.01 0.01
+ Mens 0.0001 0.0001 0.0001
+axp 0.99 0.99 0.99
+hidden neurons 20, 20 20, 20 20, 20
+As 1024 64 256
+ Temperature

E-Lens (Tiens) 0.7 0.7 0.7

Table 6: Comparison of performance between MolE and Prototype-based Model.

Method Top-1 Accuracy (%)
ProtoPNet (Chen et al.[(2019)) 79.2
ProtoTree h=9 (Nauta et al.[(2021)) 82.2
MolIE (ours, ResNet Backbone) 88.64
MolIE (ours, VIT Backbone) 91.30

A.8.5 RESULTS OF MIMIC-CXR DATASET

Figures [13] and [I4] reveal the instances of local explanations for “Effusion” and “Cardiomegaly”
respectively in MIMIC-CXR dataset.

A.8.6 RESULTS OF AWA2 DATASET

Figure[I3] shows the various local explanations for different species of animals in the Awa2 dataset.
For brevity, we choose a maximum of 4 images per class in this figure. If an expert only includes
one sample, we only show the image of that sample in this figure. For example, expert4 relies on
the water concept to predict a “Beaver”, whereas expertl uses several other concepts such as gray,
nocturnal, muscle. Figures [[6]and [T7)display the average number of concepts required to predict an
animal species correctly in the Awa2 dataset for ResNet-101 and VIT as backbones, respectively.

. . _ > all concepts for the samples belong to class j
Specifically, the average number of concepts for class j = #samples of class . We

can see that for ResNet-101, on average, 80 concepts are required to explain a sample correctly for
the class “Weasel” (Expertl in Figure [T6|a). However, for VIT, only three concepts are needed to
explain a sample correctly for “Weasel” (Expert 6 in Figure|17|f). Also from both of these figures
[I6]and[I7] we can see that different experts require different number concepts to explain same class.
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Figure 10: Comparison of summary statistics of the number of concepts utilized by various experts
of datasets (a) CUB -200(top row) and (b) Awa2 (bottom row).. In general, we can see that experts
carving out the explanations from VIT often uses less number of concepts.

For example figures|17|(e) and (f) reveal that experts 5 and 6 require 4 and 30 concepts on average
to explain “Wolf” correctly.

A.8.7 MORE RESULTS OF HAM1000 DATASET

Figures |18| and [19] displays all unique individual FOL explanations by various experts to predict
the skin lesions as “Malignant” and “Benign” correctly. In this figure, we observe that expertl
relies solely on the concept Blue_Whitish_Veil(BWV) to classify a skin lesion as “Benign”, whereas
expert3 relies on five different sets (one set consists of only Is_Female, Regression_Structures etc.,
and another consists of Is_Female, Irregular_Streaks etc.). This result substantiates our hypothesis
that different experts rely on different concepts for different diseases unlike the baselines in figures
and[T% detecting a skin lesion as “Malignant” and “Benign” respectively..
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Figure 12: Coverage and performance of each expert and residual for all the medical imaging
datasets - (a) HAM10000 (b) Effusion of MIMIC-CXR and (c) Cardiomegaly of MIMIC-CXR
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Figure 16: Class labels (Animal species) vs avg concepts using ResNet-101 as backbone for Awa2.
Each bar in this plot indicates the average number concepts required to explain each sample of that
animal species correctly.
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Figure 17: Class labels (Animal species) vs avg concepts using VIT as backbone for Awa2. Each
bar in this plot indicates the average number concepts required to explain each sample of that animal

species correctly.
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Figure 18: Local explanations from (a) the baseline and (b-e) different experts capture the variability
of explanations for different samples for HAM 10000 dataset for identifying a skin lesion as “Malig-
nant”.

A.8.8 SAMPLE IMAGES COVERED BY EACH VIT-DERIVED EXPERT AND THE FINAL
RESIDUAL OF CUB-200

Figure [20]compares different sample images covered by different VIT-derived experts and the final
residuals of CUB-200. Figure [21] shows more instances, covered by the VIT-derived final residual
of CUB-200. Table [/| compares the performance of the final residual with that of the blackbox
(f°). The second column of the table shows the performance of the blackbox () on the samples
covered by the final residua. The third column shows the performance of the blackbox (f°) on all
the samples in the test set. Clearly, this table shows that the performance of the blackbox ( f°) drops
substantially for the samples covered by the final residual. For example, for HAM 10000, the overall
performance of the blackbox (f°) is 92.15%. However, on the samples covered by the final residual,
the performance of the blackbox (fY) drops to 67.89%. This experiment demonstrates that the final
residual is left with relatively “harder” samples to explain.

A.9 VALIDITY OF THE GENERATED EXPLANATIONS

To ensure the validity of the FOL explanations, we intervene on the concepts in the derived
FOL and set the values of those concepts to zero. For example, wing_shape_roundedwings,
back_pattern_multicolored, bill_color_grey and head_pattern_plain concepts show up in the FOL
explanation of expertl for the class Baltimore Oriole as per figure For random intervention,
we set the values of these concepts to zero and keep the values of other concepts unchanged. Then
we pass the complete intervened concept vector as input to the corresponding expert and compute
the accuracy. We discover that MolE is highly sensitive to a random intervention on these concepts,
and the performance of MolE drops significantly. For example, as a result of the random interven-
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Figure 19: “Local explanations” from (a) the baseline and (b-e) different sparse experts capture the
variability of explanations for different samples for HAM 10000 dataset for identifying a skin lesion
as “Benign”.
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Figure 21: More images covered by the VIT-derived final residual of CUB-200.

tion, for CUB-200 VIT-derived MolE, the performance of MolE deteriorates from 91.30 to 60.13
% (a 34.09 % drop). We perform the identical experiment for the baseline (2020). For
CUB-200 VIT-based baseline model, the performance of the baseline degrades from 85.20 to 65.02
% (a 20.18 % drop). As a result, we infer that MoIE generates more concrete explanations than the
baseline, as the drop in accuracy for the baseline is lower than that of MolE. Table|§| demonstrates
this experiment.

A.9.1 MORE RESULTS OF CUB DATASET

Figures 22] 23] and [24] display the average number of concepts required to predict a bird species
correctly in the Cub-200 dataset for all the experts of VIT as backbones. Also, Figures[25] 27]and [27]
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Figure 22: Class labels (Bird species) vs avg concepts using VIT as backbone for CUB-200 by (a)
Expertl (b) Expert2. Each bar in this plot indicates the average number concepts required to explain
each sample of that bird species correctly.
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Figure 23: Class labels (Bird species) vs avg concepts using VIT as backbone for CUB-200 by (a)
Expert3 (b) Expert4. Each bar in this plot indicates the average number concepts required to explain
each sample of that bird species correctly.
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Figure 24: Class labels (Bird species) vs avg concepts using VIT as backbone for CUB-200 by (a)
Expert5 (b) Expert6. Each bar in this plot indicates the average number concepts required to explain

each sample of that bird species correctly.
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Figure 25: Class labels (Bird species) vs avg concepts using ResNet-101 as backbone for CUB-200
by (a) Expertl (b) Expert2. Each bar in this plot indicates the average number concepts required to
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Figure 26: Class labels (Bird species) vs avg concepts using ResNet-101 as backbone for CUB-200
by (a) Expert3 (b) Expert4. Each bar in this plot indicates the average number concepts required to

explain each sample of that bird species correctly.
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Figure 27: Class labels (Bird species) vs avg concepts using ResNet-101 as backbone for CUB-200

by (a) Expert5 (b) Expert6. Each bar in this plot indicates the average number concepts required to
explain each sample of that bird species correctly.
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Table 7: Comparison of performance (Accuracy, %) of the final residual and the blackbox (f°)
on held-out test set. The 2"¢ column depcits the performance of the initial blackbox () on the
samples of the test set. To compare fairly, we dispatch the samples, covered by the final residual
through the blackbox (f") and compare the performance of the blackbox on these samples with the
final residual (3" column). We observe that the performance of blackbox on the samples covered
by the final residual is lower than that of the blackbox on all the samples for all the dataset.

On selected samples

Dataset (Architecture) On all samples (%) covizzgdzglt?‘% f)inal

(residual, blackbox)
Cub-200 (ResNet-101) 88.64 (82.52,85.41)
Cub-200 (VIT) 91.30 (81.01, 83.01)
Awa?2 (ResNet-101) 91.02 (77.88,79.11)
Awa2 (VIT) 98.53 (92.56, 93.56)
HAM10000 (Inception) 92.15 (67.89, 62.89)
Effusion from MIMIC-CXR (DenseNet-121) 78.34 (35.71, 37.06)
Cardiomegaly from MIMIC-CXR (DenseNet-121) 84.89 (48.71, 51.06)

Table 8: Explanation validity for MoIE / baseline. The 2"¢ column depicts the accuracy of MolE /
baseline using the discovered concepts in the FOL per sample. The 3"¢ column depicts the accuracy
of MolIE / baseline using the intervened concepts in the FOL per sample. The 4" column shows the
drop in accuracy. The more drop in accuracy illustrates the model to be more sensitive to random
intervention of the derived concepts.

A Accuracy
D . . ceuracy using Drop(%)
ataset (Architecture) using correct intervened 1
concepts (%) concepts (%)
MolE (ours)
+ Cub-200 (ResNet-101) 88.64 54.33 34.31
+ Cub-200 (VIT) 91.30 60.17 31.14
+ Awa2 (ResNet-101) 91.02 53.23 37.79
+ Awa2 (VIT) 98.53 90.19 8.34
+ HAM10000 (Inception) 92.15 86.72 5.43
+ Effusion - MIMIC-CXR (DenseNet-121) 78.34 72.32 6.02
+ Cardiomegaly - MIMIC-CXR (DenseNet-121) 84.89 82.17 2.72
Baseline (interpretable by design (2020))
+ Cub-200 (ResNet-101) 74.80 53.16 21.64
+ Cub-200 (VIT) 85.20 65.02 20.18
+ Awa2 (ResNet-101) 90.05 88.58 1.47
+ Awa2 (VIT) 95.80 95.25 0.55
+ HAM10000 (Inception) 84.97 82.44 2.53
+ Effusion - MIMIC-CXR (DenseNet-121) 78.11 77.85 0.26
+ Cardiomegaly - MIMIC-CXR (DenseNet-121) 84.30 83.98 0.32

display the same for the ResNet-101 based counterparts. As mentioned before, the average number

. _ >~ all concepts for the samples belong to class j
of concepts for class j = 7 samples of class . We can see that for ResNet-101, on

average 80 concepts are required to explain a sample correctly for the class “Rhinoceros_Auklet”
(expert3 in Figure[27]a). However, for VIT, only 6 concepts are needed to explain a sample correctly
“Rhinoceros_Auklet” (expert3 in Figure[27)a). From both of these figures, we can see that different
experts require a different number of concepts to explain the same class. For example, figures 22| (b)
and[24] (b) reveal that experts 2 and 6 require 25 and 58 concepts on average to explain “Artic_Tern”
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[ Baltimore Oriole ]
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Figure 28: Generation of class-level explanations from VIT as a blackbox by combining the local
explanations of “Baltimore Oriole” by expertl(top row) and expert3 (bottom row).

correctly respectively. Figures [28] [29] [30] show more results on global explanations of CUB-200
dataset.
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[ Painted Bunting ]
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Figure 29: Generation of class-level explanations from VIT as a blackbox by combining the local

explanations of “Painted Bunting” by expertl(top row) and expert2 (bottom row). Note that all the
samples have same local explanation, so their local and global explanation is same.

[ American Goldfinch ]
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Figure 30: Generation of class-level explanations from VIT as a blackbox by combining the local

explanations of “American Goldfinch” by expertl(top row) and expert2 (bottom row). Note that all
the samples have same local explanation, so their local and global explanation is same.
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