
Published as a conference paper at ICLR 2022

A EXPERIMENT SETUP AND ADDITIONAL EXPERIMENTS

A.1 EXPERIMENT SETUP

A.1.1 GENERAL SETUP

The default experiment setup is listed in Table 5.

Table 5: Default experimental settings for MNIST

Dataset MNIST
Architecture CONV-CONV-DROPOUT-FC-DROPOUT-FC
Training objective Negative log likelihood loss
Evaluation objective Top-1 accuracy

Batch size 32× number of workers
Momentum 0 or 0.9
Learning rate 0.01
LR decay No
LR warmup No
Iterations 600 or 4500
Weight decay No

Repetitions 3, with varying seeds
Reported metric Mean test accuracy over the last 150 iterations

By default the hyperparameters of the aggregators are summarized as follows

Aggregators Hyperparameters

KRUM N/A
CM N/A
RFA T = 8
TM b = q
CCLIP τ = 10

1−β

A.1.2 CONSTRUCTING DATASETS

The MNIST dataset has 10 classes each with similar amount of samples. In this part, we discuss how
to process and distribute MNIST to each workers in order to achieve long-tailness and heterogeneity.

Long-tailness. The long-tailness (*-LT) is achieved by sampling class with exponentially decreas-
ing portions γ ∈ (0, 1]. That is, for class i ∈ [10], we only randomly sample γi portion of all samples
in class i. We define α as the ratio of the largest class over the smallest class, which can be written as
α = 1

γ9 . For example, if γ = 1, then all classes have same amount of samples and thus α = 1; if
γ = 0.5 then α = 29 = 512. Note that the same procedure has to be applied to the test dataset.

Heterogeneity. Steps to construct IID/non-iid dataset from MNIST dataset

1. Sort the training dataset by its labels.
2. Evenly divide the sorted training dataset into chunks of same size. The number of chunks equals

the number of good workers. If the last chunk has fewer samples, we augment it with samples
from itself.

3. Shuffle the samples within the same worker.

Heterogeneity + Long-tailness. First transform the training dataset into long-tail dataset, then feed
it to the previous procedure to introduce heterogeneity.

About dataset on Byzantine workers. The training set is divided by the number of good workers.
So the good workers has to full information of training dataset. The Byzantine worker has access to
the whole training dataset.

14

Published as a conference paper at ICLR 2022

A.1.3 SETUP FOR EACH EXPERIMENT

In Table 6, we list the hyperparameters for the experiments.

Table 6: Setups for each experiment.

n q momentum Iters LT NonIID

Table 1 24 0 0 4500 α = 1, α = 500 iid/ non-iid
Table 2 25 5 0 600 α = 1 (balanced) iid/ non-iid
Table 3 24 0 0 4500 α = 1, α = 500 iid/ non-iid
Table 4 25 5 0 600 α = 1 (balanced) iid/ non-iid
Figure 1 25 5 0 / 0.9 600 α = 1 (balanced) non-iid
Figure 2 53 5 0 / 0.9 600 α = 1 (balanced) non-iid
Figure 3 25 5 0 / 0.5 / 0.9 / 0.99 600 α = 1 (balanced) non-iid
Figure 4 25 5 0 / 0.5 / 0.9 / 0.99 1200 α = 1 (balanced) non-iid
Figure 5 20 3 0 1200 α = 1 (balanced) non-iid
Figure 6 20 3 0 3000 α = 1 (balanced) non-iid
Figure 8 24 3 0 1200 α = 1 (balanced) non-iid

IPM Attack in Figure 1 and Figure 2. We set the strength of the attack ε = 0.1.

ALIE Attack in in Figure 1. The hyperparameter z for ALIE is computed according to (Baruch
et al., 2019)

z = max
z

(
φ(z) <

n− q − s
n− q

)
where s = bn2 + 1c − q and φ is the cumulative standard normal function. In our setup, the z ≈ 0.25.

A.1.4 RUNNING ENVIRONMENT

We summarize the running environment of this paper as in Table 7.

Table 7: Runtime hardwares and softwares.

CPU
Model name Intel (R) Xeon (R) Gold 6132 CPU @ 2.60 GHz
CPU(s) 56
NUMA node(s) 2

GPU
Product Name Tesla V100-SXM2-32GB
CUDA Version 11.0

PyTorch
Version 1.7.1

A.2 ADDITIONAL EXPERIMENTS

A.2.1 CLIPPING RADIUS SCALING

The radius τ of CCLIP depends on the norm of good gradients. However, PyTorch implements SGD
with momentum using the following formula

mt
i = βmt−1

i + gi(x
t−1) for every i ∈ G

which may leads to the increase in the gradient norm.

15

Published as a conference paper at ICLR 2022

Gradient norms. In Figure 3 we present the averaged gradient norm from all good workers.
Here we use CCLIP as the aggregator and τ = 10

1−β . The norm of gradients are computed before
aggregation. Even though the dataset on workers are non-iid, the gradient norms are roughly of same
order. The gradient dissimilarity ζ2 also increases accordingly.

0 10
Worker ID

100

101

102

No
rm

 ra
tio

ATK = BF

0 10
Worker ID

ATK = LF

0 10
Worker ID

ATK = mimic

0 10
Worker ID

ATK = IPM

0 10
Worker ID

ATK = ALIE

0.0
0.5
0.9
0.99

Figure 3: The ratio of norm of good gradients with momentum β over no momentum under different
attacks.

Scaled clipping radius. As the gradient norm increases with momentum β, the clipping radius
should increase accordingly. In Figure 4 we compare 3 schemes: 1) no scaling (τ = 10, β = 0); 2)
linear scaling 10

1−β ; 3) sqrt scaling 10√
1−β . The no scaling scheme convergences but slower while

with momentum. The linear scaling is usually better than sqrt scaling and with bucketing it becomes
more stable. However, The scaled clipping radius fails for β = 0.99 under label flipping attack. This
is because the gradient can be very large and ζ2 dominates. So in general, a linear scaling of clipping
radius with momentum β = 0.9 would be a good choice.

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Scaling = NA | ATK = BF Scaling = NA | ATK = LF Scaling = NA | ATK = mimic Scaling = NA | ATK = IPM Scaling = NA | ATK = ALIE

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Scaling = linear | ATK = BF Scaling = linear | ATK = LF Scaling = linear | ATK = mimic Scaling = linear | ATK = IPM Scaling = linear | ATK = ALIE

0 250 500 750 1000
Iterations

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Scaling = sqrt | ATK = BF

0 250 500 750 1000
Iterations

Scaling = sqrt | ATK = LF

0 250 500 750 1000
Iterations

Scaling = sqrt | ATK = mimic

0 250 500 750 1000
Iterations

Scaling = sqrt | ATK = IPM

0 250 500 750 1000
Iterations

Scaling = sqrt | ATK = ALIE

0.0
0.5
0.9
0.99

Bucketing
0
2

Figure 4: Convergence of CCLIP with τ = 10, 10
1−β ,

10√
1−β for β = 0, 0.5, 0.9, 0.99. The s is the

bucketing hyperparameter.

A.2.2 DEMONSTRATION OF EFFECTS OF BUCKETING THROUGH THE SELECTIONS OF KRUM

In the main text we have theoretically show that bucketing helps aggregators alleviate the impact of
non-iid. In this section we empirically show that after bucketing aggregators can incorporate updates
more evenly from good workers and therefore the problem of non-iid among good workers is less
significant. Since KRUM outputs the id of the selected device, it is very convenient to record the
frequency of each worker being selected. Since bucketing replicates each worker for s times, we
divide their frequencies by s for normalization. From Figure 5, we can see that without bucketing
KRUM basically almost always selects updates from Byzantine workers while with larger s, the
selection becomes more evenly distributed.

16

Published as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Worker ID

0

100

200

300

400

500

600

700

#S
el

ec
tio

ns

Benign Byzantine
s=0
s=2
s=3

Figure 5: The selected workers of KRUM for bucketing coefficient s = 0, 2, 3. There are 20 workers
and the last 2 workers (worker id=18,19) are Byzantine with label-flipping attack.

A.2.3 OVERPARAMETERIZATION

The architecture of the neural net used in the experiments can be scaled to make it overparameterized.
We add more parameters to the model by multiplying the channels of 2D Conv layer and fully
connected layer by a factor of ‘scale’. So the original model has a scale of 1. We show the training
losses decrease faster for overparameterized models in Figure 6. As we can see, the convergence
behaviors are similar for different model scales with overparameterized models having smaller
training loss despite the existence of Byzantine workers.

0.00

0.25

0.50

0.75

1.00

Tr
ai

n
Lo

ss

s = 0 | ATK = BF s = 0 | ATK = LF s = 0 | ATK = mimic s = 0 | ATK = IPM s = 0 | ATK = ALIE

0.00

0.25

0.50

0.75

1.00

Tr
ai

n
Lo

ss

s = 2 | ATK = BF s = 2 | ATK = LF s = 2 | ATK = mimic s = 2 | ATK = IPM s = 2 | ATK = ALIE

0 1000 2000 3000
Iterations

0.00

0.25

0.50

0.75

1.00

Tr
ai

n
Lo

ss

s = 3 | ATK = BF

0 1000 2000 3000
Iterations

s = 3 | ATK = LF

0 1000 2000 3000
Iterations

s = 3 | ATK = mimic

0 1000 2000 3000
Iterations

s = 3 | ATK = IPM

0 1000 2000 3000
Iterations

s = 3 | ATK = ALIE

Model Scale
1
2
4
8

Figure 6: The training loss of models of different levels of overparameterization.

In Figure 7, we explicitly investigate the influence of overparameterization on B2 defined in (3).
As we can see, heterogeneity bound B2 decreases with increasing level of overparameterization,
showcasing how overparameterization minimizes the local objectives in the presence of Byzantine
workers. It supports our theory in Section 5.4 that overparameterization can fix the convergence,

17

Published as a conference paper at ICLR 2022

making it possible to achieve practical Byzantine-robust learning. The underlying base aggregator is
RFA.

0

20

40

B
2

s = 0 | ATK = BF s = 0 | ATK = LF s = 0 | ATK = mimic s = 0 | ATK = IPM s = 0 | ATK = ALIE

0

20

40

B
2

s = 2 | ATK = BF s = 2 | ATK = LF s = 2 | ATK = mimic s = 2 | ATK = IPM s = 2 | ATK = ALIE

0 1000 2000 3000
Iterations

0

20

40

B
2

s = 3 | ATK = BF

0 1000 2000 3000
Iterations

s = 3 | ATK = LF

0 1000 2000 3000
Iterations

s = 3 | ATK = mimic

0 1000 2000 3000
Iterations

s = 3 | ATK = IPM

0 1000 2000 3000
Iterations

s = 3 | ATK = ALIE

Model Scale
1
2
4
8

Figure 7: The B2 in (3) for different levels of overparameterization.

A.2.4 RESAMPLING - VARIANT OF BUCKETING

In the previous version of this work we repeat the gradients for s times and then put sn gradients into
n buckets. The results in Figure 8 suggest that the convergence rate of bucketing and resampling is
almost the same. So aggregators can benefit more from bucketing as it reduces the number of input
gradients and therefore reduce the complexity.

0 250 500 750 1000
Iterations

25

50

75

100

Ac
cu

ra
cy

 (%
)

ATK = BF

0 250 500 750 1000
Iterations

ATK = LF

0 250 500 750 1000
Iterations

ATK = Mimic

0 250 500 750 1000
Iterations

ATK = IPM

0 250 500 750 1000
Iterations

ATK = ALIE
Resampling

0
2
3

Bucketing
False
True

Figure 8: The convergence SGD with bucketing and resampling under different attacks. The
underlying aggregator is RFA.

B IMPLEMENTING THE MIMIC ATTACK

The Section 3.2 describes the idea and formulation of the mimic attack. In this section, we discuss
how to pick i? and implement the mimic attack efficiently. To pick i?, we use an initial phase (I0 ≈
1 epoch) to compute a direction z of maximum variance of the outputs of the good workers:

z = argmax
‖z‖=1

z>
(∑
t∈I0

∑
i∈G

(xti − µ)(xti − µ)>
)
z where µ =

1

|G||I0|
∑

i∈G,t∈I0

xti .

Then we pick a worker i? to mimic by computing

i? = argmax
i∈G

∣∣∣ ∑
t∈I0

z>xti

∣∣∣ .
In the following steps, we show how to solve the optimization problem.

First, rewrite the mimic attack in its online version at time t ∈ I0
zt = argmax

‖z‖=1

ht(z)

where µt = 1
|G|t

∑
τ≤t

∑
i∈G x

τ
i and

ht(z) = z>

∑
τ≤t

∑
i∈G

(xτi − µt)(xτi − µt)>
z.

18

Published as a conference paper at ICLR 2022

Figure 9: Error with random vectors with variance ρ2 = d and δ fraction of Byzantine workers imitating a fixed
good worker (say worker 1 ∈ G). RFA performs slightly better than CM and KRUM, but all have higher error
than simply averaging across various settings of δ and ρ.

Thus we can iteratively update µt by

µt+1 =
t

1 + t
µt +

1

1 + t

1

|G|
∑
i∈G

xt+1
i ,

and then

argmax
‖z‖=1

ht+1(z) ≈ t

1 + t
zt +

1

1 + t
argmax
‖z‖=1

z>

(∑
i∈G

(xt+1
i − µt+1)(xt+1

i − µt+1)>

)
z

≈ t

1 + t
zt +

1

1 + t

(∑
i∈G

(xt+1
i − µt+1)(xt+1

i − µt+1)>

)
zt.

The above algorithm corresponds to Oja’s method for computing the top eigenvector in a streaming
fashion (Oja, 1982). Then, in each subsequent iteration t, we pick

it? = argmax
i∈G

z>xti .

Example. Each of the good workers i ∈ G ⊆ [n] has an input a xi ∈ {±1}d where each coordinate
is an independent Rademacher random variable. The inputs then have mean 0 and variance E‖xi‖2 =
ρ2 = d. Now, the Byzantine attackers j ∈ B have dual goals: i) escape detection, and ii) increase
data imbalance. For this, we propose the following simple passive attack: pick some fixed worker
i? ∈ G (say 1) and every Byzantine worker j ∈ B outputs xj = x1. The attackers cannot be filtered
as they imitate an existing good worker, but still can cause imbalance in the data distribution. This
serves as the intuition for our attack.

C CONSTRUCTING A ROBUST AGGREGATOR USING BUCKETING

C.1 SUPPORTING LEMMAS

We first start with proving the main bucketing Lemma 1 restated below.

Lemma’ 1. Suppose we are given n independent (but not identical) random vectors {x1, . . . ,xn}
such that a good subset G ⊆ [n] of size at least |G| ≥ n(1− δ) satisfies:

E‖xi − xj‖2 ≤ ρ2 , for any fixed i, j ∈ G .

Define x̄ := 1
|G|
∑
j∈G xj and m = dn/se. Let the outputs after s-bucketing be {y1, . . . ,ym}. Then,

a subset of the outputs G̃ ⊆ {1, . . . ,m} of size at least |G̃| ≥ m(1− δs) satisfies

E[yi] = E[x̄] and E‖yi − yj‖ ≤ ρ2/s for any fixed i, j ∈ G̃ .

Proof. Let us define the buckets used to compute yi as

Bi := {π(s(i− 1) + 1), . . . , π(min{s · i, n})} .

19

Published as a conference paper at ICLR 2022

Recall that for some permutation π over [n] and for every i = {1, . . . ,m}, we defined m = dn/se
and

yi ←
1

|Bi|

min(n , i·s)∑
k=(i−1)·s+1

xπ(k) .

Then, define the new good set
G̃ = {i ∈ [m] | Bi ⊆ G}

G̃ contains the set of all the resampled vectors which are made up of only good vectors i.e. are
uninfluenced by any Byzantine vector. Since |B| ≤ δn and each can belong to only 1 bucket, we have
that |G̃| ≥ (1− δs)m. Now, for any fixed i ∈ G̃, let us look at the conditional expectation over the
random permutation π we have

Eπ[yi|i ∈ G̃] =
1

|Bi|

min(n , i·s)∑
k=(i−1)·s+1

Eπ[xπ(k)|π(k) ∈ G] =
1

|G|
∑
j∈G

xj = x̄ .

This yields the first part of the lemma. Now we analyze the variance. Thus, we can write yi =
1
s

∑
k∈Bi xk. Further, |Bi| = s for any i, and Bi ⊆ G if i ∈ G̃. With this, for any fixed i, j ∈ G̃ the

variance can be written as

E‖yi − yj‖2 = E

∥∥∥∥∥∥1

s

∑
k∈Bi

xk −
1

s

∑
l∈Bj

xl

∥∥∥∥∥∥
2

=
ρ2

s
.

This additional lemma about the maximum expected distance between good workers will also be
useful later.
Lemma 7 (maximum good distance). Suppose we are given the output of bucketing y1, . . . ,ym
which for m = dn/se satisfy for any fixed i ∈ G̃, E[yi] = µ and E‖yi−µ‖2 ≤ ρ2/s. Then, we have

E

[
max
i∈G̃
‖yi − µ‖2

]
≤ nρ2/s2 .

Further, there exist instances where

E

[
max
i∈G̃
‖yi − µ‖2

]
≥ Ω(nρ2/s2) .

Proof. For the upper bound, we simply use

E

[
max
i∈G̃
‖yi − µ‖2

]
≤
∑
i∈G̃

E‖yi − µ‖2 ≤ mρ2/s .

For the lower bound, let G̃ = [m] and consider yi ∼ ρ̃
√
mBern(p = 1

m). This means yi is either 0
or ρ̃
√
m. Further, its variance is clearly bounded by ρ̃2. Upon drawing m samples, the probability of

seeing at least 1 yj = ρ̃
√
m is

1− Pr(yi = 0 ∀i ∈ [m]) = 1− (1− 1
m)m ≥ 1− 1/e ≥ 0.5 .

Thus, with probability at least 0.5 we have

max
i∈[n]
‖yi − µ‖2 ≥ mρ̃2/2 .

This directly proves our lower bound by defining ρ̃2 := ρ2/s and recalling that m = dn/se.
Note that this lemma can be tightened if we make stronger assumptions on the noise such as
E‖yi − µ‖r ≤ (ρ/

√
s)
r for some large r ≥ 2. However, we focus on using standard stochastic

assumptions (r = 2) in this work.

20

Published as a conference paper at ICLR 2022

C.2 PROOFS OF ROBUSTNESS

Let {y1 . . . ,ym} be the resampled vectors with bucketing using s = δmax

δ . By Lemma 1, we have
that there is a G̃ ⊆ [m] of size |G̃| > m(1− δmax) which satisfies for any fixed i, j ∈ G̃

E‖yi − yj‖2 ≤
δρ2

δmax
=: ρ̃2 .

This observation will be combined with each of the algorithms to obtain robustness guarantees.

Robustness of KRUM. We now prove that KRUM when combined with bucketing is a robust
aggregator. We can rewrite the output of KRUM as the following for δmax = 1/4 − ν for some
arbitrarily small positive number ν ∈ (0, 1/4):

KRUM(y1, . . . ,ym) = argmin
yi

min
|S|=3m/4

∑
j∈S
‖yi − yj‖2 .

Let S? and k? be the quantities which minimize the optimization problem solved by KRUM.

The main difficulty of analyzing KRUM is that even if we succeed in selecting a k? ∈ G̃, k? depends
on the sampling. Hence, we cannot claim that the error is bounded by ρ̃2 i.e 3

E‖yk? − yj‖2 � ρ̃2 for some fixed j ∈ G̃ .

This is because the variance is bounded by ρ̃2 only for a fixed i, and not a data dependent k?. Instead,
we will have to rely on Lemma 7 that

E‖yk? − yj‖2 ≤ E max
i∈G̃
‖yi − yj‖2 ≤ mρ̃2 .

Lemma 7 shows that this inequality is essentially tight and hence relying on it necessarily incurs an
extra factor of m which can be very large. Instead, we show an alternate analysis which works for a
smaller breakdown point of δmax = 1/4, but does not incur the extra m factor.

For any good input i ∈ G̃, we have

‖yk? − x̄‖2 ≤ 2‖yk? − yi‖2 + 2‖yi − x̄‖2

⇒ 2‖yk? − yi‖2 ≥ ‖yk? − x̄‖2 − 2‖yi − x̄‖2 .

Further, for a bad worker j ∈ B̃ we can write

2‖yk? − yj‖2 ≥ ‖yj − x̄‖2 − 2‖yk? − x̄‖2 .

Combining both and summing over S?,∑
i∈S?

2‖yk? − yi‖2 =
∑

i∈G̃∩S?
2‖yk? − yi‖2 +

∑
j∈B̃∩S?

2‖yk? − yj‖2

≥
∑

j∈B̃∩S?
‖yj − x̄‖2 − 2

∑
i∈G̃∩S?

‖yi − x̄‖2

+ (|G̃ ∩ S?| − 2|B̃ ∩ S?|)‖yk? − x̄‖2 .

We can rearrange the above equation as

‖yk? − x̄‖2 ≤
1

(|G̃ ∩ S?| − 2|B̃ ∩ S?|)
(
∑
i∈S?

2‖yk? − yi‖2 +
∑

i∈G̃∩S?
2‖yi − x̄‖2)

≤ 1

(|S?| − 3|B̃|)
(
∑
i∈S?

2‖yk? − yi‖2 +
∑

i∈G̃∩S?
2‖yi − x̄‖2)

≤ 1

(|S?| − 3|B̃|)
(2 min
k,|S|=3m/4

∑
i∈S
‖yk − yi‖2 +

∑
i∈G̃

2‖yi − x̄‖2).

3This issue was incorrectly overlooked in the original analysis of KRUM (Blanchard et al., 2017)

21

Published as a conference paper at ICLR 2022

Taking expectation now on both sides yields

E‖yk? − x̄‖2 ≤
4mρ̃2

|S?| − 3|B̃|
.

Now, recall that we used a bucketing value of s = δmax/δ where for KRUM we have δmax = 1/4− ν.
Then, the number of Byzantine workers can be bounded as |B̃| ≤ m(1/4− ν). This gives the final
result that

E‖yk? − x̄‖2 ≤
4mρ̃2

3m/4− 3(m/4− νm)
=

4ρ̃2

3ν
≤ 4

3ν(1/4− ν)
δρ2 .

Thus, KRUM with bucketing indeed satisfies Definition A with δmax = (1/4−ν) and c = 4/(3ν(1/4−
ν)).

Robustness of Geometric median. Geometric median computes the minimum of the following
optimization problem

y? = argmin
y

∑
i∈[m]

‖y − yi‖2 .

We will adapt Lemma 24 of Cohen et al. (2016), which itself is based on (Minsker et al., 2015). For a
good bucket i ∈ G̃ and bad bucket j ∈ B̃:

‖y? − yi‖2 ≥ ‖y? − x̄‖2 − ‖yi − x̄‖2 for i ∈ G̃, and

‖y? − yj‖2 ≥ ‖yj − x̄‖2 − ‖y? − x̄‖2 for j ∈ B̃ .
Summing this over all buckets we have∑

i∈[n]

‖y? − yi‖ ≥ (|G̃| − |B̃|)‖y? − x̄‖+
∑
j∈B̃

‖yj − x̄‖ −
∑
i∈G̃

‖yi − x̄‖

⇒ ‖y? − x̄‖ ≤ 1

(|G̃| − |B̃|)

∑
i∈[n]

‖y? − yi‖ −
∑
j∈B̃

‖yj − x̄‖+
∑
i∈G̃

‖yi − x̄‖


=

1

(|G̃| − |B̃|)

min
y

∑
i∈[n]

‖y − yi‖ −
∑
j∈B̃

‖yj − x̄‖+
∑
i∈G̃

‖yi − x̄‖


≤ 2

(|G̃| − |B̃|)

∑
i∈G̃

‖yi − x̄‖

 .

The last step we substituted y = x̄. Squaring both sides, expanding, and then taking expectation
gives

E‖y? − x̄‖2 ≤ 4

(|G̃| − |B̃|)2
E

∑
i∈G̃

‖yi − x̄‖

2

≤ 4

(|G̃| − |B̃|)2

|G̃|∑
i∈G̃

E‖yi − x̄‖2


≤ 4|G̃|2

(n− 2|B̃|)2
ρ̃2 .

Now, recall that we used a bucketing value of s = δmax/δ where for KRUM we have δmax = 1/2− ν.
Then, the number of Byzantine workers can be bounded as |B̃| ≤ n(1/2− ν). This gives the final
result that

E‖y? − x̄‖2 ≤ 4n2

4n2ν2
ρ̃2 ≤ ρ̃2

ν2
≤ 1

ν(1/2− ν)
δρ2 .

Thus, geometric median with bucketing indeed satisfies Definition A with δmax = (1/2 − ν) and
c = 1/(ν(1/2− ν)). Note that geometric median has better theoretical performance than KRUM.

22

Published as a conference paper at ICLR 2022

Robustness of Coordinate-wise median. The proof of coordinate-wise median largely follows
that of the geometric median. First, we note that we can separate out the objective by coordinates

E‖CM(y1, . . . ,ym)− x̄‖2 =

d∑
l=1

E(CM([y1]l, . . . , [ym]l)− [x̄]l)
2
.

Then note that, for any fixed coordinate l ∈ [d] and fixed good worker i ∈ G, we have E([yi]l −
[x̄]l)

2 ≤ E‖yi − x̄‖2 ≤ ρ̃2. Thus, we can simply analyze coordinate-wise median as d separate
(geometric) median problems on scalars. Thus for any fixed coordinate l ∈ [d], we have

E(CM([y1]l, . . . , [ym]l)− [x̄]l)
2 ≤ ρ̃2

ν2
⇒ E‖CM(y1, . . . ,ym)− x̄‖2 ≤ dρ̃2

ν2
≤ d

ν(1/2− ν)
δρ2 .

Thus, coordinate-wise median with bucketing indeed satisfies Definition A with δmax = (1/2− ν)
and c = d/(ν(1/2− ν)).

D LOWER BOUNDS ON NON-IID DATA (PROOF OF THEOREM III)

Our proof builds two sets of functions {f1i (x) | i ∈ G1} and {f2i (x) | i ∈ G2} and will show that in
the presence of δ-fraction of Byzantine workers, no algorithm can distinguish between them. Since
the problems have different optima, this means that the algorithm necessarily has an error on at least
one of them.

For the first set of functions, let there be no bad workers and hence G1 = [n]. Then, we define the
following functions for any i ∈ [n]:

f1i (x) =

{µ
2x

2 − ζδ−1/2x for i ∈ {1, . . . , δn}
µ
2x

2 for i ∈ {δn+ 1, . . . , n} .

Defining G := ζδ1/2, the average function which is our objective is

f1(x) =
1

n

n∑
i=1

f1i (x) =
µ

2
x2 −Gx .

The optimum of our f1(x) is at x = G
µ . Note that the gradient heterogeneity amongst these workers

is bounded as

Ei∼[n]‖∇f1i (x)−∇f1(x)‖2 =δ(ζδ−1/2 − ζδ1/2)2 + (1− δ)(ζδ1/2)2

=ζ2(1− δ)2 + ζ2(1− δ)δ = ζ2(1− δ) ≤ ζ2.

Now, we define the second set of functions. Here, suppose that we have δn Byzantine attackers with
B2 = {1, . . . , δn}. Then, the functions of the good workers are defined as

f2i (x) =
µ

2
x2 for i ∈ G2 = {δn+ 1, . . . , n} .

We then have that the second average objective is

f2(x) =
1

|G2|
∑
i∈G2

f2i (x) =
µ

2
x2 .

Here, we have gradient heterogeneity of 0 and hence is smaller than ζ2. The optimum of f2(x) is at
x = 0. The Byzantine attackers simply imitate as if they have the functions:

f2j (x) =
µ

2
x2 − ζδ−1/2x for j ∈ B2 = {1, . . . , δn} .

Note that the set of functions, {f11 (x), . . . , f1n(x)} is exactly identical to the set {f21 (x), . . . , f2n(x)}.
Only the identity of the good workers G1 and G2 are different, leading to different objective functions
f1(x) and f2(x). However, since the algorithm does not have access to G, its output on each of them
is identical i.e.

xout = ALG(f11 (x), . . . , f1n(x)) = ALG(f21 (x), . . . , f2n(x)) .

23

Published as a conference paper at ICLR 2022

However, the leads to making a large error in least one of f1 and f2 since they have different optimum.
This proves a lower bound error of

max
k∈{1,2}

fk(xout)− fk(x?) ≥ µ
(
G

2µ

)2

=
δζ2

4µ
.

Similarly, we can also bound the gradient norm error bound as

max
k∈{1,2}

‖∇fk(xout)‖2 ≥ µ2

(
G

2µ

)2

=
δζ2

4
.

E CONVERGENCE OF ROBUST OPTIMIZATION ON NON-IID DATA
(THEOREMS II AND IV)

We will prove a more general convergence theorem which generalizes Theorems II and IV.
Theorem V. Suppose we are given a (δmax, c)-ARAGG satisfying Definition A, and n workers of
which a subset G of size at least |G| ≥ n(1− δ) faithfully follow the algorithm for δ ≤ δmax. Further,
for any good worker i ∈ G let fi be a possibly non-convex function with L-Lipschitz gradients, and
the stochastic gradients on each worker be independent, unbiased and satisfy

Eξi‖gi(x)−∇fi(x)‖2 ≤ σ2 and Ej∼G‖∇fj(x)−∇f(x)‖2 ≤ ζ2 +B2‖∇f(x)‖2 , ∀x ,

where δ ≤ 1/(60cB2). Then, for F 0 := f(x0) − f?, the output of Algorithm 2 with step-size

η = min

(
O
(√

LF 0+cδ(ζ2+σ2)
TL2σ2(n−1+cδ)

)
, 1
8L

)
and momentum parameter β = (1− 8Lη) satisfies

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ O
(1

1−60cδB2
·
(
cδζ2 + σ

√
LF 0

T
(cδ + 1/n) +

LF 0

T

))
.

Notes on δ ≤ 1/(60cB2). In practice the upper bound δ ≤ 1/(60cB2) does not put an extra
strict constraint on δ. This is because one can always decrease B2 and increase ζ2 such that
Ej∼G‖∇fj(x)−∇f(x)‖2 ≤ ζ2 +B2‖∇f(x)‖2 holds for a sufficiently large domain of x.

Definitions. Recall our algorithm which performs for t ≥ 2 the following update with (1−β) = α:

mt
i = (1− α)mt−1

i + αgi(x
t−1) for every i ∈ G ,

xt = xt−1 − ηARAGG(mt
1, . . . ,m

t
n) .

For t = 1, we use α = 0 i.e. m1
i = gi(x

0). Let us also define the actual and ideal momentum
aggregates as

mt := ARAGG(mt
1, . . . ,m

t
n) and m̄t :=

1

|G|
∑
i∈G

mt
i .

We state several supporting lemmas before proving our main Theorem V. We will loosely follow the
proof of Byzantine robustness in the iid case by Karimireddy et al. (2021), with the key difference of
Lemma 8 which accounts for the non-iid error.
Lemma 8 (Aggregation error). Given that ARAGG satisfies Definition A holds, the error between
the ideal average momentum m̄t and the output of the robust aggregation rulemt for any t ≥ 2 can
be bounded as

E‖mt − m̄t‖2 ≤ cδρ2t ,
where we define for t ≥ 2

ρ2t := 4(6ασ2 + 3ζ2) + 4(6σ2 − 3ζ2)(1− α)t + 12

t∑
k=1

(1− α)t−kαB2 E‖∇f(xk−1)‖2 .

For t = 1 we can simplify the bound as ρ21 := 24cδσ2 + 12cδζ2 + 12cδB2‖∇f(x0)‖2.

24

Published as a conference paper at ICLR 2022

Proof. Let Eξt := Eξt1,...,ξtn,ξt−1
1 ,...,ξt−1

n ,...,ξ01 ,...,ξ
0
n

be the expectation with respect to all of the ran-
domness until time t and let Ei := Ei∈G and E = Eξt Ei. Expanding the definition of the worker
momentum for a fixed good workers i ∈ G,

Eξt‖mt
i − Eξt [m

t
i]‖2 = Eξt‖α(gi(x

t−1)−∇fi(xt−1)) + (1− α)(mt−1
i − Eξt [m

t−1
i])‖2

≤ Eξt−1‖(1− α)(mt−1
i − E[mt−1

i])‖2 + α2σ2

≤ (1− α) Eξt−1‖mt−1
i − E[mt−1

i]‖2 + α2σ2 .

Unrolling the recursion above yields

Eξt‖mt
i − Eξt [m

t
i]‖2 ≤

(
t∑
`=2

(1− α)t−`

)
α2σ2 + (1− α)t−1σ2 ≤ σ2(α+ (1− α)t−1) .

Similar computation also shows

Eξt‖m̄t − Eξt [m̄
t]‖2 ≤ σ2

n
(α+ (1− α)t−1) .

So far, the expectation was only over the stochasticity of the gradients of worker i. Note that we have
Eξt [mt

i] = Eξt−1 [α∇fi(xt−1) + (1 − α)mt−1
i]. Now, suppose we sample i uniformly at random

from G. Then,

Ei
∥∥Eξt [m

t
i]− Eξt [m̄

t]
∥∥2

=Ei‖αEξt−1 [∇fi(xt−1)−∇f(xt−1)] + (1− α)(Eξt−1 [mt−1
i]− Eξt−1 [m̄t−1])‖2

≤(1− α) Ei‖Eξt−1 [mt−1
i]−Eξt−1 [m̄t−1]‖2+αEi‖Eξt−1 [∇fi(xt−1)−∇f(xt−1)]‖2

≤(1− α) Ei‖Eξt−1 [mt−1
i]−Eξt−1 [m̄t−1]‖2+αEi Eξt−1‖∇fi(xt−1)−∇f(xt−1)‖2

≤(1− α) Ei‖Eξt−1 [mt−1
i]− Eξt−1 [m̄t−1]‖2 + αζ2 + αB2 E‖∇f(xt−1)‖2

where the second inequality uses the probabilistic Jensen’s inequality. Note that here we only get
α instead of α2 as before. This is because the randomness in the sampling i of ∇fi(xt−1) is not
independent of the second term Eξt−1 [mt−1

i]− Eξt−1 [m̄t−1]. Expanding this we get,

Ei
∥∥Eξt [m

t
i]− Eξt [m̄

t]
∥∥2 ≤ ζ2(1− (1− α)t) +

t∑
k=1

(1− α)t−kαB2 E‖∇f(xk−1)‖2 .

We can combine all three bounds above as

E‖mt
i − m̄t‖2 ≤ 3 E‖mt

i − Eξt [m
t
i]‖2 + 3 E‖m̄t − Eξt [m̄

t]‖2 + 3 Ei‖Eξt [mt
i]− Eξt [m̄

t]‖2

= 3 Ei Eξt‖mt
i − Eξt [m

t
i]‖2 + 3 Eξt‖m̄t − Eξt [m̄

t]‖2 + 3 Ei‖Eξt [mt
i]− Eξt [m̄

t]‖2

≤ (6ασ2 + 3ζ2) + (6σ2 − 3ζ2)(1− α)t + 3

t∑
k=1

(1− α)t−kαB2 E‖∇f(xk−1)‖2 .

Therefore for i, j ∈ G

E‖mt
i −mt

j‖2 ≤ 2 E‖mt
i − m̄t‖2 + 2 E‖mt

j − m̄t‖2

≤ 4(6ασ2 + 3ζ2) + 4(6σ2 − 3ζ2)(1− α)t + 12

t∑
k=1

(1− α)t−kαB2 E‖∇f(xk−1)‖2 .

Recall that the right hand side was defined to be ρ2t . Using Definition A, we can show that the output
of the aggregation rule ARAGG satisfies the condition in the lemma.

One major caveat in the above lemma is that here ρ2 cannot be known to the robust aggregation since
it involves E‖∇f(xk−1)‖2 whose value we do not have access to. However, this does not present a
hurdle to agnostic aggregation rules which are automatically adaptive to the value of ρ2. Deriving a
similarly provable adaptive clipping method is a very important open problem.

25

Published as a conference paper at ICLR 2022

Lemma 9 (Descent bound). For any α ∈ [0, 1] for t ≥ 2, η ≤ 1
L , and an L-smooth function f we

have for any t ≥ 1

E[f(xt)] ≤ f(xt−1)− η

2
‖∇f(xt−1)‖2 + η E‖ēt‖2 + η E‖mt − m̄t‖2 .

where ēt := m̄t −∇f(xt−1).

Proof. By the smoothness of the function f and the server update,

f(xt) ≤ f(xt−1)− η〈∇f(xt−1),mt〉+
Lη2

2
‖mt‖2

≤ f(xt−1)− η〈∇f(xt−1),mt〉+
η

2
‖mt‖2

= f(xt−1) +
η

2
‖mt −∇f(xt−1)‖2 − η

2
‖∇f(xt−1)‖2

= f(xt−1) +
η

2
‖mt ± m̄t −∇f(xt−1)‖2 − η

2
‖∇f(xt−1)‖2

≤ f(xt−1) + η‖ēt‖2 + η‖mt − m̄t‖2 − η

2
‖∇f(xt−1)‖2 .

Here we used the identities that −2ab = (a− b)2 − a2 − b2, and Young’s inequality that (a+ b)2 ≤
(1 + γ)a2 + (1 + 1

γ)b2 for any positive constant γ ≥ 0 (here we used γ = 1). Taking conditional
expectation on both sides yields the lemma.

Lemma 10 (Error bound). Using any constant momentum and step-sizes such that 1 ≥ α ≥ 8Lη for
t ≥ 2, we have for an L-smooth function f that E‖ē1‖2 ≤ 2σ2

n and for t ≥ 2

E‖ēt‖2 ≤ (1− 2α
5) E‖ēt−1‖2 + α

10 E‖∇f(xt−2)‖2 + α
10 E‖mt−1 − m̄t−1‖2 + α2 2σ2

n .

Proof. Let us define ḡ(x) := 1
|G|
∑
i∈G gi(x). This implies that

E‖ḡ(x)−∇f(x)‖2 ≤ σ2

|G|
≤ 2σ2

n
.

Then by definition of m̄, we can expand the error as:

E‖ēt‖2 = E‖m̄t −∇f(xt−1)‖2

= E‖αḡ(xt−1) + (1− α)m̄t−1 −∇f(xt−1)‖2

≤ E‖α∇f(xt−1) + (1− α)m̄t−1 −∇f(xt−1)‖2 +
2α2σ2

n

= (1− α)2 E‖(m̄t−1 −∇f(xt−2)) + (∇f(xt−2)−∇f(xt−1))‖2 +
2α2σ2

n

≤ (1− α)(1 + α
2) E‖(m̄t−1 −∇f(xt−2))‖2

+ (1− α)(1 + 2
α) E‖∇f(xt−2)−∇f(xt−1)‖2 +

2α2σ2

n

≤ (1− α
2) E‖ēt−1‖2 + 2L2

α E‖xt−2 − xt−1‖2 +
2α2σ2

n

= (1− α
2) E‖ēt−1‖2 + 2L2η2

α E‖mt−1‖2 +
2α2σ2

n

≤ (1− α
2) E‖ēt−1‖2 + 6L2η2

α ‖ēt−1‖2

+ 6L2η2

α E‖mt−1 − m̄t−1‖2 + 6L2η2

α E‖∇f(xt−2)‖2 +
2α2σ2

n
.

Our choice of the momentum parameter α implies 64L2η2 ≤ α2 and yields the lemma statement.

26

Published as a conference paper at ICLR 2022

Proof of Theorem V. Scale the error bound Lemma 10 by 5η
2α and add it to the descent bound

Lemma 9 taking expectations on both sides to get for t ≥ 2

E[f(xt)] + 5η
2α E‖ēt‖2 ≤ E[f(xt−1)]− η

2 E‖∇f(xt−1)‖2 + η E‖ēt‖2 + η E‖mt − m̄t‖2+
5η
2α E‖ēt−1‖2 − η E‖ēt−1‖2 + η

4 E‖∇f(xt−2)‖2

+ η
4 E‖mt−1 − m̄t−1‖2 + 5ηα

σ2

n
.

Now, let use the aggregation error Lemma 8 to bound E‖mt−1 − m̄t−1‖2 and E‖mt − m̄t‖2 in the
above expression to get

E[f(xt)] + 5η
2α E‖ēt‖2 ≤ E[f(xt−1)]− η

2 E‖∇f(xt−1)‖2 + η E‖ēt‖2

+ 5η
2α E‖ēt−1‖2 − η E‖ēt−1‖2 + η

4 E‖∇f(xt−2)‖2 + 5ηασ
2

n

+ 5ηcδ((6ασ2 + 3ζ2) + 6σ2(1− α)t−2)

+ ηcδ

(
3

t−1∑
k=1

(1− α)t−1−kαB2 E‖∇f(xk−1)‖2
)

+ 4ηcδ

(
3

t∑
k=1

(1− α)t−kαB2 E‖∇f(xk−1)‖2
)
.

Let us define St :=
∑t
k=1(1− α)t−kαB2 E‖∇f(xk−1)‖2. Then, St satisfies the recursion:

1
αSt = (1

α − 1)St−1 +B2 E‖∇f(xt−1)‖2 .

Adding 3ηcδ(5
α−4)
α St on both sides to the bound above and rearranging gives the following for t ≥ 2

E f(xt)− f? + (5η
2α − η) E‖ēt‖2 +

η

4
E‖∇f(xt−1)‖2 +

3ηcδ(5
α − 4)

α
St︸ ︷︷ ︸

=:Et

≤ E f(xt−1)− f? + (5η
2α − η) E‖ēt−1‖2 +

η

4
E‖∇f(xt−2)‖2 +

3ηcδ(5
α − 4)

α
St−1︸ ︷︷ ︸

=:Et−1

(−η4 + 15ηcδB2) E‖∇f(xt−1)‖2

+
5ηα

n
σ2 + 5ηcδ

(
(6ασ2 + 3ζ2) + 6σ2(1− α)t−2

)
≤ Et−1 −

η

4
(1− 60cδB2) E‖∇f(xt−1)‖2

+ 5ηασ2
(
1
n + 6cδ(1 + 1

α (1− α)t−2)
)

+ 15ηcδζ2︸ ︷︷ ︸
=:ηξ2t−1

.

Further, specializing the descent bound Lemma 9 and error bound Lemma 10 for t = 1 we have

E1 = E f(x1)− f? +
3η

2
E‖ē1‖2 +

η

4
E‖∇f(x0)‖2 + 3ηcδB2(

5

α
− 4)‖∇f(x0)‖2

≤ f(x0)− f? +
5η

2
E‖ē1‖2 − η

4
(1− 60cδB2) E‖∇f(x0)‖2 + η E‖m1 − m̄1‖2

≤ f(x0)− f? − η

4
(1− 60cδB2) E‖∇f(x0)‖2 +

5ησ2

n
+ 12cδη(2σ2 + ζ2 +B2‖∇f(x0)‖2)

= f(x0)− f? − η

4
(1− 60cδB2) E‖∇f(x0)‖2 + ηξ20 .

27

Published as a conference paper at ICLR 2022

Above, we defined ξ20 := 5σ2

n + 12cδ(2σ2 + ζ2 +B2‖∇f(x0)‖2). Summing over t from 2 until T ,
again rearranging our recursion for Et, and adding (1− 3cδB2) E‖∇f(x0)‖2 on both sides gives

(1− 60cδB2)
1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 4(f(x0)− f?)
ηT

+
1

T

T∑
t=1

4ξ2t−1

=
4(f(x0)− f?)

ηT
+

4ξ20
T

+
1

T

T∑
t=2

20ασ2
(
1
n + 6cδ(1 + 1

α (1− α)t−2)
)

+
1

T

T∑
t=2

60cδζ2

≤ 4(f(x0)− f?)
ηT

+
4ξ20
T

+ 60cδζ2

+ 20ασ2
(
1
n + 6cδ

)
+

120cδσ2

αT

=
4(f(x0)− f?)

ηT
+

120cδσ2

η8LT
+ η160Lσ2

(
1
n + 6cδ

)
+

4ξ20
T

+ 60cδζ2.

The last equality substituted the value of α = 8Lη. Next, let us use the appropriate step-size of

η = min

(√
4(f(x0)− f?) + 15cδ

L (ζ2 + 2σ2)

T (160Lσ2)
(
1
n + 6cδ

) ,
1

8L

)
.

This gives the following final rate of convergence:

1

T

T∑
t=1

E‖∇f(xt−1)‖2

≤ 1

1− 60cδB2
·
(

60cδζ2 +

√
160Lσ2

(
1
n + 6cδ

)
T

·
√

4(f(x0)− f?) + 15cδ
L (ζ2 + 2σ2)

+
32L(f(x0)− f?)

T
+

15cδσ2

T

+
20σ2

n + 12cδ(2σ2 + ζ2 +B2‖∇f(x0)‖2)

T

)
.

F UPDATES WITH RESPECT TO REVIEWS.

F.1 ADDITIONAL RELATED WORK

In this section, we add comments on works which are very close to this paper.

• Li et al. (2019) propose RSA for Byzantine-resilient distributed learning on heterogeneous data.
They introduce an additional `p-norm regularized term to the objective to penalize the difference
between local iterates and server iterate and show convergence of RSA for strongly convex local
objectives and penalized term. However, RSA cannot defend the state-of-the-art attacks like
(Baruch et al., 2019; Xie et al., 2020) as they didn’t utilize the temporal information. Compared
to RSA, our method does not assume strongly convexity and we consider more general cost
functions with no explicit regularized term. In addition, our method is shown to defend the
state-of-the-art attacks.

28

Published as a conference paper at ICLR 2022

• (Yang & Li, 2021) is a parallel work which uses buffer for asynchronous Byzantine-resilient
training (BASGD). The buffer and bucketing are similar techniques with vastly different motiva-
tions. The key difference between buffer and bucketing is that buffer is only reassigned when
timer exceeds a threshold while bucketing reshuffles in each iteration. Therefore, buffer does not
guarantee that partial aggregated gradients are identically distributed while bucketing does. In
addition, our theoretical analysis does not require bounded gradient assumption ‖∇f(x)‖ ≤ D
for all x.

• Wu et al. (2020) uses ByrdSAGA for Byzantine-resilient SAGA approach for distributed learning.
The key differences between ByrdSAGA and our work are as follows. In our setting, there are
two sources of variances of the gradients - intra-worker variance σ2 and inter-client variance ζ2.
We show that simply using worker momentum suffices to tackle the former and handling the
latter ζ2 is the main challenge. ByrdSAGA assumes that each worker only has finite data points
as opposed to the stochastic setting we consider. Hence they can use SAGA on the worker in
place of worker momentum to reduce the intra-client variance σ2. The effect of ζ2 (which is our
main focus) remains unaffected.
Further, they consider the strongly convex setting whereas we analyze non-convex functions.
Ignoring µ for sake of comparison, their Theorem 1 proves convergence to a radius of ∆1 = O(ζ2)
since always Cα ≥ 2. Thus, their rates are similar to (Acharya et al., 2021) and do not converge
to the optimum even when δ = 0. In contrast, our Theorem II proves convergence to a radius
of O(δζ2). We believe our improved handling of ζ2 can be combined with their usage of
SAGA/variance reduction to yield even faster rates. This we leave for future work.

29

