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Abstract
In the last few years, synthetic voices have be-001
come incredibly realistic and more difficult to002
discriminate from authentic, human voices. Al-003
though impressive, these advances raise con-004
cerns about safety and security, increasing the005
need for models that can discriminate between006
human and synthetic voices under realistic007
conditions. While previous work has created008
datasets and models that provide convincing009
results for high quality recordings, it is unclear010
how well they generalize to different conditions.011
In this paper, we present a novel dataset for test-012
ing the performance of anti-spoofing models013
in noisy conditions associated with the cellu-014
lar telephone network. We demonstrate that a015
model trained on this dataset can achieve high016
accuracy on this novel telephony data without017
any degradation in accuracy on non-telephonic018
audio.019

1 Introduction020

In the last few years, the ability to create synthetic021

voices that imitate an individual’s voice has rapidly022

increased in quality to the point that many of these023

synthetic voices are extremely difficult to discrimi-024

nate from the human voice that they are imitating.025

The inability to discriminate synthetic voices026

from human voices is of great concern for many027

reasons. For example, the imitation of voices can028

be used to deceive people or ruin people’s reputa-029

tion, more dangerously, it can be used to steal one’s030

identity, or access bank accounts by impersonating031

the real user’s voice. In this paper, we present our032

work on detecting such voice spoofs. Our specific033

contributions are as follows:034

• We create a telephony dataset that captures di-035

verse channel conditions associated with cel-036

lular networks. We will provide this dataset037

and the corresponding code to the research038

community.1039

1Available at: https://github/[anonymous]

• We train a model that exhibits high accuracy 040

in discriminating real human voices from syn- 041

thetic voices, even when encountering out-of- 042

distribution synthetic samples created by the 043

best in breed commercial synthetic voice gen- 044

eration tools. 045

2 Related Work 046

In the last few years, deep learning methods have 047

advanced rapidly. This rapid advancement has en- 048

abled text-to-speech models to achieve incredible 049

results. Among these models, data-driven tech- 050

niques have resulted in text-to-speech models that 051

are extremely realistic, to the point of being diffi- 052

cult to tell apart from a human voice. Data-driven 053

models, as their name suggests, learn the structure 054

of the waveforms from data. For example, Wavenet 055

(Van Den Oord et al., 2016) uses a generative model 056

that produces speech by estimating the probabil- 057

ity of the raw waveform (conditioned on all the 058

previous waveforms). This approach has achieved 059

state-of-the-art performance. 060

Along with these advances in text-to-speech soft- 061

ware there has been an increased interest in devel- 062

oping models that can detect synthetic voices (i.e., 063

anti-spoofing models, or spoof-detection models). 064

This increased interest has resulted in attempts to 065

create datasets to train and test anti-spoofing mod- 066

els (e.g., Müller et al., 2024; Kawa et al., 2022) 067

along with models to detect spoofed voices (e.g., 068

Kinnunen et al., 2012; Wu and Li, 2013, and see 069

Li et al., 2024 for review). For example, the Multi- 070

Language Audio Anti-Spoof Dataset (MLAAD) is 071

a diverse dataset that contains data from 59 differ- 072

ent text-to-speech models in 23 languages. How- 073

ever, a crucial limitation is that these recordings are 074

all clean, relatively noise-free recordings. In order 075

to be useful in a real world setting, such as confirm- 076

ing one’s identity over the phone, a model must be 077

able to achieve high performance on noisier data 078
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across diverse channel conditions.079

There has been some previous work examin-080

ing the performance of anti-spoofing models in081

telephonic conditions. For example, Kinnunen082

et al. (2012) examined the vulnerability of speaker083

verification systems against spoofing attacks (or084

voice conversion attacks). They examined the per-085

formance of models from simple Gaussian mix-086

ture models (GMMs) to a joint factor analysis087

(JFA) recognizer. Their results suggested that these088

systems are vulnerable to spoofing attacks, espe-089

cially in telephonic speech. However, since the090

paper’s publication there have been breakthroughs091

in both speaker-recognition models as well as text-092

to-speech models. Thus, there is renewed inter-093

est in reexamining the vulnerability of speaker-094

recognition models, especially for telephony data.095

3 Dataset and Methodology096

Our training and validation dataset contains097

data from 5 datasets: M-AILABS (Dataset,098

2024), Multi-Language Audio Anti-Spoof Dataset099

(MLAAD Müller et al., 2024), cellularized100

MLAAD (explained below), Clipwise, and101

ASVspoof2019. Our test dataset comprises the102

5 before mentioned datasets along with three addi-103

tional datasets: ASVspoof2019 eval (Wang et al.,104

2020), the Call Home dataset (Canavan et al.,105

1997), and cellularized Elevenlabs – a version of106

the Libri Speech dataset (Panayotov et al., 2015)107

which we then converted to synthetic speech using108

ElevenLabs. The cellularized Elevenlabs dataset109

was further processed in a manner described below110

which we refer to as cellularization. We describe111

each of these datasets in depth below, and a break-112

down is included in Table 1.113

The motivation for the training set was to pro-114

vide the model with as much information as possi-115

ble with respect to variety of synthesizers as well116

as a variety of channel conditions. The test set is117

designed to test a model’s performance on out-of-118

domain distribution of synthesized data as well as119

out-of-domain distribution of telephony data sam-120

ples captured over a cellular telephone network.121

• M-AILABS: M-AILABS is a speech dataset122

that contains audio book recordings in sev-123

eral different languages. The recordings were124

produced in clean, relatively noise-free envi-125

ronments.126

• Multi-Language Audio Anti-Spoof Dataset127

(MLAAD): MLAAD (Müller et al., 2024) is a128

speech dataset based on M-AILABS and con- 129

tains 59 different text-to-speech models in 26 130

different architectures. The corpus contains a 131

total of 175.0 hours of synthetic voice in 23 132

different languages. 133

• Cellularized MLAAD: In order to create a 134

noisier dataset, we sent the MLAAD corpus 135

through a pipeline in order to generate tele- 136

phonic versions of this data. We describe 137

the data generation process below. This pro- 138

cess is the same for both the cellularized 139

MLAAD dataset and the cellularized Eleven- 140

labs dataset. 141

• Cellularized Elevenlabs: Similar to the cel- 142

lularized MLAAD, however, in order to en- 143

sure that the test set was as different from 144

the training set as possible, we used the Lib- 145

riSpeech dataset (Panayotov et al., 2015). Lib- 146

riSpeech, similar to M-AILABS, is a speech 147

corpus comprised of audio book recordings. 148

We took these recordings and created synthe- 149

sized versions using ElevenLabs’ state-of-the- 150

art text-to-speech program. We then used the 151

below cellularization process 152

• Clipwise: Data comprising calls between in- 153

dividuals and a financial institution. The 154

calls are two channel (caller-agent interac- 155

tion), however only the caller channel was 156

used. The duration of the calls range in length 157

from a few seconds to tens of minutes. 158

• ASVspoof2019: We use the training and eval 159

sets from the logical access subset of their 160

dataset of the ASVspoof 2019 dataset (Wang 161

et al., 2020). The dataset consists of bonafide 162

and spoofed utterances. 163

• Call Home Dataset: The call home dataset 164

(Canavan et al., 1997) consists of 120 un- 165

scripted 30-minute telephone conversations. 166

These took place in North America between 167

native American English speakers. 168

3.1 Cellularization Process 169

In digital cellular communications, channel char- 170

acteristics play an important role in spoof detec- 171

tion. As the data packets are transported over the 172

radio channel, they encounter a wide variety of 173

channel conditions, including radio resource con- 174

tention, signal attenuation, and mobile handoffs 175

(Paksoy et al., 1999). Besides the inherent channel 176
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Dataset Audio samples Training Validation Test
MLAAD Synthetic 36000 4500 4500
M-AILABS Human 24000 3000 3000
Cellularized MLAAD Synthetic 16000 2000 2000
Clipwise Human 40000 5000 5000
ASVspoof2019 Training Mix 16000 2000 2000
ASVspoof2019 Eval Mix – – 54540
Cellularized Elevenlabs Synthetic – – 3040
Call Home Human – – 11549

Table 1: Dataset description.

noise, there is ambient noise when a user makes a177

phone call from a noisy environment (train station,178

city street, etc.). Our interest is in creating — and179

evaluating — a dataset that captures both the in-180

herent and ambient noises associated with cellular181

telecommunications.182

To simulate ambient noise, we randomly sam-183

pled a file from the MLAAD dataset (and the Lib-184

riSpeech dataset) overlaying it with a randomly185

sampled noise file from the MUSAN noise corpus186

(Snyder et al., 2015). To approximate real-world187

noise conditions, we randomized the introduction188

of the noise across the playout duration time, and189

we varied the noise volume randomly.2 The end re-190

sult of this was a dataset that consisted of audio files191

with ambient noise of varying intensities present192

in different playout positions. To simulate the in-193

herent cellular communications channel character-194

istics, we used three phones from different manu-195

facturers across two service providers (AT&T and196

Verizon). Location diversity was also introduced197

by using the phones in a crowded city apartment,198

a suburban home, and a suburban apartment. The199

dataset created using the technique described in the200

above paragraph was subsequently played through201

one of the three cellular phones and transmitted202

through the service provider’s network to create a203

cellularized MLAAD and Elevenlabs dataset.204

The play through process consisted of playing205

each file that had ambient noise introduced to it on206

a laptop speaker and positioning a cellular phone207

such that the audio was captured by the cellular208

mic and transmitted on the cellular network. The209

cellular phone was connected to a telephony server210

that accepted the incoming call and stored the re-211

ceived audio on disk. (Companies like Twilio, Von-212

2After normalizing the volume of the audio file and the
volume of the noise, a number was randomly sampled from
N (25, 7.5). This number was then subtracted from the nor-
malized volume of the noise.

age, RingCentral, and FreeClimb provide such plat- 213

forms, APIs and phone numbers.) This process is 214

depicted in Figure 1. 215

4 Model 216

In the present study, we extended the TitaNet 217

speaker recognition model (Koluguri et al., 2022). 218

TitaNet is an encoder-decoder speaker recognition 219

model based on the ContextNet ASR architecture. 220

In order to test our dataset, we used the Nvidia 221

NeMo version 1.0 pre-trained TitaNet speaker 222

recognition model (22.1M parameters, Koluguri 223

et al., 2022) with a cross-entropy loss function in- 224

stead of an additive angular margin loss function3. 225

The motivation behind using a speaker recognition 226

model was because we hypothesized that a speaker 227

recognition model may have learned characteristics 228

of the speech that might facilitate performance in 229

our anti-spoofing task. 230

To train the model, we swapped the softmax 231

output layer with a binary output layer on our pre- 232

trained model. We then froze all the other layers 233

and finetuned the model in order to adapt the new 234

output layer to the current model weights. Fine- 235

tuning the model with an output layer with random- 236

ized weights could lead to catastrophic forgetting 237

of the prior layers. This was followed by fine- 238

tuning the entire model (without any layers frozen) 239

to minimize the cross-entropy loss function. 240

5 Results and Discussion 241

Table 2 shows the confusion matrix on our full test 242

set of 85,629 utterances, while Table 3 shows the 243

results on the entire test set. Our overall accuracy 244

3We originally used an additive angular margin loss func-
tion, however we found that for our task our model did not
seem to learn well with this loss function, perhaps because
our model has no need to optimize the cosine distance be-
tween speaker embeddings, which is the main advantage of
the additive angular margin loss function.
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Figure 1: A visualization of our cellularization process, a process by which we created noisy, telephony samples
from the clean relatively noise-free MLAAD recordings.

is 0.926 with an Equal Error Rate (EER) of 0.070.245

(A low EER is preferred as the model minimizes246

the chances of false positives and false negatives.)247

With respect to the positive class being recognized248

as a synthetic voices, the model exhibits high pre-249

cision and recall.250

However, it is important to stratify the results,251

as performance in- and out-of-domain will vary.252

Specifically, the model performs exceptionally well253

on datasets which have the same synthesizers or the254

same shared linguistic content. For the subset of the255

test data comprising MLAAD, M-AILABS, Cel-256

lularized MLAAD, Clipwise and ASVspoof2019257

Training, the model achieves 99.9% accuracy.258

Table 4 shows the accuracy for the out-of-259

distribution datasets. Perhaps most surprisingly,260

the model was able to achieve a perfect accu-261

racy in discriminating the synthetic samples from262

Elevenlabs4, which were transported over a cellular263

telephony network. The accuracy on the human-264

generated Call Home dataset, while acceptable, is265

lower than the cellularized Elevenlabs. One rea-266

son for this may well be that Elevenlabs’ synthetic267

engine is genetically similar to one of the open-268

source synthetic engines whose samples appear in269

our training set. We plan to investigate this as fu-270

ture work.271

A comment should be made about the deter-272

mination of whether a dataset is in- vs out-of-273

distribution. The ASVspoof2019 dataset shares no274

synthesizers between the their Training and Eval275

sets, however they do share the corpus used to de-276

velop the utterances. It is also likely that the real277

audios in that set have significant similarities be-278

tween the Training and Eval sets. The Cellularized279

Elevenlabs likely shares audio characteristics with280

the Cellularized MLAAD, but has distinct text and281

synthesizer.282

4Elevenlabs is widely considered as the state-of-art syn-
thetic voice generation platform available commercially.

Actual
Predicted Synthetic Human
Synthetic 53981 1565
Human 4783 25300

Table 2: Confusion matrix of our model results

Statistic
Precision 0.919
Recall 0.972
Accuracy 0.926
EER 0.070

Table 3: Model statistics.

Dataset Accuracy
ASVspoof2019 Eval 0.910
Cellularized Elevenlabs 1.000
Call Home 0.885

Table 4: Results stratified by in-domain/out-of-domain
datasets.

6 Conclusion 283

In the present study, we expanded upon the cur- 284

rent body of literature by presenting a dataset that 285

contains a training set with a variety of different 286

synthetic audio and realistic human audio record- 287

ings in a clean, relatively noise-free environment, 288

as well as a telephony environment. Additionally, 289

we present results for a model on a test set that 290

contains both a novel, unseen synthesizer as well 291

as novel, realistic telephony speech. Further, we 292

present an open-access process for producing tele- 293

phony recordings from pre-recorded audio. Finally, 294

we demonstrate that a model trained on this data 295

can perform well on novel samples from synthe- 296

sizers it has been trained on, novel samples from 297

a synthesizer that it was not trained on, and novel 298

telephony data. 299
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7 Limitations300

First, our test set includes a limited number of novel301

synthesizers. It is possible that other novel synthe-302

sizers may yield different results.303

Similarly, performance on novel synthesizers304

may depend heavily on the synthesizer’s architec-305

ture. That is, our model may perform better on306

novel synthesizers whose architecture is similar307

to synthesizers that the model encountered in its308

training data than synthesizers with a completely309

different architecture.310

Finally, while our test set includes a novel synthe-311

sizer as well as novel telephony data, it is possible312

that a model trained on our dataset may struggle313

with other telephony data that exhibits larger vari-314

ance in the channel properties. Creating a compre-315

hensive telephony specific dataset representative316

of the real world with a larger diversity of mobile317

device manufacturers, service providers, location,318

ambient noises, and diverse speakers remains a319

challenge.320
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