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ABSTRACT

Large pretrained models, coupled with fine-tuning, are slowly becoming estab-
lished as the dominant architecture in machine learning. Even though these mod-
els offer impressive performance, their practical application is often limited by
the prohibitive amount of resources required for every inference. Early-exiting
dynamic neural networks (EDNN) circumvent this issue by allowing a model to
make some of its predictions from intermediate layers (i.e., early-exit). Training
an EDNN architecture is challenging as it consists of two intertwined compo-
nents: the gating mechanism (GM) that controls early-exiting decisions and the
intermediate inference modules (IMs) that perform inference from intermediate
representations. As a result, most existing approaches rely on thresholding con-
fidence metrics for the gating mechanism and strive to improve the underlying
backbone network and the inference modules. Although successful, this approach
has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during
training, leading to a train-test mismatch; and 2) the thresholding gating mecha-
nism introduces a positive bias into the predictive probabilities, making it difficult
to readily extract uncertainty information. This leads to significant performance
improvements on classification datasets and enables better uncertainty characteri-
zation capabilities.

1 INTRODUCTION

The dominant approach to improve machine learning models is to develop larger networks that
can handle every potential sample. As a result, despite very impressive performance, the resource
overhead is huge (Scao et al., 2023). The push for larger model size is often driven by the need
to handle a small percentage of samples that are particularly challenging to infer (Bolukbasi et al.,
2017); most inferences do not need the full power of a large network to be successfully executed.
Nonetheless, most traditional neural network (NN) models have a fixed processing pipeline. This
means that every sample, simple or complex, is processed the same way.

To tackle this inefficiency, dynamic networks have been introduced (see (Han et al., 2022a) for a
review). These models adapt the computational processing to the specific sample being processed.
Early-exit dynamic networks (EEDNs) tailor their depth to the sample, allowing easy-to-infer sam-
ples to exit at shallower layers. Compared to conventional neural networks, EEDNs incorporate two
additional components: 1) Intermediate Inference Modules (IMs) receive a sample’s representation
at their respective network depth and generate predictions; 2) Gating Mechanisms (GMs) decide
which intermediate inference module should be employed to derive the final prediction.

Most EEDNs employ a simple threshold-based gating mechanism. A threshold GM applies thresh-
olds to confidence metrics obtained from inference modules. To integrate more sophisticated GMs,
the gating mechanism can be treated as a post-training add-on component. Given a resource budget
and a set of pre-trained IMs, the optimal gating decisions are learned by taking into account both
performance and inference cost. Unfortunately in both strategies, the IMs and GMs are decoupled
during training; the IMs are trained on the full dataset even though they will only infer a subset of the
data at inference time. This inevitably creates a mismatch between the train and test distributions.
∗Equal contribution
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The reliance on threshold GMs also makes it more difficult to obtain confidence levels for predic-
tions. The information required for this determination has already been “consumed” in the gating
decision; moreover, applying a threshold introduces an overconfidence bias. In a setting where a
model can produce different outputs using varying levels of computational resources, confidence
measures are essential. They enable end-users to make informed decisions, whether to accept a
cost-efficient output or to request additional computation for a more reliable answer. Currently,
state-of-the-art EEDNs do not offer confidence information.

Contributions: We propose a novel learning procedure for the GMs and IMs given a fixed backbone
network. Our approach involves joint training so it directly avoids train-test mismatch and provides
good uncertainty characterization. The method introduces a new approach for modeling the proba-
bility of exiting at a particular inference module. We optimize a loss that jointly assesses accuracy
and inference cost, and formulate the minimization as a bi-level optimization task. Each level of the
bi-level optimization is simpler than the overall problem, leading to more stable learning. We show
empirically that the approach leads to a better overall inference/performance trade-off. The benefits
are threefold: 1) we close the training gap between IMs and GMs, which leads to better perfor-
mance; 2) the architecture produces reliable uncertainty characterization in the form of conformal
intervals and well-calibrated predicted probabilities; and 3) our approach significantly outperforms
other architecture-agnostic early-exit training procedures, while its generality facilitates integration
into most state-of-the-art architectures, including those tailored for dynamic-exit.1.

2 RELATED WORK

We briefly summarize the most relevant literature. Appendix 9.10 contains further discussion.
EEDN-tailored Architectures with threshold GMs: Much of the EEDN literature focuses on
designing architectures that better lend themselves to early-exiting (EEDN-tailored architectures).
BranchyNet (Teerapittayanon et al., 2016) augments the backbone network with early-exit branches
and is trained using a weighted loss. Shallow-deep networks (SDNs) quantify the network confusion
by comparing the outputs of different IMs (Kaya et al., 2019). Efficient end-to-end training is dif-
ficult because earlier branches influence the performance of later ones. Subsequent EEDN-tailored
architectures, such as MSDNet (Huang et al., 2018) and RANet (Yang et al., 2020), alleviate this
via dense connections or increased resolution. Training can be improved by reducing conflictual
gradient updates using position-based rescaling (Li et al., 2019) or meta-learning (Sun et al., 2022).
Reintegrating computations from earlier layers can boost performance via ensembling (Wolczyk
et al., 2021; Liu et al., 2022; Passalis et al., 2020). All of these works rely on confidence score
thresholds to decide whether to early-exit. The geometric ensembling of Wolczyk et al. (2021),
where learnable weights adjust the contribution of each IM to the final classification decision, has
connections to our exit probability modeling. Many recent advances in the EEDN field also rely on
simple threshold GMs (Wang et al., 2020; Han et al., 2023b; Wang et al., 2021; Chen et al., 2023b).
In general, the thresholds are treated as hyperparameters and assigned values using a validation set.
Learnable GMs, fixed IMs: A second class of EEDNs considers the task of learning GMs for
frozen pre-trained backbones and IMs. Bolukbasi et al. (2017) train the gates sequentially using a
top-down approach. In EPNet (Dai et al., 2020) the gate-training is formulated as a Markov de-
cision process. PTEENet (Lahiany & Aperstein, 2022) employs a much simpler gate architecture.
Karpikova et al. (2023) design learnable gates with a focus on confidence metrics for images. All
of these models learn gating functions after having trained and frozen all of the IMs. While this
two-phase procedure simplifies training, it ignores the coupling that is inherent to these two tasks.
Addressing the train-test mismatch: Ignoring the influence of the GMs on the IMs by training
learnable gates after freezing the IMs introduces a train-test mismatch (Yu et al., 2023; Han et al.,
2022b). BoostNet (Yu et al., 2023) proposes an architecture-agnostic training procedure inspired
by gradient boosting to close the train-test mismatch. Deeper IMs are trained with an emphasis
on samples that are incorrectly classified by earlier IMs. Han et al. (2022b) cast the problem as
a meta-learning task where a weight prediction network (WPN) predicts the gate that will lead to
the lowest classification loss and weighs the inference module losses accordingly. Although both
methods are good steps towards aligning the training of the IMs with the gating mechanism, they
do not fully close the train-test gap in practice. Both methods still employ threshold GMs, and the
proposed specialized training of the IMs is not directly tied to which gate is ultimately selected by

1Code to reproduce our experiments is available at our Github repository
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the threshold GMs. Scardapane et al. (2020) propose differentiable branching, an approach where
gates and IMs are jointly learned. A straightforward modeling of the gate exit probabilities and joint
optimization of all parameters results in unstable training that is slow to converge.

3 PROBLEM SETTING

We consider a classification problem with a training dataset D = {xi, yi}Ni=1 where xi ∈ RD denotes
the input and yi ∈ K its corresponding classification target (K = {1, . . . ,K}). We are given a fixed
network NN ∶ RD → K pretrained on the same task that can be decomposed into a composition of
L layers: NN(x) = σ ○hL ○hL−1 ○ ⋅ ⋅ ⋅ ○h1(x), where σ denotes the softmax operator. Let zl be the
l-th intermediate representation of NN such that zl = h(zl−1) with z0 = x.

Our goal is to augment this fixed network (the backbone) with additional trainable components
such that we can obtain a final prediction ŷi with its associated predicted probability vector p̂i at a
reduced inference cost. This setting is categorized as intermediate classifiers-only training (IC-
only training) in the review by Laskaridis et al. (2021).

To measure the performance of our model, we consider three types of metrics: (i) performance-
based (the accuracy of ŷ); (ii) uncertainty-based (the calibration error and the inefficiency score of
the conformal intervals obtained from p̂i); and (iii) efficiency-based (the inference cost to obtain ŷ).

Inference cost: In line with BoostedNet (Yu et al., 2023) and L2W-DEN (Han et al., 2022b) the
inference cost ICŷi for a single prediction ŷi represents the number of multiply-add (Mul-Add)
operations to obtain ŷi. We approximate the expected inference cost E[IC] as:

E[IC] ≈ IC = 1

N

N

∑
i=1

ICŷi . (1)

Uncertainty metrics: We assess calibration of the model via the expected calibration error (ECE)
of the probability of the predicted class (the maximum probability of p̂i : p̂max

i = max(p̂i)). To es-
timate the ECE, we follow the approach in (Guo et al., 2017). More details concerning computation
of the inference cost and ECE are provided in Appendix 9.2.

To obtain conformal intervals, we use the typical conformal score si ≜ 1 − p̂i and compute a con-
formal threshold τV,α from a validation set V so that we can guarantee a coverage of 1 − α. (See
Appendix 9.3 for details). A conformal interval Ĉi for a sample xi is then constructed by threshold-
ing the conformal score si : Ci = {k; s(k)i < τV,α}, where s(k) denotes the k-th element of s.

We measure the performance of our predicted conformal intervals Ĉi with two metrics: empirical
coverage 1 − α̂, which computes the empirical probability that the ground truth is contained in the
interval, and inefficiency ¯∣C∣, which is the average cardinality of the set intervals:

¯∣C∣ ≜ 1

N

N

∑
i=1
∣Ĉi∣ , 1 − α̂ ≜ 1

N

N

∑
i=1

1[yi ∈ Ĉi] . (2)

A well-behaved conformal prediction model has small inefficiency ¯∣C∣ (intervals are small on aver-
age) while maintaining an empirical coverage close to the desired one: 1 − α ≈ 1 − α̂.

4 METHODOLOGY: JEI-DNN

We introduce our method named: Jointly-Learned Exit and Inference for a Dynamic Neural Network
(JEI-DNN). Our model consists of augmenting a pretrained and fixed network by attaching L clas-
sifiers and L gates to the intermediate layers of the network architecture. We refer to each of these
classifiers as an inference module (IM). The lth IM, f l

θl
(⋅), uses the lth representation zli of the input

xi to model class probabilities p̂l
θ(xi) = f l

θ(zli) and to obtain a prediction ŷli = argmaxk p̂
l,(k)
θ (xi).

We set the last IM to be the original classifier of the pretrained network: fL = hL. The output of the
lth gate, el ∈ {0,1}, is modelled by a random variable El∣X that specifies whether the l-th exit gate
is open. If a sample reaches the l-th gate and it is open, then it exits via the lth IM. Figure 1 depicts
the JEI-DNN learning procedure and highlights the bi-level optimization used for joint training.
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Figure 1: Left: Modelling of GM and how early exiting is achieved. Right Illustration of the mutual
influence of GM and IM.

The assumption is that some samples are “easy enough” to be classified by the early classifiers
f l
θ(zl). Since the last classifier should be able to classify the entire dataset, the last gate is always

set to one, i.e., eL = 1. Denoting the indicator function by I[⋅], the output of our model ŷ is:

ŷ(x) = ŷl(x) where l = argmin
l∈[L]

I[el(x) = 1], el(x) ∼ p(El∣X = x). (3)

We can view each IM f l
θ as solving a subtask over a subset of data Dl ⊂ D, where the partitioning

is determined by the gates, and Dj ∩Dk = ∅ for j ≠ k and ∪l∈[L]Dl = D . Since the El are random,
we can also define the distribution P (G) of exiting at a gate G ∈ [L]. This equals the probability
that the sample does not exit at any previous gate multiplied by the probability that it exits at gate l:

P (G = l∣X = x) = P (El∣X = x)
l−1
∏
j=1
(1 − P (Ej ∣X = x)). (4)

The first l network layers and the first l IMs and gates must be evaluated in order to exit at the
lth layer. Assuming fixed-size input samples, the inference cost ICŷl

i
associated with obtaining a

prediction from the lth IM can be approximated as a constant ICl that only depends on l. For all
predictions ŷli obtained at level l we then have ICŷl

i
= ICl. Appendix 9.2 provides more detail about

how ICl is computed. During training we use a normalized version ICl
norm = ICl

ICL that represents the
relative cost incurred by exiting at l compared to going through the full network (i.e., all L layers).

We can then formulate our loss as the expectation over the exited gates G∣X and the data distribution
X,Y of the traditional cross entropy loss LCE(Y, p̂G∣X

θ (X)) added to the associated inference cost
ICG∣X scaled by a parameter λ that controls the importance of the inference cost:

L = EY,XEG∣X[LCE(Y, p̂G∣X
θ (X)) + λICG∣X

norm ], (5)

L ≈ 1

N

N

∑
i=1
(

L

∑
l=1
(LCE(yi, p̂l

θ(xi)) + λICl
norm)P (G = l∣xi)) . (6)

Our goal is to simultaneously learn the parameters θ of the IMs and choose P (G = l∣xi) in order
to minimize the expected loss as shown in Figure 1. We target P (G = l∣xi) rather than P (Ej ∣xi)
for j = 1, . . . , l because directly learning the P (Ej) leads to optimization issues. The product of
probabilities across multiple layers can quickly vanish or saturate to 1.

Modeling P (G∣xi). In practice, we only need to evaluate P (G = l∣xi) if the dynamic evaluation
has reached that point, i.e., everything up to f l

θ(zli) has been evaluated and is accessible. There-
fore, our parameterization of P (G = l∣xi) can include any intermediate values calculated by the
base architecture, the inference modules, and the gates up to and including layer l. We denote this
aggregation of information as c≤li .

This however also implies that we cannot directly model the multiclass distribution P (G∣xi) with
the traditional softmax approach since it would require f l

θ(zli) to be evaluated for all l. This would
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defeat the purpose of early-exiting. Instead, we model each P (G = l∣xi) sequentially, starting from
the first layer l = 1, with a learnable variable glϕ(c≤li ) ∈ [0,1]. We set P (G = l∣xi) to the minimum
of the learnable variable glϕ(c≤li ) ∈ [0,1] and 1 −∑l−1

j=1 g
j
ϕ(c

≤j
i ). Since the model must exit at the

final gate if it has not already done so, we have gL(c≤Li ) = 1. Thus:

Pϕ(G = 1∣xi) = g1ϕ(c≤1i ), (7)

Pϕ(G = l∣xi) =min(glϕ(c≤li ),1 −
l−1
∑
j=1

gjϕ(c
≤j
i )) for l = 2, . . . , L . (8)

The min operator in Eq. (8) ensures that the {Pϕ(G = l∣xi); l = 1, . . . , L} form a valid probability
distribution. The loss is then a proper approximation of the expectation in Eq. (5). It also guarantees
that P (El∣X = x), which is calculated using (4) and governs the decision to exit, lies in [0,1].
This formulation leads to a much more stable model for the gate probabilities compared to a param-
eterization through P (El∣x). A deviation in one of the glϕs has an additive rather than multiplicative
impact on subsequent Pϕ(G = l∣xi)s. The left diagram in Figure 1 depicts the modeling of P (G∣xi).
Our approximated loss from equation 6 is then:

L ≈ 1

N

N

∑
i=1

L

∑
l=1
(LCE(yi, p̂l

θ(xi)) + λICl
norm)min (glϕ(c≤li ),1 −

l−1
∑
j=1

gjϕ(c
≤j
i )). (9)

Any parameterization of the IMs f l
θ and gates function glϕ(c

≤j
i ) can be adopted. However, the

modules must be small compared to the size of one layer of the backbone model to prevent them
from substantially increasing the computational cost of the entire layer during inference. In our
experiments, f l

θ and glϕ(c
≤j
i ) are parameterized as simple one-layer neural networks and uncertainty

metrics are extracted from c≤ji to serve as input to glϕ(⋅). A detailed description of our modules is
included in Section 4. Appendix 9.2 includes the inference cost of the gates and IMs to demonstrate
that the added computation is minimal when compared to the inference cost of a single layer. (The
total added computation amounts to less than 0.01% of the Mul-Adds of the backbone.)

Uncertainty prediction : Next we describe how we use the predicted probabilities p̂l
θ(xi) to form

conformal intervals. The conformal intervals are derived from a conformal threshold τV,α that is
computed using a validation set V . However, since we can view the IMs as solving different subtasks
over different subsets of the data Dl, we should compute a different conformal threshold for each
subtask. Hence, we form one validation set per gate, V l, where V l = {i; l ∼ Pϕ(G∣xi) , i ∈ V},
and compute a conformal threshold from that subset: τV

l,α. If there are too few samples in the
validation set associated with gate l, we set τV

l,α to a general threshold τV,α computed using the
entire validation set. The conformal intervals are then constructed as follows:

Ci = {k; 1 − p̂l,(k)
θ (xi) < τV

l,α , l ∼ P (G∣xi)} (10)

There are many other ways to construct the sets to compute the threshold in the EDNN setting. In
Appendix 9.3, we show that a variety of methods produce similar results.

We present candidate designs for the gates and IMs for concreteness, but note that other choices are
possible within the JEI-DNN framework.

Gate design glϕ(c≤li ): To ensure a lightweight design, we construct a small number of fea-
tures by computing uncertainty statistics from the output p̂l of the l-th IM, f l

θ(xi). Hence
the l-th gate can be represented as glϕ(c≤li ) = glϕ(m(θ,xi)). We choose m(θ,xi) =
[p̂l,max

i (xi), hl(xi), hl
pow(xi),marl(xi)]T where p̂l,max

i (xi) is maximum predicted probability,
hl(xi) is the entropy, hl

pow(xi) is the entropy scaled by a temperature, and marl(xi) is the differ-
ence between the two most confident predictions. For more detail see Appendix 9.9.

IM design f l
θ(z≤li ): The IMs f l

θ(z≤li ) all have the same architecture. We reduce cost by limiting
their input size and number of layers. The input to f l

θ is only zli and the IM is a single layer NN.
The lightweight design allows us to insert exit branches at every layer. This gives our model greater
exit flexibility, in contrast with many existing approaches (Chiang et al., 2021; Lahiany & Aperstein,
2022; Li et al., 2023; Ilhan et al., 2023), which typically use only a few exit branches.
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4.1 OPTIMIZATION

Directly optimizing the loss in equation 9 is challenging because of the min operator:

ϕ∗, θ∗ = argmin
ϕ,θ

1

N

N

∑
i=1

L

∑
l=1
(LCE(yi, p̂l

θ(xi)) + λICl
norm)min (glϕ(c≤li ),1 −

l−1
∑
j=1

gjϕ(c
≤j
i ). (11)

However, there is a distinction between the parameters θ and ϕ which makes this loss a good can-
didate for a bi-level optimization formulation. (See (Chen et al., 2023a) for a survey.) Hence, using
Cl

θ(ϕ) = LCE(yi, p̂l
θ(xi)) + λICl

norm, we can rewrite equation 11 as follows:

ϕ∗ = argmin
ϕ
Lout ≜ argmin

ϕ

1

N

N

∑
i=1

L

∑
l=1

Cl
θ∗(ϕ)Pϕ(G = l∣xi), (12)

s.t. θ∗(ϕ) = argmin
θ
Lin ≜ argmin

θ

1

N

N

∑
i=1

L

∑
l=1
(LCE(yi, p̂l

θ(xi) + λICl
norm)Pϕ(G = l∣xi). (13)

Since the gate probabilities Pϕ(G = l∣xi) take as input the aggregation of any intermediate values
that were previously calculated c≤li , it could be dependent on the θ. To make that dependence explicit
in the calculation of the gradient of θ, we denote Pϕ(G = l∣xi) = Gϕ(m(θ,xi)). The derivative of
the loss with respect to the two different set of parameters is given by:

∂Lin

∂θ
= 1

N

N

∑
i=1

L

∑
l=1

∂LCE(yi, p̂l
θ(xi))

∂θ
Pϕ(G = l∣xi) +

∂Gϕ(m(θ,xi))
∂θ

Cl
θ(ϕ) , (14)

∂Lout

∂ϕ
= 1

N

N

∑
i=1

L

∑
l=1

∂Pϕ(G = l∣xi)
∂ϕ

Cl
θ∗(ϕ) =

1

N

N

∑
i=1

L

∑
l=1

∂min (glϕ(c≤li ),1 −∑l−1
j=1 g

j
ϕ(c

≤j
i )

∂ϕ
Cl

θ∗(ϕ) . (15)

Eq. (15) is undefined when the min operator terms are equal. We address this issue below when
describing how to optimize the gates.
Optimizing the IMs: By inspecting equation 14, we can recognize that the left term is the same
gradient that is encountered for a straightforward weighted cross-entropy loss. Interestingly, our
principled approach leads to an objective with a term that is similar to the one proposed by Han
et al. (2022b) to address the train-test mismatch issue. In our case, the weights emerge directly
from our proposed gating mechanism: Pϕ(G = l∣xi). The right term is driven by the impact of the
θ parameter on the gates:∂Gϕ(m(θ,xi))

∂θ
. In practice, we observe that ignoring the right term of the

gradient does not impact performance and leads to faster convergence, as we show in Appendix 9.7.

Optimizing the gates The second derivative in equation 15 is more challenging, making direct
optimization undesirable. Instead, we construct surrogate binary classification tasks to train the glϕ.
For a given sample xi we construct binary targets for g1ϕ(c≤1i ), ..., gL−1ϕ (c≤L−1i ) by evaluating the
relative cost of each gate Cl

θ∗(ϕ) and determining which of the L gates has the lowest cost, denoted
as l∗ = argminlC

l
θ∗(ϕ). This is the gate at which xi should exit. Hence, we set the binary target of

gate l∗ to 1, and the binary targets for all of the preceding gates to zero. As for the subsequent gates,
since the sample is supposed to exit at l∗, we assume that it should also exit at any later gate, so
we set the binary targets of all subsequent gates to 1 as well. Hence, the targets of our binary tasks
t1i , ..., t

L
i for our gates g1ϕ(c≤1i ), ..., gL−1ϕ (c≤L−1i ) are given by tji = 0 for j < l∗ and tji = 1 for j ≥ l∗.

The connection between those surrogate tasks and the initial objective from equation 12 can be estab-
lished by showing that they can share the same solution under some assumptions. We demonstrated
this is Appendix 9.4. Hence, instead of following the gradient from equation 15, we approximate it
by the gradient of the surrogate loss:

∂Lout

∂ϕ
≈ 1

N

N

∑
i=1

L

∑
l=1

∂LCE(tli, glϕ(c≤li ))
∂ϕ

. (16)

This amounts to summing the gradients of the losses of L independent binary classification tasks. If
the tasks are highly imbalanced, we compute the class imbalanced ratio on a validation set at each
epoch and use weighted class training. Following the bi-level optimization procedure, training is
carried out by alternating between optimizing using the gradients in equation 16 and equation 14. In
practice, we start by training all IMs on the full dataset in a warmup stage as described in Section 5.
Algorithm 1 in Appendix 9.5 provides a detailed exposition of the entire algorithm.
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5 EXPERIMENTS

We use the vision transformers T2T-ViT-7 and T2T-ViT-14 (Yuan et al., 2021) pretrained on the
ImageNet dataset (Deng et al., 2009) which we then transfer-learn to the datasets: CIFAR10, CI-
FAR100, CIFAR100-LT (Krizhevsky, 2009) and SVHN (Netzer et al., 2011). For dataset details,
see Appendix 9.1.1. For transfer-learning, we use the procedure from (Yuan et al., 2021). We pro-
vide checkpoints for all these models in our code. Our backbone NN for each dataset is the frozen
transfer-learned model. We augment the backbone with gates and intermediate IMs at every layer.
We generate results by varying the inference cost parameter λ over the range 0.01 to 10. Rather
than sample El ∼ p(El∣x) to decide whether to exit, we use the deterministic decision P (El) > 0.5.
Appendix 9.1.1 contains further details concerning hyperparameters and experimental procedure.
Training procedure: Our training procedure consists of two phases: (i) warm-up; and (ii) bi-level
optimization. In the warm-up phase the first L−1 IMs are trained in parallel on all samples for a
fixed number of warm-up epochs. This ensures that intermediate IMs are performing reasonably
well when we start training the gates. During the bi-level optimization, we alternate between opti-
mizing the gate parameters ϕ and the IM parameters θ. See Appendix 9.1.4 for more detail.
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Figure 2: Accuracy vs Mul-Add of: Left CIFAR100 (t2t-14); Middle SVHN (t2t-7); and Right
CIFAR100LT (t2t-14). The x-axes are scaled by the full model inference cost, Mul-Add (ICL).
Baselines: We compare our proposal with the following baselines:

• BoostedNet (Yu et al., 2023) and L2W-DEN (Han et al., 2022b) are state-of-the-art benchmarks
with architecture-agnostic training procedures for general-purpose networks.

• MSDNet (Huang et al., 2018) and RANet (Yang et al., 2020) are EEDN-tailored architectures. We
also compare with the improved training procedures in (Yu et al., 2023) and (Han et al., 2022b).

To obtain the uncertainty metrics, we calibrate the predicted p̂ by first applying the post-calibration
algorithm of temperature scaling from (Guo et al., 2017) on the output logits using a validation set.
Since all baselines also require a validation set to select gating thresholds, we split the validation set
into two V = V1∪V2; V1 is used to compute the gating thresholds and V2 is used for hyperparameter
tuning, early stopping, setting the conformal threshold, and calibrating the output.

5.1 RESULTS

Observation 1: Joint Training of the GMs and the IMs closes the train-test mismatch which leads
to significant performance improvement.

Figure 2 depicts performance versus inference cost curves. Appendix 9.8 presents results on ad-
ditional datasets and architectures. Focusing on the region exceeding 80% of the end accuracy of
the total network, our suggested approach significantly outperforms the baselines for all datasets.
Outside of that range, it is on par or better. Moreover, the 95% confidence intervals around the
mean of the accuracy of our proposed approach (shaded areas) are significantly tighter. The CIs of
all methods are wider for CIFAR100-LT. The imbalance leads to noisier prediction, which makes
it particularly challenging for the baselines. To provide further insight into why our model outper-
forms the baselines, we analyze the results in the subsequent sections. Appendix 9.6 provides an
ablation study which demonstrates the value of learnable gates and joint training.
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Figure 3: Decomposition of the contributions of the IMs to the final accuracies (depicted by dotted
lines) for CIFAR100. The operational point is marked by a star in the left panel of Figure 2. a)
Accuracy of each IM, f l

θ, evaluated only on their exited samples (Dl). b) Accuracy of each IM, f l
θ,

on the full dataset D. The size of a circle is proportional to the number of samples exited for a trial.
Observation 2: Training the GMs leads to a better gate selection.

Because our GMs are jointly trained with the IMs and take into account the cost of inference, the
GMs can avoid poorly performing gates or gates that provide only marginal performance improve-
ment. Figure 3 shows which gates are selected for exit by our proposed method (JEI-DNN) and the
baselines. We see that JEI-DNN avoids using early IMs altogether and focuses on IMs 5 to 10. The
joint training approach thus effectively addresses the EEDN placement task. Rather than employing
fewer more capable, complex GMs and IMs selecting where to place them, as in (Li et al., 2023),
our approach introduces very simple, lightweight GMs and IMs, and learns to focus on the IMs that
can perform satisfactorily for a given inference budget. In contrast, the threshold GMs employed
by the baselines lead to more evenly distributed exits. Since the threshold GMs make decisions by
thresholding confidence metrics derived from predicted probabilities, it is more difficult to avoid
exiting at early poorly performing IMs (these IMs are overly-confident for some samples).
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Figure 4: ECE of the IMs averaged over
all baselines on all datasets with t2t-7.

Moreover, the thresholding approach relies on the as-
sumption that IMs are well calibrated, which is not guar-
anteed (Guo et al., 2017; Minderer et al., 2021). Exper-
imentally, we verify that it is not the case and that cal-
ibration is positively correlated with IM depth (see Fig-
ure 4). Consequently, calibration is also correlated with
accuracy, which is in line with the findings of Minderer
et al. (2021)). A poor calibration leads to inaccurate pre-
dicted probabilities, which introduces noise in the inputs
to the threshold GM. As a result, the exit selection is also
more variable, leading to a less predictable accuracy-IC
trade-off (as exhibited by the much wider CIs in Figure 2).
Observation 3: Better gate selection concentrates training on better IMs.

Figure 3(b) highlights that the improvement of our model does not come from IMs that are superior
over all of the training data. Baseline and JEI-DNN IMs perform similarly. The improvement in
IC-accuracy trade-off is explained by the trend of IM accuracies in conjunction with IM usage. JEI-
DNN exits very few samples at IMs 1-4 and 11-14. The early IMs are too inaccurate. The accuracy
gain achieved by postponing exit to late IMs (11-14) is not justified by the increased inference cost.
The GMs must be able to accurately direct easier samples to earlier IMs. JEI-DNN clearly achieves
this. For IMs 6-8, where most samples exit, the accuracy is higher over exiting samples (Fig. 3(a))
than all samples (Fig. 3(b)). By contrast, for gates 9-10, where only a few challenging samples exit,
the exit accuracy is lower. For JEI-DNN, the most challenging samples exit at gates 9-11; for the
baselines, they exit at gate 13. Despite having access to less informative features, JEI-DNN achieves
a better average accuracy for these challenging samples at considerably lower inference cost.
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Figure 5: Uncertainty metrics on CIFAR-100 (t2t-14). a) ECE vs Mul-Add. b) Inefficiency vs
Mul-Add for an empirical coverage bounded by 1 − α̂ ≥ 95% on CIFAR-100 (t2t-14). c) Average
empirical α̂ vs requested α. Appendix 9.8 presents results on other datasets and architectures.

Observation 4: Learnable GMs leads to better uncertainty characterization capability

Fig. 5(a) highlights that even with post-calibration, the baselines’ predicted probabilities remain ex-
tremely poorly calibrated. JEI-DNN’s calibration is much better and the calibration error correlates
negatively with accuracy. This is desirable; a higher inference cost should lead to better accuracy
and better calibration. When the baselines provide more accuracy, the calibration error is much
worse. This disparity has two causes: (i) JEI-DNN refrains from using the early, worst-calibrated
gates (Fig. 4); (ii) the baselines must increase the GM thresholds to achieve higher accuracy, but this
leads to a bias — samples only exit if the predictions are very confident. We now consider conformal
intervals. These should circumvent the threshold GM bias as they are derived via a validation set
and have probabilistic guarantees. Fig. 5(b) shows that JEI-DNN offers significantly tighter confor-
mal intervals ∣C̄∣ for a given constraint on empirical coverage α̂. The empirical coverage values for
JEI-DNN are also closer to the requested coverages α (see Fig. 5(c)).

Observation 5: JEI-DNN can enhance SOTA dynamic architectures
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Figure 6: DynPerceiver+JEIDNN vs. DynPer-
ceiver on CIFAR100 (left) and ImageNet (right) (Mo-
bileNetV3).

We examine whether JEI-DNN can en-
hance a state-of-the-art EEDN-tailored
architecture. We select the Dynamic
Perceiver Han et al. (2023b) with
MobileNetV3 (Howard et al., 2019)
as the backbone. The combination
(DynPerc+JEI-DNN) includes learnable
gates. We train for 310 epochs. During
the last 10 epochs for DynPerc+JEI-DNN,
JEI-DNN is used to jointly train gates
and IMs. Fig. 6 shows that this leads to
significant accuracy improvements for
both CIFAR100 and ImageNet.

6 LIMITATIONS
Our proposal outperforms the baselines in terms of the accuracy-IC trade-off and uncertainty char-
acterization, but it has some drawbacks. Since we must specify the inference cost parameter λ, we
only obtain one accuracy/IC point per training. To obtain different values, we need to retrain the
model with a changed λ value. By contrast, the baseline methods that employ threshold GMs can
modify the inference time after deployment by changing the threshold. Second, we cannot directly
target a specific accuracy or inference cost. In practice, if there is a constraint on one of the met-
rics, we either must train multiple models, adjusting λ until the constraint is met, or use an ad-hoc
approach by applying different thresholds to the glϕ values. In summary, if the desired trade-off be-
tween inference cost and accuracy is likely to vary over time, and it is acceptable to sacrifice some
accuracy, then the approach taken by the baselines would be preferable.

7 CONCLUSION
We have introduced a novel early-exit dynamic neural network learning procedure, JEI-DNN, that is
compatible with off-the-shelf backbone architectures. By augmenting a backbone with lightweight,
trainable gates and inference modules that are jointly optimized, we close the train-test gap, leading
to better performance of inference modules. The approach can improve state-of-the-art EEDN-
tailored architectures and provides significantly better uncertainty characterization. The inference
modules are better calibrated and tighter conformal intervals are obtained for a desired coverage.
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9 APPENDIX

9.1 EXPERIMENT DETAILS

9.1.1 DATASETS

The CIFAR10 and CIFAR100 (Krizhevsky, 2009) datasets both consist of 60,000 32 × 32 coloured
images. CIFAR10 has 10 classes and CIFAR100 has 100 classes. We follow a 75%-8.3%-16.6%
train-validation-test split. The validation set is used for hyperparameter tuning and early-stopping.
ImageNet (Deng et al., 2009) consists of 1.2 million training images spanning 1,000 classes. We
reserved 50,000 of these images to be used as validation set and used another 50,000 images as a
test set. Following the data transform of Han et al. (2023b), the images are cropped to be of size
224×224. We also use the cropped-digit SVHN (Netzer et al., 2011) dataset which consists of 99,289
32×32 coloured images of house numbers where the target is the digit in the center. We use a 68.6%-
5%-26.2% train-validation-test split. The CIFAR100-LT (long-tail) dataset consists of the regular
CIFAR100 images but with imbalanced classes. We use an imbalance factor if = 100 = ∣cmost common∣

∣cleast common∣ .
We follow the pre-processing procedure from (Yuan et al., 2021). For all datasets, we use a training
batch size of 64. We present 95% confidence intervals on the means of our results. These are
generated using a bootstrap procedure over 10 trials derived by partitioning the test set into 10
subsets.

9.1.2 EXPERIMENT PARAMETERS

We use the Adam optimizer with a learning rate of 0.01 with a weight decay of 5e−4. We use a
batch size of 64 for CIFAR10, CIFAR100 and CIFAR100LT, and a batch size of 256 for SVHN. We
train until convergence using early stopping with a maximum of 15 epochs (E) for CIFAR10 and
SVHN, 20 for CIFAR100LT and 30 for CIFAR100LT. For the number of warmup epochs WE, we
perform a hyperparameter search over the range {1, . . . ,E/2}.
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9.1.3 TRAINING TIME AND MEMORY USAGE

We report the average training time on a GPUx machine and number of parameters used for both
architectures in Table 1. Overall, our approach takes a little longer to train and has a negligible
number of additional parameters. Once trained, the baselines do have the advantage that heuristic
adjustment of the gating threshold can achieve different IC/accuracy trade-offs.

Table 1: Memory usage and training time comparison. *We note that training time is to obtain a
single IC/accuracy trade-off model (one point in our curve).

JEI-DNN Boostnet L2W-DEN

T2T-7 (CIFAR10)
time* (min) 15 13 13
num. parameters 15.45K 15.42K 15.42K

T2T-14 (CIFAR100)
time* (min) 37 22 24
num. parameters 500.56K 500.50K 500.50K

9.1.4 WARM-UP LOSS

We now provide a more thorough exposition of the warm-up phase which precedes the bi-level
optimization phase. As mentioned, during warm-up we train all IMs in parallel on all samples. This
is done to ensure that IMs have an acceptable accuracy and can potentially be chosen as exit points
when we start training the gates. Earlier IMs have lower representational capacity and thus require
more training. To that end, we increase the learning rate of earlier IMs using a simple position-based
scaling. The warm-up loss for the lth IM can thus be written as:

Ll
warmup =

1

N

N

∑
i=1
(L − l)lr0LCE(yi, p̂l

θ∗(xi)), (17)

where lr0 is set to 0.01 as a hyperparameter.

9.2 INFERENCE COST AND EXPECTED CALIBRATION ERROR (ECE)

Inference cost: Following BoostNet (Yu et al., 2023) and L2W-DEN (Han et al., 2022b), we
measure the inference cost in terms of multiply-add operations (Mul-Add). We use Meta’s FAIR
fvcore library for computing Mul-Adds. We obtain results that match the Mul-Adds reported in
Yuan et al. (2021) for the T2T-ViT architecture. Since our training procedure directly relies on the
inference cost (see equation 6) we measure the number of Mul-Adds at each exit before training,
accounting for the layer of the backbone network, denoted hl, the IM f l

θl
and the gate glϕl

. This
value is treated as a function of l that is constant across all samples exiting at layer l. That is, we
ignore any possible decrease in Mul-Adds that might arise from sparsity in certain samples and thus
use a worst-case scenario value that depends only on the network architecture and the input size. We
can thus define the inference cost incurred for exiting at layer l:

ICl =
l

∑
k=1

Mul-Add(hk) +Mul-Add(fk
θk
) +Mul-Add(gkϕk

) (18)

Tables 2 and 3 show the number of Mul-Adds at each exit of the base T2T-ViT-7 architecture on
CIFAR10 and the base T2T-ViT-14 architecture on CIFAR100 respectively as well as the added
Mul-Adds incurred from augmenting the backbone network with exit branches (IMs and gates) at
every layer. We note that overall, this leads to an almost insignificant inference cost increase of less
than 0.003% for the former and 0.01% for the latter. As a result of our very lightweight gate design,
optimal branch placement is unnecessary.
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Table 2: Comparison of the number of Mul-Adds per layer between the base T2T-ViT-7 backbone
and JEI-DNN. The middle rows show the net increase due to augmenting with IMs and gates.

IC1 IC2 IC3 IC4 IC5 IC6 IC7

T2T ViT 7 414.3M 538.2M 662.1M 786M 909.9M 1034M 1158M
Cum. ↑ from IMs +2570 +5140 +7710 +10280 +12850 +15420 +15420
Cum. ↑ from GMs +96 +192 +288 +384 +480 +576 +576
JEI-DNN 414.3M 538.2M 662.1M 786M 909.9M 1034M 1158M (↑ 0.003% )

Table 3: Comparison of the number of Mul-Adds per layer between the base T2T-ViT-14 backbone
and JEI-DNN. The middle rows show the net increase due to augmenting with IMs and gates.

IC1 IC2 IC3 IC4 IC5 IC6 IC7

T2T ViT 14 626.2M 947.7M 1269M 1590M 1912M 2233M 2555M
Cum. ↑ from IMs +38.5K +77K +115.5K +154K +192.5K +231K +269.5K
Cum. ↑ from GMs +906 +1812 +2718 +3624 +4530 +5436 +6342
JEI-DNN 626.3M 947.7M 1269M 1591M 1912M 2233M 2555M

IC8 IC9 IC10 IC11 IC12 IC13 IC14

T2T ViT 14 2876M 3198M 3519M 3841M 4162M 4483M 4805M
Cum. ↑ from IMs +308K +346.5K +385K +423.5K +462K +500.5K +500.5K
Cum. ↑ from GMs +7248 +8154 +9060 +9.96K +10.87K +11.78K +11.78K
JEI-DNN 2876M 3198M 3519M 3841M 4162M 4483M 4805M (↑ 0.01% )

Expected Calibration Error (ECE): To estimate the ECE, we approximate the probability that
ŷ is correct given a predicted p̂max

i . We evaluate the accuracy over a set of samples ACC(Q) ≜
1
∣Q∣ ∑i∈Q 1[ŷi = yi] and compare it to the average predicted probability P̄ (Q) ≜ 1

∣Q∣ ∑i∈Q p̂max
i . The

predicted probability values are sorted (denoting ν(j) as the sorting index such that p̂max
ν(j) < p̂max

ν(j+1))
and split into B bins following (Guo et al., 2017) to approximate the ECE:

ECE ≈
B

∑
b=1

∣Qb∣
N
∣ACC(Qb) − P̄ (Qb)∣ where Qb = {ν(N(b − 1)/B), . . . , ν(Nb/B)} . (19)

9.3 CONFORMAL INTERVALS

In this section, we present other ways to obtain conformal intervals in the EEDN setting and show
that they are all approximately equivalent. One simple approach is to consider all samples as a single
group, ignoring where they exited. We can then use the entire validation set to select a single thresh-
old. An alternative is to derive a different threshold for each IM. To do this, we partition the valida-
tion set into multiple smaller validation sets, one associated with each exit IM: V = V1,∪, . . . ,∪VL.
Each vall contains only the samples that exit at the l-th IM. In determining conformal interval
threshold for the l-th IM, we then use only the samples in V l and the predicted probabilities for that
specific IM: p̂l

θ(xi). For each sample, we calculate a score si = 1 − p̂θ(xi). Given the set of scores
{si} and a coverage value 1−α, the conformal interval threshold value is determined by estimating
the 1 − α percentile of {si}.
We construct four methods by combining different choices:

• General : We ignore the gating and use the entire validation set to obtain a single τV,α value. We
use this common threshold to generate the conformal sets for every exit IM. The score value for a
given sample is derived from the predicted probabilities of its selected exit gate.

• IMs : We compute one threshold value per gate, but we use the entire validation set V . The scores
used to compute the threshold for the l-th IM are derived from p̂l

θ(xi). In this computation, we
do not take any account of where a sample exits.

• Strict gating : A strict version of what we used in our experiments. We compute one threshold
value per IM, using only the samples in the validation set associated with that IM. We derive the
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score function using p̂l
θ(xi). If no samples in the validation set are assigned to a specific IM, i.e;

∣V l∣ = 0, we set τV
l,α

l = 0.

• Gated: The version used to produce the experimental results in the paper. We use the strict gating
approach, but if ∣V l∣ < 20, we set τl = τV,α, where τV,α is derived using the General gating
approach above.
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Figure 7: Inefficiency vs Mul-Add on CIFAR10 (t2t-7) of the conformal intervals obtained from the
different methods. (Left) JEI-DNN, Middle Boostnet and Right L2W-DEN. The x-axis are scaled
by the inference cost of the full model Mul-Add (ICL).
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Figure 8: The conformal intervals obtained from all the different methods, for CIFAR10 t2t-vit-7.

Figure 7 shows that all methods are approximately equivalent for each baseline. Figure 8 shows
that JEI-DNN achieves the smallest inefficiency for CIFAR10 t2t-vit-7, irrespective of the method
chosen to construct confidence intervals. Similar results are obtained for the other datasets. To
ensure that the comparison is meaningful, we report the smallest average inefficiency with an em-
pirical coverage that exceeds the targeted coverage 1 − α. To do this, for a targeted α = 0.05, we
compute the conformal intervals from multiple thresholds, obtained by slowly decreasing the target
α: {τα=0.05, τα=0.045, . . .} until the empirical coverage is above our target: 1 − α̂ > 1 − α. We then
report the inefficiency at that empirical coverage.

9.4 SURROGATE LOSS

In this section, we provide the connection between the surrogate problem we introduced for training
the ϕs and the initial problem as defined in equation 12.
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Here, we don’t assume that the solutions are unique so we will denote the set of solutions by Φ. The
initial problem is then given by:

Φ∗ = argmin
ϕ

1

N

N

∑
i=1

L

∑
l=1

Cl
θ∗(ϕ)Pϕ(G = l∣xi). (20)

We replace it by the surrogate problem:

Φsur = argmin
ϕ

1

N

N

∑
i=1

L

∑
l=1
LCE(tli, glϕ(c≤li )). (21)

where tli = {
0 if j < l∗
1 if j ≥ l∗ (22)

l∗ = argmin
l

Cl
θ∗(ϕ). (23)

To motivate this surrogate problem, we show that if there exists a solution ϕ′ ∈ Φ∗ s.t. the associated
Pϕ′(G = l∣xi)s can be equal to each P ′i that minimizes:

P ′i = argmin
P

L

∑
l=1

Cl
θ∗(ϕ)P

l
i , ( with

L

∑
l=1

P l
i = 1, P l

i ≥ 0) ∀i ∈ [N], (24)

then we can prove that ϕ′ will also be an optimal solution for our surrogate problem (ϕ′ ∈ Φsur).

That is, ϕ′ also minimizes:

1

N

N

∑
i=1

L

∑
l=1
LCE(tli, glϕ(c≤li )). (25)

For a given sample i, in order to find the probability vector P ′i that minimizes ∑L
l=1C

l
θ∗(ϕ)P

l
i , we

need to allocate all the probability mass of P to the gate l∗ with the lowest cost. That is, the solution
to Eqn 24 is given by:

P ′li = {
1 if l = l∗ = argminj C

j
θ∗(ϕ)

0 o.w.
∀i ∈ [N] (26)

From our assumption, we assume that a solution ϕ′ satisfies Pϕ′(G = l∣xi) = P ′li . We then show that
such a ϕ′ would then also be a solution to our surrogate problem.

In our surrogate problem, the associated gates glϕ′ have to satisfy:

glϕ′ =
⎧⎪⎪⎨⎪⎪⎩

1 if l = argminj C
j
θ∗(ϕ) ,

0 if l < argminj C
j
θ∗(ϕ) .

. (27)

Proof:

• For the trivial case where l∗ = 1, if g1ϕ′ = 1, then Pϕ′(G = 1∣xi) = 1 by definition of g1ϕ′(c1)
and Pϕ′(G = l∣xi) =min(glϕ(c≤li ),0) = 0 for l > 1.

• Suppose l∗ > 1, then glϕ′ = 0 for all l < l∗. This results in Pϕ′(G = l∣xi) = min(0,1 −
∑l

j=1 0) = 0. Once we reach gl∗ϕ′ = 1, this results in Pϕ′(G = l∗∣xi) =min(1,1−∑l∗−1
j=1 0) =

1 and Pϕ′(G = l∣xi) =min(glϕ(c≤li ),1 − 1) = 0. This concludes the proof.

Hence, since the optimized gates glϕ′ are given by equation 27 which corresponds to the solution of
our surrogate tasks, we have shown that those ϕ′ would be shared as the solution of both problems.

9.5 ALGORITHM
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Algorithm 1 Training
1: Input: num. of gates L, cost importance λ parameter, num of epochs E, num of warm-up

epochs WE, bilevel switch count bi switch
2: STATE=WARMUP
3: for we in {1, . . . ,WE} do
4: for xi, yi in batch do
5: for l in {1, . . . , L} do
6: Ll

θl
(x) = CE(plθ(x), y) (optimize each IM)

7: Update the θl parameters
8: end for
9: end for

10: end for
11: STATE=GATE
12: for e in {WE, . . . ,E} do
13: for xi, yi in batch do
14: if STATE = CLASSIFIER then
15: Get probability of exiting at each gate l: Pϕ(G = l∣xi)
16: Optimize the weighted loss Lin

θ = ∑
L
l=1 Pϕ(G = l∣xi)LCE(yi, p̂l

θ,i)
17: else if STATE = GATE then
18: Compute the inference cost at each gate l: ICl

norm
19: Compute the accuracy cost at each gate l: LCE(yi, p̂l

θ∗,i)
20: Store the total cost of that gate: Cl

θ∗(ϕ) = (LCE(yi, p̂l
θ∗,i) + λICl

norm)
21: Compute the best gate l∗ = argminlC

l
θ∗(ϕ) )

22: Optimize Lout
ϕ = ∑L

l=1
∂LCE(tli,g

l
ϕ(c

≤l
i ))

∂ϕ
( equation 16)

23: end if
24: if batch idx = bi switch then
25: switch from STATE GATE to CLASSIFIER or from STATE CLASSIFIER to GATE
26: end if
27: end for
28: end for
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9.6 ABLATION STUDY

To verify that our joint training procedure is needed, we conduct an ablation study on the CIFAR10
dataset where we adapt our algorithm to the two decoupled settings:

1. Learnable GMs, fixed IMs: We use the same warm-up procedure, but avoid bi-level optimiza-
tion, i.e., after warm-up we only optimize the gates’ parameters, ϕ. We follow Algorithm 1
exactly, but never enter the CLASSIFIER state. We train for the same total number of epochs.

2. Threshold GMs: We also adapt our algorithm to the other setting of threshold GMs. We remove
the learnable gates from the architecture. We first train the IMs on all the data and then use the
threshold gating algorithm used by Yu et al. (2023) and Han et al. (2022b).

The importance of joint training is illustrated Figure 9. The Learnable GMs, fixed IMs approach
is less stable but slightly outperforms the Threshold GMs approach.
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Figure 9: Ablation study on CIFAR10 (t2t-7). Jointly training the GMs and IMs is crucial; both
decoupled approaches result in a performance decline.

9.7 OPTIMIZATION OF Lin

The complete gradient to optimize the inner gradient of our bi-level formulation is given in equa-
tion 14:

∂Lin

∂θ
= 1

N

N

∑
i=1

L

∑
l=1

∂LCE(yi, p̂l
θ(xi))

∂θ
Pϕ(G = l∣xi) +

∂Gϕ(m(θ,xi))
∂θ

Cl
θ(ϕ) (28)

In our methodology, we mention that in practice, we ignore the right term of the gradient, and
approximate the gradient using the term that corresponds to the gradient of a weighted cross entropy
loss:

∂Lin

∂θ
= 1

N

N

∑
i=1

L

∑
l=1

∂LCE(yi, p̂l
θ(xi))

∂θ
Pϕ(G = l∣xi) +

∂Gϕ(m(θ,xi))
∂θ

Cl
θ(ϕ) (29)

∂Lin

∂θ
≈ 1

N

N

∑
i=1

L

∑
l=1

∂LCE(yi, p̂l
θ(xi))

∂θ
Pϕ(G = l∣xi). (30)

We made that decision following our observation that both approaches yield comparable outcomes,
but opting for the complete gradient leads to a slower convergence. We denote the JEI-DNN version
using the full gradient equation 29 as JEI-DNN-FULL. Figure 10 shows the test accuracy of both
models during training; we can see that both reach the same test accuracy, but that JEI-DNN reaches
it considerably faster.
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Figure 10: Test accuracy during training of both our proposed JEI-DNN and JEI-DNN-FULL.

9.8 ADDITIONAL RESULTS

We include additional performance versus inference cost curves in Figure 11, additional calibration
versus inference cost curves in Figure 12 and inefficiency versus inference cost curves in Figure 13.
The same trends as presented in the main paper can be observed.
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Figure 11: Accuracy vs Mul-Add of (Left) CIFAR10 (t2t-7), Middle CIFAR10 (t2t-14) and Right
CIFAR100LT (t2t-7). The x-axes are scaled by the inference cost of the full model Mul-Add (ICL).

9.9 UNCERTAINTY STATISTICS

In this section we provide details concerning the uncertainty statistics that are used
as input to our gate functions gϕ. We represent the gate input as m(θ,xi) =
[p̂max

i (xi), h(xi), hpow(xi),mar(xi)]T where:

• p̂max
i (xi) =max(p̂i) is the maximum predicted probability;

• h(xi) = ∑k p̂
l,(k)
θ,i log p̂

l,(k)
θ,i is the entropy of the predictions;

• hpow(xi) = ∑k p̃
l,(k)
θ,i log p̃

l,(k)
θ,i where p̃

l,(k)
θ,i =

(p̂l,(k)
θ,i

)2

∑k′(p̂
l,(k′)
θ,i

)2
are scaled predictions (temp. = 0.5);

• mar(xi) = p∗i − p′i for k∗i = argmaxk p̂
l,(k)
θ,i , p∗i = p̂

l,(k∗i )
θ,i , and p′i = maxk′≠k∗i p̂

l,(k′)
θ,i . This is the

difference between the two most confident predictions.
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Figure 12: Calibration error vs Mul-Add of (Left) CIFAR10 (t2t-7), Middle CIFAR10 (t2t-14) and
Right CIFAR100LT (t2t-7). The x-axes are scaled by the inference cost of the full model Mul-Add
(ICL).
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Figure 13: Inefficiency vs Mul-Add of (Left) CIFAR10 (t2t-7), Middle CIFAR10 (t2t-14) and Right
CIFAR100LT (t2t-7). The x-axes are scaled by the inference cost of the full model Mul-Add (ICL).

9.10 RELATED WORK

In this appendix, we provide a more extensive and detailed discussion of related work, touching on
some topics that are more tangentially related.

Architectures with threshold GMs The majority of the literature on early-exit neural networks
has primarily focused on designing architectures that are amenable to efficient and effective early-
exit. Generally, in these approaches, the decision to exit at an earlier branch is taken by comparing
confidence scores extracted from the IMs to predetermined thresholds.

The idea is first introduced by BranchyNet (Teerapittayanon et al., 2016), which augments a network
with early-exit branches and trains the augmented model end-to-end, by summing a weighted loss
of all IMs. Training the whole network end-to-end can bring complications as earlier IMs nega-
tively impact the performance of later IMs. With this in mind, MSDNet (Huang et al., 2018) uses
dense connections to reduce the influence of early IMs on later layers. The performance of earlier
IMs is also improved by using representations of varying scales to train with coarser features. In
RANNet (Yang et al., 2020), spatial redundancy of the input is exploited, with higher resolutions
used only for the more difficult samples. In SDN (Kaya et al., 2019), off-the-shelf networks are
augmented with intermediate IMs. Two training schemes are explored: freezing the backbone while
training only the early exit branches or training the full network. The experimental results suggest
that training the full network works better since the frozen backbone is optimized for the last layer.
The interference of the early-exit branches on later layers is addressed via a weighted loss scheme
with weights that depend on the position of the exit. More recently, Han et al. (2023b) proposed the
Dynamic Perceiver, demonstrating that any CNN-based state-of-the-art vision backbone can be aug-
mented with a parallel computation path that is optimized for early classification. The introduction
of such a parallel branch can improve early-exiting while reducing the interference of early IMs on
the performance of later IMs.
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Table 4: Classification of EEDN problem settings and approaches. A tick mark indicates that a
method is capable of providing this feature. Fixed backbone: The method can be applied to off-the-
shelf backbones without re-training, i.e., it does not require a tailored EEDN backbone. Learnable
GMs: The gates can be trained. Most methods use threshold GMs. Train IMs: The IMs are trained.
Adaptive IM training: The training is adapted to different IMs, either by introducing weights or
training with different subsets of the training data. Joint Training: Gate and IM parameters are
jointly learned. * Indicates the baselines we include in our work.

Model Fixed backbone Learnable GMs Train IMs Adaptive IM Training Joint Training

BranchyNet (Teerapittayanon et al., 2016) "

* MSDNet (Huang et al., 2018) "

SDN (Kaya et al., 2019) " "

(Wang et al., 2020) "

(Wang et al., 2021) "

(Chen et al., 2023a) "

DynPerceiver Han et al. (2023b) "

ReX: (Qian et al., 2022) "

* IMTA (Li et al., 2019) "

Meta-GF (Sun et al., 2022) "

(Bolukbasi et al., 2017) " "

Predictive Exit (Li et al., 2023) " "

EPNet Dai et al. (2020) " "

PTEENet (Lahiany & Aperstein, 2022) " "

EENet (Ilhan et al., 2023) " "

Block-Dependent (Han et al., 2023a) " "

*BoostedNet(Yu et al., 2023) " " "

* L2W(Han et al., 2022b) " " "

* DiffBranch (Scardapane et al., 2020) " " " " "

JEI-DNN " " " " "

Another line of work has investigated ways of improving the training and performance of EE ar-
chitectures by tackling the issue of conflicting gradient updates on the shared backbone parameters.
These arise because the training procedure is attempting to simultaneously optimize multiple dif-
ferent exits. In IMTA (Li et al., 2019), the gradients computed when optimizing the intermediate
IMs are rescaled based on their position in the network to ensure they have a bounded scale, re-
ducing their variance. Additionally, knowledge distillation is employed to help earlier IMs learn
from deeper ones. Meta-GF Sun et al. (2022) also addresses conflicting gradient updates, but rather
than using position-based rescaling, the scaling factors are learnt via a meta-learning formulation.
The motivation is that in large over-parameterized models, certain parameters of the backbone are
more relevant to some exits than others. Therefore, Meta-GF takes into account each parameter’s
influence on the various exits before scaling the respective gradients.

Other research efforts have focused on customizing EEDNs to a specific type of backbone archi-
tecture. Wu et al. (2018) introduced an EEDN architecture customized for Residual networks,
while Chen et al. (2018) did the same for CNNs.

Fundamentally, all these studies rely on confidence score thresholds that are set as hyperparameters
to decide whether to early-exit. Most recent EEDN advances fall into this category of a EEDN-
tailored architecture paired with either threshold GMs (Wang et al., 2020; Han et al., 2023b; Wang
et al., 2021; Chen et al., 2023b) or other types of fixed gating mechanisms (Qian et al., 2022).

While most of these studies concentrate on image classification tasks, EEDNs have also seen ex-
pansion into other domains, including language models (Zhou et al., 2020; Schuster et al., 2022), as
well as video frame classification (Seon et al., 2023). Graves (2016) introduces an RNN architec-
ture where the model is trained to predict and to learn the number of computational steps required,
which can be framed as an end-to-end EEDN model.

EEDN research efforts have also explored how to fully leverage the additional computations per-
formed by the previous gates and inference modules (Jiang & Mu, 2021; Wolczyk et al., 2021). For
example, Wolczyk et al. (2021); Liu et al. (2022) and Passalis et al. (2020) all combine the outputs
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of the IMs using ensemble methods to enhance performance. Similarly, Qendro et al. (2021) also
employ ensembling of IMs but target the uncertainty characterization of the overall network rather
than inference cost. Of particular interest among the ensembling techniques is the geometric ensem-
bling procedure of Wolczyk et al. (2021). When combining the predictions of the IMs, the output
probability at IM l is raised to the power wl, where wl is a learnable parameter. This allows the
model to learn to place less emphasis on the predictions from the weaker IMs at lower layers during
the fusion process. In our proposal, we do not form ensembles, but we do learn the exit probabilities.
If we interpret each IM softmax output as a probability distribution across labels, then the overall la-
bel distribution for any given sample is a mixture of the individual IM label distributions, where the
mixture weights are the learned exit probabilities. Thus, although our learning procedure does not
perform ensembling for any specific classification decision, its probabilistic output can be viewed as
being drawn from an ensemble of classifiers.

Learnable GM; pre-trained and frozen backbone and IMs Differing from the dedicated archi-
tecture and threshold GMs methods described above, another class of EEDN treats the IMs and
backbone architecture as a fixed, frozen component, and focuses on training the GMs. In some
cases, the pretraining of the IMs is included in the methodology. In (Bolukbasi et al., 2017), the
learning is performed in two separate phases. First, the IMs are trained with the full training set and
then the IMs are frozen and the gates are trained. The gates are trained sequentially starting from the
deepest layer to the shallowest, allowing the gate training objective to be defined recursively. In EP-
Net (Dai et al., 2020) the task of training the gates after freezing the IMs is formulated as a Markov
decision process. The methodology involves designing a substantial, trainable neural network of
multiple layers for the gate mechanism. This was critized by following works as being wasteful, im-
posing an unacceptable inference overhead. PTEENet(Lahiany & Aperstein, 2022) parameterizes
the gates and directly learns the exit decisions using sigmoid neural networks. EENet (Ilhan et al.,
2023) adopts a different strategy by formulating the early-exit policy as a multi-objective optimiza-
tion problem. Karpikova et al. (2023) design learnable gates, and specifically focus on confidence
metrics tailored to images. Finally, there are tangential works such as (Li et al., 2023) that consider
the related problem of optimizing gate placement for energy efficiency.

All of these models learn gating functions after having trained and frozen the IMs at every branch.
While this two-phase procedure simplifies training, it ignores the coupling between gates and IMs
— the gating decisions change the distributions of samples presented to the IMs, implying that
parameters should be re-learned.

Addressing the train-test mismatch Two recent works have proposed architecture-agnostic train-
ing procedures to address the aforementioned train-test mismatch. In BoostNet (Yu et al., 2023), the
training procedure is inspired by gradient boosting. Prediction reweighting is employed so that
deeper IMs are trained with prediction reweighting to induce an emphasis on samples that are in-
correctly classified by the earlier IMs. Han et al. (2022b) cast the problem as a meta-learning task
where a weight prediction network (WPN) is trained jointly with the early-exit network to predict the
most likely exit of a sample. The predictions of the WPN are used to assign weights to the losses of
the different IMs. Consequently, easy samples should have a reduced influence on deeper IMs while
harder samples contribute more to their training. This architecture is related to ours but the training
procedures differ in multiple important ways. Most importantly, we do not rely directly on thresh-
olding uncertainty metrics for early exiting. We show that the uncertainty metrics are not a good
proxy for accuracy for earlier IMs due to miscalibration. In practice, the inclusion of the weight
prediction network does not close the train-test gap because it is trained using poorly calibrated la-
bels. By jointly training the IMs and the GMs via bi-level optimization, our approach provides more
reliable uncertainty characterization.

Scardapane et al. (2020) propose differentiable branching, an approach where gates and IMs are
jointly learned. The differentiable branching uses a straightforward modeling approach for the gate
exit probabilities and optimizes all parameters jointly; as a result, training is highly unstable.

Chen et al. (2020) propose a fully trainable architecture featuring a learnable policy component
that is responsible for determining the number of layers used for inference. Although Chen et al.
(2020) do not target inference efficiency, their framework shares similarities with ours. The gating
mechanism is modelled as a product of independent exiting events. However, the inference cost
is not incorporated in the training objective. The gate exit distribution is controlled by an entropy

23



Published as a conference paper at ICLR 2024

regularization regularization; as a result, the procedure in (Chen et al., 2020) cannot be used to
construct an effective EEDN.

This concludes our review of the most relevant EEDN contributions. We include a categorization
of the works in Table 4. As is evident from the table, our approach is the only one that (i) can be
applied to any layer-based off-the-shelf backbone network, without re-training the backbone; (ii)
has learnable GMs and IMs; and (iii) jointly trains both the GMs and the IMs.

Sparsely-gated mixture-of-experts (MoE) A closely related field to our problem setting is the
Mixture of Experts (MoE) framework (Shazeer et al., 2017; Fedus et al., 2022; Du et al., 2022). In
this framework, the network also employs a gating mechanism to make adaptive decisions based on
the input it receives. However, in the MoE setting, the gating decisions are made across layers to
incorporates multiple experts or weights (Shazeer et al., 2017; Du et al., 2022; Fedus et al., 2022).
The goal is not to tailor inference time based on the input complexity but rather to enable the use of
increasingly larger models by maintaining constant inference costs with sparse activation strategies.
In this field, it is also considered an important problem to bridge the gap between the gating decisions
and the inference modules (Gupta et al., 2022; Zhu et al., 2022). The interpretability potential of
such architectures is also highlighted in (Pavlitska et al., 2022).

Online learning In online learning with deep neural networks the aim is to jointly learn represen-
tations and a suitable architecture. However, given that the data is streamed serially during training,
the optimal depth of the network may change as more data is accumulated. To address this, Sahoo
et al. (2018) proposed to incorporate learnable GMs that produce a convex combination of IMs to
construct a prediction that is a weighted average of all IM outputs and the final layer output. The
GM training employs the hedge backpropagation algorithm proposed by Freund & Schapire (1997).
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9.11 JEI-DNN ON OTHER BACKBONE ARCHITECTURES

As previously mentioned, the JEI-DNN training procedure can be applied to many different types
of architecture. To demonstrate this, we use our procedure on the GRIT (Ma et al., 2023) backbone.
GRIT is a transformer-based model for graph data that achieves state-of-the-art performance on the
most common graph benchmark datasets proposed by Dwivedi et al. (2022). As before, we augment
the backbone with IMs and lightweight gates. Figure 14 shows that out procedure leads to a better
accuracy-cost combination than Boostnet when trained on Super-Resolution-MNIST graph dataset.
This demonstrates the flexibility of our training procedure, showing that it can achieve efficient
inference on a variety of deep architectures addressing different learning domains.
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Figure 14: Comparison of the JEI-DNN training scheme and Boostnet on the GRIT backbone on
the super-resolution graph MNIST dataset.

9.12 ADDITIONAL DATASET: IMAGENET
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Figure 15: Accuracy vs Mul-Add of ImageNet (t2t-14).

We provide the additional performance versus inference cost curves for the ImageNet dataset (Deng
et al., 2009)(see Appendix 9.1.1 for details) using the vision transformer T2T-ViT-14. Since this
model was trained on ImageNet, no transfer learning is needed. We follow the general procedure as
described in our paper; we augment the backbone with gates and intermediate IMs at every layer.
We generate results by varying the inference cost parameter λ over the range 0.01 to 10. Rather than
sample El ∼ p(El∣x) to decide whether to exit, we use the deterministic decision P (El) > 0.5.
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In Figure 15, we compare our method with the most competitive baseline (L2W-DEN) for T2T-ViT-
14. In the main paper, we also provide results for ImageNet but using the specialized early-exit
architecture Dynamic Perceiver as a backbone in Figure 6 (right).

We observe that by using the JEI-DNN training strategy we achieve an improved trade-off be-
tween accuracy and inference cost for T2T-ViT-14 compared to L2W-DEN, the best-performing
architecture-agnostic baseline training strategy. For the Dynamic Perceiver backbone, the incorpo-
ration of JEI-DNN training lead to a reduction of inference cost of approximately 1-2 percent for
operating points in the range from 50-65% of the inference cost of the original network. In this re-
gion, the preserved accuracy ranges from 85-95% of the accuracy of the full network. The Dynamic
Perceiver backbone has only four IMs, with three located relatively close to the final layer in the
architecture. This imposes some limits on the flexibility of the exit decisions and means that it is
more challenging for the JEI-DNN training to achieve an improvement for operating points where
the accuracy is close to the original accuracy.

The decrease in accuracy of JEI-DNN is steeper when the backbone is a general architecture such
as T2T-ViT-14 as opposed to an architecture tailored for early-exit (Dynamic Perceiver). JEI-DNN
with T2T-VIT-14 sees its performance decrease to around 75% of its full performance with 80%
of its total inference cost, whereas JEI-DNN with the DynPerceiver can maintain 92% of its full
performance with only 60% of its total cost.

9.13 ADDITIONAL BASELINE

We provide preliminary results for an additional baseline, DiffBranch (Scardapane et al., 2020),
in Figure 16, which we significantly outperform. The performance of (Scardapane et al., 2020) is
abnormally low, and those results persisted even after our best effort at hyperparameter tuning and
different possible implementations. Unfortunately, as the code is not provided and implementation
details were missing from the paper, we are unable to confirm that our implementation and therefore
our results are correct. For these results, to ensure a fair comparison, we employ the same warm-up
procedure as used by our method. Without it, the IMs of DiffBranch (Scardapane et al., 2020) were
not able to reach a reasonable accuracy. We also used the same parameterization of the IMs and
GMs as JEI-DNN to adapt the architecture to the t2t-vit-7.

0.2 0.4 0.6
Mul-Add (4.3×106)

40

60

80

Ac
cu

ra
cy JEI-DNN

DiffBranching

Figure 16: Accuracy vs Mul-Add of SVNH (t2t-7) of the DiffBranch baseline. The x-axes are scaled
by the inference cost of the full model Mul-Add (ICL).

9.14 ADDITIONAL ACCURACY DECOMPOSITION ANALYSIS

In this section, we offer additional insights into how our algorithm behaves across a wide range
of inference costs, illustrated through supplementary decomposition figures. In our main paper,
Figure 3 corresponds to λ = 1 for the CIFAR100 experiment with t2t-vit-14 (Figure 2). Here,
we provide in Figure 17 the same decomposition for λ = 3 , which imposes a greater penalty on
computation and leads to earlier exiting behaviour. Figure 18 shows the decomposition for λ = 0.5,
which imposes a small penalty for additional computation, and leads to more samples exiting at later
layers.
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We can see that for all λ values, we obtain a similar trend that shifts from early gates to later
gates based on the inference cost. For the larger value of λ in Figure 17, JEI-DNN starts exiting
samples at gate 3 and heavily uses the gates 4, 5, 6 and 7. For a smaller penalty on computation in
Figure 18, JEI-DNN starts to exit samples much later, at gate 5, and mainly uses the gates 7, 8, 9,
10 and 11. These results highlight how the parameter λ can be used to control the trade-off between
computation during inference and accuracy.
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Figure 17: Decomposition of the contributions of the IMs to the final accuracies (depicted by dotted
lines) for CIFAR100, with the inference cost λ = 3. a) Accuracy of each IM, f l

θ, evaluated only on
their exited samples (Dl). b) Accuracy of each IM, f l

θ, on the full dataset D. The size of a circle is
proportional to the number of samples exited for a trial.
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Figure 18: Decomposition of the contributions of the IMs to the final accuracies (depicted by dotted
lines) for CIFAR100, with the inference cost λ = 0.5.

9.15 OPTIMIZING THE GATES: BINARY CLASSIFICATION SURROGATE TASKS

In the section Optimizing the gates of our paper, we describe a surrogate learning task that we
use to train our gating mechanism. In short, we train each of our glϕ modules as a binary classifier,
and we set the target tl based on the the relative cost of each gate Cl

θ∗ . We first find the index of
the optimal gate l∗ = argminlC

l
θ∗ and set its target to 1 tl

∗ = 1, then we set the targets of all the
previous gates to 0, and the targets of all the subsequent gates to 1.
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The intuition behind this is that, if a sample misses the exit at the optimal IM l∗, the next best exit is
the following one, at l∗+1. Underpinning this is an assumption that the accuracy of the IMs tends to
be monotonically increasing for all samples as the layer increases. The assumption would be wrong
if, the best exit is at l∗, but then the performance of the IM at the next gate is very poor and the IM
should be avoided. (The desired target pattern over 6 gates might then look like t = 0,0,1,0,1,1,
for example).

An alternative strategy is to only set a gate’s target to 1 if there is no later IM that reaches a lower
cost (considering both accuracy and inference overhead). So instead of our strategy, that we call
ExitSubsequent:

tl =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 , l = l∗
1 , l > l∗
0 , l < l∗

(31)

we could use this other strategy, that we call ExitIfMin:

tl =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 , l = l∗
1 , l > l∗,Cl

θ∗ < C
j
θ∗∀j > l

0 , o.w.
(32)

We verify that the ExitIfMin strategy yields similar results to our ExitSubsequent strategy by running
an experiment on the SVHN dataset with t2t-vit-7. The results can be viewed in Figure 19, where
we can see that both approaches give the same results. This confirms that our assumption holds.
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Figure 19: JEI-DNN vs JEI-DNN with Exi-
tIfMin for SVHN dataset with t2t-vit-7 back-
bone. The x-axis is scaled by the by the full
model inference cost, Mul-Add(ICL).
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previous IM. SVHN dataset with t2t-vit-7.

We can also examine the progression of the accuracy at each IM for the samples that were correctly
classified by a previous IM. If we see a trend such that once a sample is correctly classified by an
IM l, it is also correctly classified by all subsequent IMs, then it suggests that it is indeed best to
exit the sample as soon as possible. In Figure 20 we compare the conditional accuracy (conditioned
on correct classification at the previous IM) with the overall accuracy. We see that the conditional
accuracy is higher, and above 90% for all IMs, indicating that our strategy is sensible.

We do note, however, that these results are for an architecture where the intermediate layers are not
trained with the goal of providing good features for classification. In a shallow-deep network, the
intermediate layers are trained to do so. Kaya et al. (2019) observe that there can be a phenomenon of
“overthinking” for such networks, where an early IM can make a correct classification, but later IMs
make errors for the same sample. For such a backbone, the ExitIfMin strategy may be preferable.

9.16 END-TO-END TRAINING OF JEI-DNN WITH A DEDICATED ARCHITECTURE

Our method is designed to be used on a fixed backbone architecture. This includes enhancing
architectures that are tailored for early-exit, as we have shown in our main paper in Observation 5.
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We can go one step further and consider a fully end-to-end trainable model that trains the backbone,
the IMs, and the GMs. Instead of keeping the backbone fixed during training, we can alternate
between our JEI-DNN procedure and training the backbone. To present results, we again select as
the backbone architecture the Dynamic Perceiver Han et al. (2023b) with MobileNetV3.
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Figure 21: Comparison of Dynamic Perceiver, Dynamic Perceiver trained with the JEI-DNN pro-
cedure (Dyn. Perceiver + JEI-DNN) and Dynamic Perceiver trained end-to-end with the JEI-DNN
procedure (Dyn. Perceiver + JEI-DNN E2E) on CIFAR100.

The end-to-end combination (Dynamic Perceiver+JEI-DNN) includes learnable gates, learnable
IMs, and a learnable backbone. We compare it to the results we have presented with the Perceiver,
Perceiver+JEI-DNN, which are both trained for 310 epochs. We train our Perc+JEI-DNN end-to-
end by alternating between training JEI-DNN for 2 epochs, then the Perceiver for 1 epoch. Figure
21 shows that this produces similar results to Perceiver+JEI-DNN, but there is a small improvement.
For example, if we require 80 percent accuracy (a reduction of only 1 percent from the accuracy
of the full network), the end-to-end training means that we can reduce the required mul-adds by a
further 2.6%. These promising results indicate that further research into a fully end-to-end training
architecture has the potential to be a fruitful research direction.
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