
Appendix

A Broader Impact Statement 15

B Glossary of Symbols 16

C General-Policy Definitions 17

C.1 General-Policy Definitions . 17

D Proofs 18

D.1 Main Theorem . 18

D.2 Inverse Model Implies Density Ratio . 20

E Derivation of Density Ratio Objective 22

F Markov State Abstractions and Kinematic Inseparability 23

F.1 Example MDP . 23

F.2 “Strongly Markov” Implies KI . 23

G Implementation Details for Visual Gridworld 25

G.1 Computing Resources . 25

G.2 Network Architectures . 25

G.3 Hyperparameters . 26

H Implementation Details for DeepMind Control 27

H.1 Computing Resources . 27

H.2 Markov Network Architecture . 27

H.3 Hyperparameters . 27

I Additional Representation Visualizations 29

J Gridworld Results for Increased Pretraining Time 30

K DeepMind Control Experiment with RBF-DQN 31

L Investigating the Value of Smoothness in Markov Abstractions 32

M DeepMind Control Ablation Study 33

14

A Broader Impact Statement

Our approach enables agents to automatically construct useful, Markov state representations for
reinforcement learning from rich observations. Since most reinforcement learning algorithms implic-
itly assume Markov abstract state representations, and since agents may struggle to learn when that
assumption is violated, this work has the potential to benefit a large number of algorithms.

Our training objective is designed for neural networks, which are not guaranteed to converge to a
global optimum when trained with stochastic gradient descent. Typically, such training objectives will
only approximately satisfy the theoretical conditions they encode. However, this is not a drawback of
our method—it applies to any representation learning technique that uses neural networks. Moreover,
as neural network optimization techniques improve, our method will converge to a Markov abstraction,
whereas other approaches may not. In the meantime, systems in safety-critical domains should ensure
that they can cope with non-Markov abstractions without undergoing catastrophic failures.

We have shown experimentally that our method is effective in a variety of domains; however,
other problem domains may require additional hyperparameter tuning, which can be expensive.
Nevertheless, one benefit of our method is that Markov abstractions can be learned offline, without
access to reward information. This means our algorithm could be used, in advance, to learn an
abstraction for some problem domain, and then subsequent tasks in that environment (perhaps with
different reward functions) could avoid the problem of perceptual abstraction as well as any associated
training costs.

15

B Glossary of Symbols

Here we provide a glossary of the most commonly-used symbols appearing in the rest of the paper.

Symbol Description

M = (X,A,R, T, γ) Ground MDP
X Observed (ground) state space
A Action space
R(x′, a, x) Reward function
T (x′|a, x) Transition model
γ Discount factor
R(k)(x′, a, x, {· · · }ki=1) Reward function conditioned on k steps of additional history
T (k)(x′|a, x, {· · · }ki=1) Transition model conditioned on k steps of additional history

S Unobserved (latent) state space, assumed for Block MDPs
σ : S → Pr(X) Sensor function for producing observed states
σ−1 : X → S Hypothetical “inverse-sensor” function, assumed for Block MDPs

φ : X → Z Abstraction function
w(x) Fixed ground-state weighting function for constructing an abstract

MDP (Li et al., 2006)
Bπφ,t(x|zt) Belief distribution for assigning policy- and time-dependent

weights to ground states
B
π(k)
φ,t (x|zt, {at−i, zt−i}ki=1) Belief distribution conditioned on k steps of history

Mφ = (Z,A,Rπφ,t, T
π
φ,t, γ) Abstract decision process (possibly non-Markov)

Z Abstract state space
Rπφ,t(z

′, a, z) Abstract reward function
Tπφ,t(z

′|a, z) Abstract transition model
R
π(k)
φ,t (z′, a, z, {· · · }ki=1) Abstract reward function conditioned on k steps of additional history

T
π(k)
φ,t (z′|a, z, {· · · }ki=1) Abstract transition model conditioned on k steps of additional history

π(a|x) A policy
π∗ An optimal policy
ΠC An arbitrary policy class
Πφ The class of abstract policies induced by abstraction φ
V π : X → R The value function induced by π

Pπt (x) Ground-state visitation distribution
Pπt (x′|x) Expected next-state dynamics model
Iπt (a|x′, x) Inverse dynamics model
Pπφ,t(z) Abstract-state visitation distribution
Pπφ,t(z

′|z) Abstract expected next-state dynamics model
Iπφ,t(a|z′, z) Abstract inverse dynamics model

Pπt (x, a|x′) Backwards dynamics model, used for kinematic inseparability
Table 1: Glossary of symbols

16

C General-Policy Definitions

C.1 General-Policy Definitions

The definitions of Tπφ,t and Rπφ,t in Section 4 only apply when the policy π is a member of Πφ. Here
we derive more general definitions that are valid for arbitrary policies, not just those in Πφ. For the
special case where π ∈ Πφ, these definitions are equivalent to equations (4) and (5).

Abstract transition probabilities.

Pr(z′|a, z)

=
∑
x′∈X

Pr(z′|x′, a, z) Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(x|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(a|x, z) Pr(x|z)∑
x̃∈X Pr(a|x̃, z) Pr(x̃t|zt)

Tπφ,t(z
′|a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

T (x′|a, x)
πt(a|x)Bπφ,t(x|z)∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

Abstract rewards.∑
r∈R

rPr(r|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r, x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r|x′, z′, a, x, z) Pr(x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

R(x′, a, x)
Pr(z′|x′, a, x, z) Pr(x′, x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x, z) Pr(x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x)

Pr(z′|a, z)
Pr(a|x) Pr(x|z)∑
x̃∈X Pr(a|x̃) Pr(x̃|z)

Rπφ,t(z
′, a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

R(x′, a, x)
T (x′|a, x)πt(a|x)Bπφ,t(x|z)

Tπφ,t(z
′|a, z)

∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

17

D Proofs

Here we provide proofs of Theorem 1 and its corollary, which state that the Inverse Model and Density
Ratio conditions are sufficient for φ and Mφ to be Markov. Then, to complement the counterexample
from Section 4.2, we also present and prove a second theorem which states that, given the Inverse
Model condition, the Density Ratio condition is in fact necessary for a Markov abstraction.

D.1 Main Theorem

The proof of Theorem 1 makes use of two lemmas: Lemma D.1, that equal k-step and (k − 1)-step
belief distributions imply equal k-step and (k − 1)-step transition models and reward functions, and
Lemma D.2, that equal k-step and (k − 1)-step belief distributions imply equal (k + 1)-step and
k-step belief distributions. Since the lemmas apply for any arbitrary policy, we use the general-policy
definitions from Appendix C.

Lemma D.1. Given an MDP M , abstraction φ, policy π, initial state distribution P0, and any
k ≥ 1, if Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) = B

π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1), then for all at ∈ A and

zt+1 ∈ Z:

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0)

∩ R
π(k)
φ,t (zt+1, {at−i, zt−i}ki=0) = R

π(k−1)
φ,t (zt+1, {at−i, zt−i}k−1i=0).

In the proof below, we start with Bπ(k)φ,t = B
π(k−1)
φ,t , and repeatedly multiply or divide both sides by

the same quantity, or take the same summations of both sides, to obtain Tπ(k)φ,t = T
π(k−1)
φ,t , then apply

the same process again, making use of the fact that Tπ(k)φ,t = T
π(k−1)
φ,t , to obtain Rπ(k)φ,t = R

π(k−1)
φ,t .

Proof:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
.

Let at ∈ A be any action.

⇒ πt(at|xt)Bπ(k)φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= πt(at|xt)Bπ(k−1)φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒ πt(at|xt)Bπ(k)

φ,t (xt|zt,{at−i,zt−i}ki=1)∑
x̃t∈X

πt(at|x̃t)Bπ(k)
φ,t (x̃t|zt,{at−i,zt−i}ki=1)

=
πt(at|xt)Bπ(k−1)

φ,t (xt|zt,{at−i,zt−i}k−1
i=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k−1)

φ,t (x̃t|zt,{at−i,zt−i}k−1
i=1)

.

(6)
Let

C
π(k)
φ,t :=

πt(at|xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k)

φ,t (x̃t|zt,{at−i,zt−i}ki=1)
(7)

Combining (6) and (7), we obtain:

C
π(k)
φ,t = C

π(k−1)
φ,t (8)

⇒
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k)φ,t =
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k−1)φ,t

⇔ T
π(k)
φ,t

(
zt+1 | {at−i, zt−i}ki=0

)
= T

π(k−1)
φ,t

(
zt+1 | {at−i, zt−i}k−1i=0

)
. (9)

Additionally, we can combine (8) and (9) and apply the same approach for rewards:

C
π(k)
φ,t = C

π(k−1)
φ,t

⇒ C
π(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
C
π(k−1)
φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ T (xt+1|at,zt)Cπ(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
T (xt+1|at,zt)Cπ(k−1)

φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ R
π(k)
φ,t

(
zt+1, {at−i, zt−i}ki=0

)
= R

π(k−1)
φ,t

(
zt+1, {at−i, zt−i}k−1i=0

)
. (10)

18

Lemma D.2. Given an MDP M , abstraction φ, policy π, and initial state distribution P0, if for all
t ≥ k, zt ∈ Z, and xt ∈ X such that φ(xt) = zt, it holds that Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) =

B
π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1), then for all zt+1 ∈ Z, xt+1 ∈ X : φ(xt+1) = zt+1,

B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0

)
.

To prove this lemma, we invoke Lemma D.1 to obtain Tπ(k)φ,t = T
π(k−1)
φ,t , and then follow the same

approach as before, performing operations to both sides until we achieve the desired result.

Proof:

Let Tπ(k)φ,t be defined via (4) and (3). Applying Lemma D.1 to the premise gives:

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0).

Returning to the premise, we have:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
T
π(k)
φ,t

(
zt+1

∣∣{at−i, zt−i}ki=0

) =
B
π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
T
π(k−1)
φ,t

(
zt+1

∣∣{at−i, zt−i}k−1i=0

)
⇒

∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k−1)
φ,t (xt|zt,{at−i,zt−i}k−1

i=1)
T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0)

⇒ B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0

)
.

We now summarize the proof of the main theorem. We begin by showing that the belief distributions
B
π(k)
φ,t and Bπ(k−1)φ,t must be equal for k = 1, and use Lemma D.1 to prove the base case of the

theorem. Then we use Lemma D.2 to prove that the theorem holds in general.

Proof of Theorem 1:

Base case. For each π ∈ Πφ, let Bπφ,t be defined via (2). Then, starting from the Density Ratio
condition, for any zt+1, zt ∈ Z, and xt+1 ∈ X such that φ(xt+1) = zt+1, and any action at−1 ∈ A:

Pπφ,t(zt|zt−1)

Pπφ,t(zt)
=

Pπt (xt|zt−1)

Pπt (xt)

⇒
Pπφ,t(zt|zt−1)

Pπφ,t(zt)
=

∑
xt−1∈X

Pπt (xt|xt−1)

Pπt (xt)
Bπφ,t(xt−1|zt−1)

⇒ Pπt (xt)

Pπφ,t(zt)
=

∑
xt−1∈X

Pπt (xt|xt−1)B
π
φ,t(xt−1|zt−1)

Pπφ,t(zt|zt−1)
· I

π
t (at−1|xt,xt−1)πφ,t(at−1|zt−1)
Iπφ,t(at−1|zt,zt−1)πt(at−1|xt−1)

⇒ 1[φ(xt) = zt] P
π
t (xt)∑

x̃t∈X P
π
t (x̃t)

= 1[φ(xt) = zt]
∑

xt−1∈X

T (xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)

Tπφ,t(zt|at−1, zt−1)

⇒ Bπφ,t(xt|zt) =
1[φ(xt) = zt]

∑
xt−1∈X Tφ(xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)∑

x̃t∈zt
∑
x̃t−1∈zt−1

T (x̃t|at−1, x̃t−1)Bπφ,t(x̃t−1|zt−1)

⇒ B
π(0)
φ,t (xt|zt) = B

π(1)
φ,t (xt|zt, at−1, zt−1) (11)

Here (11) satisfies the conditions of Lemma D.1 (with k = 1), therefore, for all at ∈ A:

T
π(0)
φ,t (zt+1|at, zt) = T

π(1)
φ,t (zt+1|at, zt, at−1, zt−1)

and R
π(0)
φ,t (zt+1, at, zt) = R

π(1)
φ,t (zt+1, at, zt, at−1, zt−1)

19

This proves the theorem for k = 1.

Induction on k. Note that (11) also allows us to apply Lemma D.2. Therefore, by induction on k:

B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= Bπφ,t(xt+1|zt+1) ∀ k ≥ 1 (12)

When (12) holds, we informally say that the belief distribution is Markov.

Proof of Corollary 1.1: Follows directly from Definition 2 and Lemma D.1 via induction on k.

This first corollary says that a Markov abstraction implies a Markov abstract state representation.
The next one says that, if a belief distribution is non-Markov over some horizon n, it must also be
non-Markov when conditioning on a single additional timestep.

Corollary 1.2. If there exists some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t, then Bπ(1)φ,t 6= Bπφ,t.

Proof: Suppose such an n exists, and assume for the sake of contradiction that Bπ(1)φ,t = Bπφ,t. Then

by Lemma D.2, Bπ(k)φ,t = Bπφ,t for all k ≥ 1. However this is impossible, since we know there exists

some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t. Therefore Bπ(1)φ,t 6= Bπφ,t.

D.2 Inverse Model Implies Density Ratio

As discussed in Section 4.2, the Inverse Model condition is not sufficient to ensure a Markov
abstraction. In fact, what is missing is precisely the Density Ratio condition. Theorem 1 already states
that, given the Inverse Model condition, the Density Ratio condition is sufficient for an abstraction to
be Markov over its policy class; the following theorem states that it is also necessary.

Theorem 2. If φ : X → Z is a Markov abstraction of MDP M = (X,A,R, T, γ) for any policy in
the policy class Πφ, and the Inverse Model condition of Theorem 1 holds for every timestep t, then
the Density Ratio condition also holds for every timestep t.

Proof:

Since φ is a Markov abstraction, equation (12) holds for any k ≥ 1. Fixing k = 1, we obtain:

B
π(1)
φ,t (x′|z′, a, z) = B

π(0)
φ,t (x′|z′)

1[φ(x′) = z′]
∑
x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)∑

x̃′∈X:φ(x′)=z′
∑
x̃∈X:φ(x)=z T (x̃′|a, x̃)Bπφ,t(x̃|z)

=
1[φ(x′) = z′]Pπt (x′)∑
x̃′∈X:φ(x̃′)=z′ P

π
t (x̃′)∑

x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)
Tπφ,t(z

′|a, z)
=

Pπt (x′)

Pπφ,t(z
′)∑

x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)
Pπt (x′)

=
Tπφ,t(z

′|a, z)
Pπφ,t(z

′)∑
x̃∈X

Iπt (a|x′, x̃)Pπt (x′|x̃)Bπφ,t(x̃|z)
Pπt (x′)π(a|x̃)

=
Iπφ,t(a|z′, z)Pπφ,t(z′|z)

Pπφ,t(z
′)π(a|z)∑

x̃∈X I
π
t (a|x′, x̃)Pπt (x′|x̃)Bπφ,t(x̃|z)

Pπt (x′)
=
Iπφ,t(a|z′, z)Pπφ,t(z′|z)

Pπφ,t(z
′)

(13)

Here we apply the Inverse Model condition, namely that Iπt (a|x′, x) = Iπφ,t(a|z′, z) for all z, z′ ∈ Z;
x, x′ ∈ X , such that φ(x′) = z′ and φ(x) = z.∑

x̃∈X P
π
t (x′|x̃)Bπφ,t(x̃|z)
Pπt (x′)

=
Pπφ,t(z

′|z)
Pπφ,t(z

′)

Pπt (x′|z)
Pπt (x′)

=
Pπφ,t(z

′|z)
Pπφ,t(z

′)
(Density Ratio)

20

It may appear that Theorems 1 and 2 together imply that the Inverse Model and Density Ratio
conditions are necessary and sufficient for an abstraction to be Markov over its policy class; however,
this is not quite true. Both conditions, taken together, are sufficient for an abstraction to be Markov,
and, given the Inverse Model condition, the Density Ratio condition is necessary. Examining
equation (13), we see that, had we instead assumed the Density Ratio condition for Theorem 2 (rather
than the Inverse Model condition), we would not recover Iπt (a|x′, x) = Iπφ,t(a|z′, z), but rather∑
x̃∈X I

π
t (a|x′, x̃)Bπφ,t(x̃|z) = Iπφ,t(a|z′, z). That is, the Inverse Model condition would only be

guaranteed to hold in expectation, but not for arbitrary x ∈ X .

21

E Derivation of Density Ratio Objective

Our Density Ratio objective in Section 5 is based on the following derivation, adapted from Tiao
(2017).

Suppose we have a dataset consisting of samples Xc = {x′c
(i)}nci=1 drawn from conditional distri-

bution Pr(x′|x), and samples Xm = {x′m
(j)}nmj=1 drawn from marginal distribution Pr(x′). We

assign label y = 1 to samples from Xc and y = 0 to samples from Xm, and our goal is to predict
the label associated with each sample. To construct an estimator, we rename the two distributions
p(x′|y = 1) := Pr(x′|z) and p(x′|y = 0) := Pr(x′) and rewrite the density ratio δ(x′) := Pr(x′|x)

Pr(x′)

as follows:

δ(x′) = p(x′|y=1)
p(x′|y=0) = p(y=1|x′)p(x′)

p(y=1)
p(y=0)

p(y=0|x′)p(x′) = nm
(nm+nc)

(nm+nc)
nc

p(y=1|x′)
p(y=0|x′) = nm

nc

p(y=1|x′)
1−p(y=1|x′) .

(14)

When nc = nm = N , which is the case for our implementation, the leading fraction can be ignored.
To estimate δ(x′), we can simply train a classifier g(x′, x; θg) to approximate p(y = 1|x′) and then
substitute g for p(y = 1|x′) in (14).

However, we need not estimate δ(x′) to satisfy the Density Ratio condition; we need only ensure
δφ(z′) = EBφ [δ(x′)]. We therefore repeat the derivation for abstract states and obtain δφ(z′) :=
Pr(z′|z)
Pr(z′) = nm

nc

q(y=1|z′)
1−q(y=1|z′) , where q is our renamed distribution, and modify our classifier g to accept

abstract states instead of ground states. The labels are the same regardless of whether we use ground
or abstract state pairs, so training will cause g to approach p and q simultaneously, thus driving
δφ(z′)→ δ(x′) and satisfying the Density Ratio condition.

22

F Markov State Abstractions and Kinematic Inseparability

As discussed in Section 3, the notion of kinematic inseparability (Misra et al., 2020) is closely related
to Markov abstraction. Recall that two states x′1 and x′2 are defined to be kinematically inseparable if
Pr(x, a|x′1) = Pr(x, a|x′2) and T (x′′|a, x′1) = T (x′′|a, x′2) (which the authors call “backwards” and
“forwards” KI, respectively). Misra et al. (2020) define kinematic inseparability abstractions over the
set of all possible “roll-in” distributions u(x, a) supported on X ×A, and technically, the backwards
KI probabilities Pr(x, a|x′) depend on u. However, to support choosing a policy class, we can just as
easily define u in terms of a policy: u(x, a) := π(a|x)Pπt (x). This formulation leads to:

Pπt (x, a|x′) :=
T (x′|a, x)π(a|x)Pπt (x)∑

x̃∈X,ã∈A T (x′|ã, x̃)π(ã|x̃)Pπt (x̃)
.

Definition 3. An abstraction φ : X → Z is a kinematic inseparability abstraction of MDP M =
(X,A,R, T, γ) over policy class ΠC , if for all policies π ∈ ΠC , and all a ∈ A;x, x′1, x

′
2, x
′′ ∈ X

such that φ(x′1) = φ(x′2); Pπt (x, a|x′1) = Pπt (x, a|x′2) and T (x′′|a, x′1) = T (x′′|a, x′2).

Similarly, we can define forward—or backward—KI abstractions where only T (x′′|a, x′1) =
T (x′′|a, x′2)—or respectively, Pπt (x, a|x′1) = Pπt (x, a|x′2)—is guaranteed to hold. A KI abstraction
is one that is both forward KI and backward KI.

The KI conditions are slightly stronger conditions than those of Theorem 1, as the following example
demonstrates.

F.1 Example MDP

The figure below modifies the transition dynamics of the MDP in Section 2, such that the action a1
has the same effect everywhere: to transition to either central state, x1 or x2, with equal probability.

Figure 5: An MDP and a Markov abstraction that is not a KI abstraction.

By the same reasoning as in Section 4.2, the Inverse Model condition holds here, but now, due to the
shared transition dynamics of action a1, the Density Ratio condition holds as well, for any policy in
Πφ. We can apply Theorem 1 to see that the abstraction is Markov, or we can simply observe that
conditioning the belief distribution Bπφ,t(x|zB) on additional history has no effect, since any possible
trajectory ending in zB leads to the same 50–50 distribution over ground states x1 and x2. Either
way, φ is Markov by Definition 2.

This abstraction also happens to satisfy the backwards KI condition, since Pπt (x, a|x′1) = Pπt (x, a|x′2)
for any (x, a) pair and any policy. However, clearly T (x′|a0, x1) 6= T (x′|a0, x2), and therefore the
forwards KI condition does not hold and this is not a KI abstraction.

This example shows that the Markov conditions essentially take the stance that because π is restricted
to the policy class Πφ, knowing the difference between x1 and x2 doesn’t help, because π must have
the same behavior for both ground states. By contrast, the KI conditions take the stance that because
x1 and x2 have different dynamics, the agent may wish to change its behavior based on which state it
sees, so it ought to choose an abstraction that does not limit decision making in that respect.

F.2 “Strongly Markov” Implies KI

In Section 5, we mentioned that the Density Ratio training objective was stronger than necessary
to ensure the corresponding condition of Theorem 1. Instead of encoding the condition Pr(x′|z)

Pr(x′) =
Pr(z′|z)
Pr(z′) , we discussed how the contrastive training procedure actually encodes the stronger condition
Pr(x′|x)
Pr(x′) = Pr(z′|z)

Pr(z′) that holds for each ground state x individually, rather than just in expectation.

23

Let us call the latter condition the Strong Density Ratio condition, and call its combination with the
Inverse Model condition the Strong Markov conditions.

Clearly the Strong Markov conditions imply the original Markov conditions, and, as the following
theorem shows, they also imply the KI conditions.

Theorem 3. If φ : X → Z is an abstraction of MDP M = (X,A,R, T, γ) such that for any policy
π in the policy class Πφ, both the Inverse Model condition of Theorem 1 and the Strong Density

Ratio condition—i.e. Pπt (x′|x)
Pπt (x′) =

Pπφ,t(z
′|z)

Pπφ,t(z
′) , for all z, z′ ∈ Z; x, x′ ∈ X such that φ(x) = z and

φ(x′) = z′—hold for every timestep t, then φ is a kinematic inseparability abstraction .

Proof:

Starting from the Inverse Model condition, we have Iπt (a|x′, x) = Iπφ,t(a|z′, z) for all z, z′ ∈ Z;
x, x′ ∈ X such that φ(x) = z and φ(x′) = z′. Independently varying either x′ ∈ φ−1(z′) or
x ∈ φ−1(z), we obtain the following:

[Vary x′]→ Iπt (a|x′1, x) = Iπt (a|x′2, x) (15)

[Vary x]→ Iπt (a|x′, x1) = Iπt (a|x′, x2) (16)

Similarly, if we start from the Strong Density Ratio condition, we obtain:

[Vary x′]→ Pπt (x′1|x)

Pπt (x′1)
=
Pπt (x′2|x)

Pπt (x′2)
(17)

[Vary x]→ Pπt (x′|x1)

Pπt (x′)
=
Pπt (x′|x2)

Pπt (x′)
(18)

If we apply Bayes’ theorem to (17), we can cancel terms in the result, and also in (18), to obtain:

Pπt (x|x′1) = Pπt (x|x′2) (19)

and Pπt (x′|x1) = Pπt (x′|x2). (20)

Combining (15) with (19), we obtain the backwards KI condition:

Iπt (a|x′1, x)Pπt (x|x′1) = Iπt (a|x′2, x)Pπt (x|x′2)

Pπt (x, a|x′1) = Pπt (x, a|x′2) (Backwards KI)

Similarly, we can combine (16) with (20) to obtain the forwards KI condition:

Iπt (a|x′, x1)Pπt (x′|x1) = Iπt (a|x′, x2)Pπt (x′|x2)

T (x′|a, x1)π(a|x1) = T (x′|a, x2)π(a|x2)

T (x′|a, x1) = T (x′|a, x2) (Forwards KI)

Thus, we see that the training objectives in Section 5 encourage learning a kinematic inseparability
abstraction in addition to a Markov abstraction. This helps avoid representation collapse by ensuring
that we do not group together any states for which a meaningful kinematic distinction can be made.

24

G Implementation Details for Visual Gridworld

The visual gridworld is a 6× 6 grid with four discrete actions: up, down, left, and right. Observed
states are generated by converting the agent’s (x, y) position to a one-hot image representation (see
Figure 1, left). The image displays each position in the 6× 6 grid as a 3px-by-3px patch, inside of
which we light up one pixel (in the center) and then smooth it using a truncated Gaussian kernel.
This results in an 18× 18 image (where 3px-by-3px grid cells are equidistant), to which we then add
per-pixel noise from another truncated Gaussian. During pretraining, there are no rewards or terminal
states. During training, for each random seed, a single state is designated to be the goal state, and the
agent receives −1 reward per timestep until it reaches the goal state, at which point a new episode
begins, with the agent in a random non-goal location.

G.1 Computing Resources

To build the figures in the paper, we pretrained 5 different abstractions, and trained 7 different agents,
each with 300 seeds. Each 3000-step pretraining run takes about 1 minute, and each training run takes
about 30 seconds, on a 2016 MacBook Pro 2GHz i5 with no GPU, for a total of about 42 compute
hours. We ran these jobs on a computing cluster with comparable processors or better.

G.2 Network Architectures

FeatureNet(
(phi): Encoder(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
(inv_model): InverseNet(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=4, bias=True)

)
(contr_model): ContrastiveNet(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=1, bias=True)
(3): Sigmoid()

)
)
QNet(
(0): Linear(in_features=2, out_features=32, bias=True)
(1): ReLU()
(2): Linear(in_features=32, out_features=4, bias=True)

)
AutoEncoder / PixelPredictor(
(phi): Encoder(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
(phi_inverse): Decoder(
(0): Linear(in_features=2, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=252, bias=True)
(3): Tanh()
(4): Reshape(-1, 21, 12)

)
MSELoss()

)

25

G.3 Hyperparameters

We tuned the DQN hyperparameters until it learned effectively with expert features (i.e. ground-truth
(x, y) position), then we left the DQN hyperparameters fixed while tuning pretraining hyperparameters.
For pretraining, we considered 3000 and 30,000 gradient updates (see Appendix J), and batch sizes
within {512, 1024, 2048}. We found that the higher batch size was helpful for stabilizing the offline
representations. We also did some informal experiments with latent dimensionality above 2, such as
3 or 10, which produced similar results: representations were still Markov, but harder to interpret.
We use 2 dimensions in the paper for ease of visualization. We did not tune the loss coefficients, but
we include ablations where either α or β is set to zero.

Hyperparameter Value

Number of seeds 300
Optimizer Adam
Learning rate 0.003
Batch size 2048
Gradient updates 3000
Latent dimensions 2
Number of conditional samples, nc 1
Number of marginal samples, nm 1
Loss coefficients
LInverse (α) 1.0
LContrastive (β) 1.0
LSmoothness (η) 0.0
Table 2: Pretraining hyperparameters

Hyperparameter Value

Number of seeds 300
Number of episodes 100
Maximum steps per episode 1000
Optimizer Adam
Learning rate 0.003
Batch size 16
Discount factor, γ 0.9
Starting exploration probability, ε0 1.0
Final exploration probability, ε 0.05
Epsilon decay period 2500
Replay buffer size 10000
Initialization steps 500
Target network copy period 50

Table 3: DQN hyperparameters

26

H Implementation Details for DeepMind Control

We use the same RAD network architecture and code implementation as Laskin et al. (2020a), which
we customized to add our Markov objective. We note that there was a discrepancy between the batch
size in their code implementation (128) and what was reported in the original paper (512); we chose
the former for our experiments.

The SAC (expert) results used the code implementation from Yarats & Kostrikov (2020).

The DBC, DeepMDP, CPC, and SAC-AE results are from Zhang et al. (2021), except for Ball_in_Cup,
which they did not include in their experimental evaluation. We ran their DBC code independently
(with the same settings they used) to produce our Ball_in_Cup results.

H.1 Computing Resources

To build the graph in Section 7, we trained 4 agents on 6 domains, with 10 seeds each. Each training
run (to 500,000 steps) takes between 24 and 36 hours (depending on the action repeat for that domain),
on a machine with two Intel Xeon Gold 5122 vCPUs and shared access to one Nvidia 1080Ti GPU,
for a total of approximately 7200 compute hours. We ran these jobs on a computing cluster with
comparable hardware or better.

H.2 Markov Network Architecture

MarkovHead(
InverseModel(
(body): Sequential(
(0): Linear(in_features=100, out_features=1024, bias=True)
(1): ReLU()
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): ReLU()

)
(mean_linear): Linear(in_features=1024, out_features=action_dim , bias

=True)
(log_std_linear): Linear(in_features=1024, out_features=action_dim ,

bias=True)
)
ContrastiveModel(
(model): Sequential(
(0): Linear(in_features=100, out_features=1024, bias=True)
(1): ReLU()
(2): Linear(in_features=1024, out_features=1, bias=True)

)
)
BCEWithLogitsLoss()

)

H.3 Hyperparameters

When tuning our algorithm, we left all RAD hyperparameters fixed except init_steps, which we
increased to equal 10 episodes across all domains to provide adequate coverage for pretraining.
We compensated for this change by adding (init_steps - 1K) catchup learning steps to ensure both
methods had the same number of RL updates. This means our method is at a slight disadvantage,
since RAD can begin learning from reward information after just 1K steps, but our method must
wait until after the first 10 episodes of uniform random exploration. Otherwise, we only considered
changes to the Markov hyperparameters (see Table 5). We set the Markov learning rate equal to the
RAD learning rate for each domain (and additionally considered 5e-5 for cheetah only). We tuned
the LInv loss coefficient within {0.1, 1.0, 10.0, 30.0}, and the LSmooth loss coefficient within {0,
10.0, 30.0}. The other hyperparameters, including the network architecture, we did not change from
their initial values.

27

Hyperparameter Value

Augmentation
Walker Crop
Others Translate

Observation rendering (100, 100)
Crop size (84, 84)
Translate size (108, 108)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2; finger,

walker
8; cartpole
4; others

Hidden units (MLP) 1024
Evaluation episodes 10
Optimizer Adam

(β1, β2)→ (φ, π,Q) (.9, .999)
(β1, β2)→ (α) (.5, .999)
Learning rate (φ, π,Q) 2e-4, cheetah

1e-3, others
Learning rate (α) 1e-4

Batch size 128
Q function EMA τ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA τ 0.05
Latent dimension 50
Discount γ .99
Initial temperature 0.1

Table 4: RAD hyperparameters

Hyperparameter Value

Pretraining steps 100K
Pretraining batch size 512
RAD init steps (20K / action_repeat)
RAD catchup steps (init_steps - 1K)
Other RAD parameters unchanged
Loss coefficients
LInv 30.0 ball,

reacher
1.0 others

LRatio 1.0
LSmooth 30.0 ball,

reacher,
cheetah

10.0 others
Smoothness d0 0.01
Conditional samples, nc 128
Marginal samples, nm 128
Optimizer Adam

(β1, β2)→ (Markov) (.9, .999)
Learning rate 2e-4 cheetah

1e-3 others
Table 5: Markov hyperparameters

28

I Additional Representation Visualizations

Here we visualize abstraction learning progress for the 6× 6 visual gridworld domain for six random
seeds. Each figure below displays selected frames (progressing from left to right) of a different
abstraction learning method (top to bottom): LMarkov; LInv only; LRatio only; autoencoder; pixel
prediction. The networks are initialized identically for each random seed. Color denotes ground-truth
(x, y) position, which is not shown to the agent. These visualizations span 30,000 training steps
(columns, left to right: after 1, 100, 200, 700, 3K, 10K, and 30K steps, respectively). In particular, the
third column from the right shows the representations after 3000 steps, which we use for the results
in the main text. We show additional learning curves for the final representations in Appendix J.

Seed 1 Seed 2

Seed 3 Seed 4

Seed 5 Seed 6

Figure 7

29

J Gridworld Results for Increased Pretraining Time

Since some of the representations in Appendix I appeared not to have converged after just 3000
training steps, we investigated whether the subsequent learning performance would improve with
more pretraining. We found that increasing the number of pretraining steps from 3000 to 30,000
improves the learning performance of φRatio and φAutoenc and φPixelPred (see Figure 8), with the
latter representation now matching the performance of φMarkov .

It is perhaps unsurprising that the pixel prediction model eventually recovers the performance of the
Markov abstraction, because the pixel prediction task is a valid way to ensure Markov abstract states.
However, as we discuss in Sec. 3.2, the pixel prediction objective is misaligned with the basic goal of
state abstraction, since it must effectively throw away no information. It is clear from Figures 7 and 8
that our method is able to reliably learn a Markov representation about ten times faster than pixel
prediction, which reflects the fact that the latter is a fundamentally more challenging objective.

Figure 8: Mean episode reward for the visual gridworld navigation task, using representations that were pretrained
for 3,000 steps (left) versus 30,000 steps (right). Increased pretraining time improves the performance of φRatio,
φAutoenc and φPixelPred. (300 seeds; 5-point moving average; shaded regions denote 95% confidence intervals.)

30

K DeepMind Control Experiment with RBF-DQN

Recently, Asadi et al. (2021) showed how to use radial basis functions for value-function based
RL in problems with continuous action spaces. When trained with ground-truth state information,
RBF-DQN achieved state-of-the-art performance on several continuous control tasks; however, to
our knowledge, the algorithm has not yet been used for image-based domains.

We trained RBF-DQN from stacked image inputs on “Finger, Spin,” one of the tasks from Section
7, customizing the authors’ PyTorch implementation to add our Markov training objective. We do
not use any data augmentation or smoothness loss, and we skip the pretraining phase entirely; we
simply add the Markov objective as an auxiliary task during RL. Here we again observe that adding
the Markov objective improves learning performance over the visual baseline and approaches the
performance of using ground-truth state information (see Figure 9).

Figure 9: Mean episode reward for RBF-DQN on “Finger, Spin” with Markov, visual, and expert features.
Adding the Markov objective dramatically improves performance over the visual baseline. (Markov – 5 seeds;
Visual – 6 seeds; Expert – 3 seeds; shaded regions denote 95% confidence intervals).

31

L Investigating the Value of Smoothness in Markov Abstractions

Given a Markov abstraction φ, we can always generate another abstraction φ′ by adding a procedural
reshuffling of the φ representation’s bits. Since the φ′ representation contains all the information that
was in the original representation, φ′ is also a Markov abstraction. However, the new representation
may be highly inefficient for learning.

To demonstrate this, we ran an experiment where we optionally relabeled the positions in the 6× 6
gridworld domain, and trained two agents: one using the smooth, true (x, y) positions, and one using
the non-smooth, relabeled positions. Although both representations are Markov, and contain exactly
the same information, we observe that the agent trained on the non-smooth positions performed
significantly worse (see Figure 10).

The loss term LSmooth used in Section 7 penalizes consecutive states that are more than d0 away
from each other, thereby encouraging representations to have a high degree of smoothness in addition
to being Markov. This approach is similar to the temporal coherence loss proposed by Jonschkowski
& Brock (2015).

Figure 10: Mean episode reward for the 6 × 6 gridworld navigation task, comparing original (x, y) position
with rearranged (x, y) position. (300 seeds; 5-point moving average; shaded regions denote 95% confidence
intervals).

32

M DeepMind Control Ablation Study

We ran an ablation study to evaluate which aspects of our training objective were most beneficial for
the DeepMind Control domains. We considered the RAD implementation and its Markov variant
from Section 7, as well as modifications to the Markov objective that removed either the pretraining
phase or the smoothness loss, LSmooth (see Figure 11).

Overall, the ablations perform slightly worse than the original Markov objective. Both ablations still
have better performance than RAD on three of six domains, but are tied or slightly worse on the
others. Interestingly, removing pretraining actually results in a slight improvement over Markov on
Finger. Removing smoothness tends to degrade performance, although, for Cheetah, it leads to the
fastest initial learning phase of any method.

We suspect the results on Cheetah are worse than the RAD baseline because the experiences used to
learn the representations do not cover enough of the state space. Learning then slows down as the
agent starts to see more states from outside of those used to train its current representation. As we
point out in Section 3.6, it can be helpful to incorporate a more sophisticated exploration strategy to
overcome these sorts of state coverage issues. Our approach is agnostic to the choice of exploration
algorithm, and we see this as an important direction for future work.

Figure 11: Ablation results for DeepMind Control Suite. Each plot shows mean episode reward vs. environment
steps. (Markov and RAD – 10 seeds; others – 6 seeds; 5-point moving average; shaded regions denote 90%
confidence intervals).

33

