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1 DETAILED RESULTS

Here, we present a breakdown of the detailed results for the various models, presented in terms of the specific metrics reported
in their original study. This is in contrast to the result table found in the main paper, where all models are reported in terms of
RMSE. In table 2] of the main paper, we provide the results for GEN and CNP based on their original implementations, which
do not involve sharing the position encoding. However, for TFS and MSA, we include the results obtained with shared position
encoding. To ensure comprehensiveness and to differentiate the enhanced performance attributed to the latent representation from
that resulting from the improved data encoding approach, we also apply the shared encoding technique to GEN and CNP.

In most cases, we observe that employing a shared encoding for position tends to improve the performance of all models, except for
CNP where it seems to decrease the overall performance in some cases. Additionally, it seems that MSA surpasses its competitors
in the majority of instances, consistently exhibiting superior performance across various data sizes. Moreover, when the shared
encoding for positions fails to achieve the optimal performance, the model’s performance is generally comparable to that without
shared encoding, often falling within a standard deviation range.

2 DATASET DESCRIPTIONS

2.1 WIND NOWCASTING

The wind nowcasting experiment uses the same dataset as [Pannatier et al.| (2021)). It is available at: https://zenodol
org/record/5074237. It is an important task for ATC as it involves the crucial prediction of high-altitude winds us-
ing real-time data transmitted by airplanes. This prediction is essential for ensuring efficient airspace management the
airspace. It is important to note that in the vertical direction (z), the majority of wind measurements are typically taken
at elevated altitudes, specifically between 4,000 and 12,000 meters. Regarding the horizontal dimensions, the airspace ex-
tends over 600 km from north to south and approximately 500 km from east to west. As ground-based measurements
are not accessible at these heights, our dependence lies on the measurements gathered directly from airplanes. As planes
do not record the wind in the z direction, the input space corresponds to wind speed in the z,y plane I C R2, and the
output space is the wind speed measured later, @ C R2. Here the underlying space is European airspace represented
as X C R? In this particular setup, the models need to extrapolate in time, based on a set of the last measurements.

Airplanes measure wind speed with a sampling frequency of four seconds. We split
the dataset into time slices, where each slice contains one minute of data, such that - . .
each time slice contains between 50 and 1500 data points. We tried different time e M ‘Ic'gttl )
intervals but noticed that having a longer time slice did not improve the quality of U o : .
the forecasts. The objective for the different models is to output a prediction of the A A
wind at different query points 30 minutes later. We evaluate performance using the ) : )
Root Mean Square Error (RMSE) metric, as in previous work.

* o o

2.2 POISSON EQUATION Co-

This experiment uses the same dataset as |Alet et al.| (2019). It et .. S
is available at https://github.com/FerranAlet/graph_element_ . : ..t
networks/tree/master/data. The Poisson equation models the heat dif- -
fusions over the unit square with sources represented by ¢(z,y) € R and fixed

boundary conditions w € R. The equation is given by:

e
coo
o

Figure 1: A sample of the Poisson equation
dataset|Alet et al.[(2019). e represents the

1)2 :
(1) targets, The context values are comprised
1 of points on the boundaries and points on
the sources and sink are represented by ¢
which corresponds to their thermal coeffi-

cient.

P(x,y) =w if (z,y)
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https://zenodo.org/record/5074237
https://github.com/FerranAlet/graph_element_networks/tree/master/data
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Table 1: Results of the High-Altitude Wind Nowcasting, Poisson, Navier Stokes and Darcy Flow equation and the weather
forecasting task. Each model ran for respectively 10, 2000, 1000, 100, and 100 epochs on an NVIDIA GeForce GTX 1080 Ti. The
low number of epochs for wind nowcasting is due to the amount of data which is considerably larger than in the other experiments.
The standard deviation is computed over 3 runs. We choose the configuration of the models so that every model has a comparable
number of parameters. We underlying the best models for each size and we put in bold the best model overall. In this table, we
kept the results in the same metric as originally reported. The first half of the table corresponds to the case without the novel
encoding scheme, as opposed to the second one. In table[2] of the main paper, we recomputed all metrics in terms of Root Mean
Square Error (RMSE).

Wind Nowcasting Poisson Equation Navier Stokes Equation Darcy Flow Equation ERA S5
Model si Train Val Train Val Train Val Train Val Train Val
ode ¢ RMSE () RMSE () MSE (1) MSE (4) MSE (1) MSE (1) RMSE (1)E-4  RMSE () MSE ({) MSE (1)
Default encoding for positions
Sk 11.94+ 0.78 10.19+ 0.21 127+ .0179 130+ .0134 4854 .0033 4924 .0033 9.02+ 0.54 9.654 0.47 433+ 0.01 448+ 0.01
CNP 20k 10.194 1.83 10.114 0.20 .084+ .0057 1054 .0012 4384 .0015 4524 .0015 7.88+ 0.16 8714+ 0.11 4254+ 0.01 4.44+ 0.00
100k 10.174 1.24 10.20+ 0.26 .0214£ .0040 1054 .0024 .3984+ .0010 4304 .0010 6.934+ 0.08 8.174 0.06 4.17+ 0.01 443+ 0.01
Sk 11.024 3.19 9.84+2.92 .0114£ .0006 0174 .0011 3624 .0012 3654 .0012 8.49+ 0.17 9.254+0.18 4.324+ 0.02 447+ 0.02
GEN 20k 9.98+ 0.76 9.244+ 0.35 .006£ .0006 0204+ .0054 .3544 .0007 .3594 .0007 7.76+ 0.11 8.744 0.09 424+ 0.01 4.44+ 0.00
100k 9.56+ 0.21 9.23+ 0.44 011+ .0122 048+ .0389 .3394 .0006 .3554 .0006 7.01+ 0.26 8.664 0.09 4.10+ 0.01 4.46+ 0.00
Sk 9.864+ 0.21 8.754+0.14 .0224+ .0021 0554 .0248 3654 .0033 3674 .0033 6.50+ 0.60 7464 0.55 429+ 0.02 4.46+ 0.00
TFS (Ours) 20k 9.69+ 0.38 8.70+ 0.06 .005+ .0008 0174 .0014 3534 .0019 3574 .0019 5.48+ 0.10 6.69+ 0.14 4.08+ 0.03 4.38+ 0.01
100k 9.554+ 0.19 8.674 0.07 .0014£ .0001 0164+ .0045 3144 .0011 3504 .0011 445+ 0.17 747+ 0.24 3.784+ 0.01 442+ 0.01
Sk 8.864 0.01 8.404 0.10 .022+ .0062 0484+ .0186 3594 .0057 3614 .0054 6.91+ 0.50 774+ 0.48 428+ 0.02 4.444 0.02
MSA (Ours) 20k 7.944 0.03 8474 0.12 .005+ .0012 0474 .0107 3414 .0042 346+ .0042 5724+ 0.11 6.76+ 0.10 4.134 0.01 4.394 0.01
100k 6.67+ 0.02 8.98+ 0.22 000+ .0001 0304 .0081 3104 .0015 .3504 .0015 4914 0.17 7.33+£0.22 4.194 0.01 4414 0.01
Sharing encoding for positions

Sk 10.414 0.03 10.334 0.19 1544+ .0010 1654 .0023 7034 .0001 706+ 0.0003 16.94+ 0.06 17.264 0.04 4.38+ 0.00 4.53+ 0.01
CNP 20k 9.48+ 0.02 10.12+ 0.21 .133+ .0004 1604 .0011 7004+ .0001 706+ 0.0001 16.68+ 0.10 17.064 0.06 4.30+ 0.01 4.47+ 0.00
100k 8.60£ 0.05 10.264 0.24 1074 .0008 158+ .0006 .696+ .0001 7054 0.0001 16.36+ 0.02 16.87+ 0.02 4.2340.01 4.4340.01
Sk 10.044 0.13 8.794+0.23 .005+ .0004 0174 .0023 3694+ .0007 372+ 0.0008 5.93+0.15 6.834+0.17 442+ 0.01 4.54+ 0.01
GEN 20k 9.754 0.09 9.08+ 0.47 .003+ .0007 0184 .0036 3624 .0002 .366=+ 0.0000 5.65+ 0.06 6.754 0.05 4.36+ 0.01 4.50+ 0.01
100k 9.844 0.02 9.07+ 0.00 .001+£ .0000 .0194 .0008 3454 .0005 3614 0.0000 497+ 0.22 7.194 0.12 4.34+ 0.02 4.50+ 0.01
Sk 8.784+ 0.02 8.304 0.03 .009+ .0015 0254+ .0121 3644 .0024 3654 0.0026 6.744 0.93 7.584+ 0.84 441+ 0.01 4.53+ 0.01
TFS (Ours) 20k 7.944 0.03 8.204 0.04 .002+ .0002 .010+ .0013 3524 .0012 .3554 0.0009 5.56+ 0.10 6.64+ 0.14 4.26+ 0.01 445+ 0.01
100k 6.57+ 0.02 8.384+0.13 .000+£ .0000 0354 .0054 3124 .0006 .3494 0.0015 451+ 0.24 7.25+ 0.19 4.094+ 0.01 4.41+ 0.00
Sk 8.54+ 0.03 8.07£ 0.11 .008+ .0024 0144 .0014 3554 .0013 3574 0.0013 6.74+ 0.61 7.51% 0.61 4.384+ 0.03 4.524 0.03
MSA (Ours) 20k 7.734 0.02 7.98+ 0.03 002+ .0003 007+ .0004 3424 .0014 347+ 0.0016 5.79+ 0.34 6.74+ 0.38 4.2540.01 4.444 0.01
100k 6.58+ 0.05 8.184 0.14 .000£ .0000 010+ .0017 3104 .0008 3474 0.0008 476+ 0.12 6.97+ 0.24 4.14+ 0.02 4.40+ 0.01
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It should be noted that the boundary constant and sources function ¢(x, y) conditions
can change for each sample.

The dataset used in |Alet et al.| (2019) uses three dimensions for the context values ¢, € I C R3: either sources values ¢(z,y) = p
inside the domain encoded as c,,c, = (z,y), (i, 0,0) or boundary conditions ¢(z,y) = w on the boundaries, encoded as
Cz, ¢y = (2,9), (0,w, 1). The target space is one-dimensional t,, € @ C R and corresponds to the solution of the Poisson equation
at that point. A sample is depicted in fig. [T]

We ran all models for three different sizes on this particular setup and found that MSA with the novel encoding scheme outperform
other models by a significant margin as can be seen in table[I] We initialized GEN with a 7 x 7 regularly initialized grid on the
[0, 1]? as in the original work|Alet et al.[{(2019).

2.3 NAVIER-STOKES EQUATION

Similarly to the darcy flow task, we adapted the Navier-Stokes equation as described in|Li et al.| (2021)) to an irregular setup.

The Navier-Stokes equation describes a real fluid and is described with the following PDE :

dyw(w,t) +u(x,t) - Vw(z,t) = vAw(z,t) + f(z),z € (0,1)* ift € (0,T]
V- u(z,t) = 0,2 € (0,1)2 ift €[0,7) )
w(z,0) = wo(z) if z € (0,1)2

For more detailed information regarding the notation, please refer to the original work by Li et al. L1 et al.| (2021)), specifically
section 5.3.

In this study, our objective is to forecast the future state of the vorticity quantity, specifically 50 time steps ahead, based on
measurements of vorticity at different spatial locations. This approach differs from the original work, where the model was
provided with ten initial vorticity grids and required to predict the complete system evolution.

To create our dataset, we subsampled the complete dataset, which consisted of the evolution of the Navier-Stokes equation solved
by a numerical solver. The full dataset had dimensions of 1000 x 1024 x 1024.

For our purposes, we selected pairs of slices that were separated by 50 timesteps and performed spatial subsampling. We took
64 context measurements and 256 targets as our subsampled data points. This experiment adapts the dataset available in |Li
et al.| (2021). It is available atfhhttps://github.com/neural-operator/fourier_neural_operator and can be
processed with the code given to rearrange it in the irregular setup.

2.4 DaRrcy FLow

We evaluated the performance of various models in solving the Darcy Flow equation on the unit grid with null boundary conditions,
as described in |Li et al.| (2021)). Specifically, we aimed to predict the value of the function u, given the diffusion function a, with
the two related implicitly through the PDE given by:

{‘V a(@)Vu(r) =1 ifz € (0,1)° 3)

u(z) =0 if x € 9]0, 1)2.

The dataset used in our study is adapted from that used in L1 et al.[(2021), and originally generated by a traditional high-resolution
PDE solver. The dataset consists of a 1024 x 1024 grid, which was subsampled uniformly at random and arranged into context-
target pairs. The context is comprised of the evaluations of the diffusion coefficient: (c,,c,) = ((x,y), a(z,y)), and the target is
the solution of the Darcy Flow equation at a position, (t;,t,) = ((z,y), u(z,y)).

The results are presented in table|l} they are coherent with the rest of the experiment and show that the MSA and TFS models are
able to outperform all competing models. We used the same initialization for GEN as for the Poisson Equation.

This experiment adapts the dataset available in |[Li et al.| (2021). It is available at https://github.com/
neural-operator/fourier_neural_operator|and can be processed with the code provided to rearrange it in the
irregular setup.

2.5 Two-DAYS WEATHER FORECASTING

In this task, we want to evaluate our models on the task of two-days weather forecasting based on irregularly sampled data in
space. The requested data collection description focuses on climate reanalysis from the ERAS dataset, which is available through
the Copernicus Climate Data Store (CDS). The dataset contains various parameters related to wind, surface pressure, temperature,
and cloud cover.


https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
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(a) A sample of the Darcy Flow dataset (2021). Blue dots (b) A sample of the Navier-Stokes dataset (2021). Blue

correspond to the context set and orange dots to the targets. dots correspond to the context set and orange dots to the targets.

To access the data, please visit the following URL: https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis—eraS5-single—levels?tab=form.

We selected the following variables:

* 10m u-component of wind: This refers to the eastward wind component at a height of 10 meters above the surface.

* 10m v-component of wind: This represents the northward wind component at a height of 10 meters above the surface.
* 100m u-component of wind: This denotes the eastward wind component at a height of 100 meters above the surface.

* 100m v-component of wind: This signifies the northward wind component at a height of 100 meters above the surface.
* Surface pressure: This represents the atmospheric pressure at the Earth’s surface.

* 2m temperature: This indicates the air temperature at a height of 2 meters above the surface.

* Total cloud cover: This refers to the fraction of the sky covered by clouds. The data collection includes measurements for
all times of the day and all days available in the dataset. However, for training purposes, we selected the data from the
year 2000. For validation, we use the data from the year 2010, specifically the months of January and September.

Next, we proceeded to extract the corresponding grib files. To create our dataset, we paired time slices that had a time difference of
two days, equivalent to 48 time steps since ERAS data has a one-hour resolution over the whole world.

For the context slice, we performed subsampling at 1024 different positions and retained all seven variables mentioned earlier. As
for the target slice, we subsampled it at 1024 different positions and kept only the two components of the wind at 100m.

3 SPECIFIC ASPECTS OF OUR APPROACH IN RELATION TO EXISTING WORKS

In our research, we address a distinct challenge that sets our work apart from conventional mesh-based simulators
(2020); Janny et al.| (2023)); [Li et al.| (2022). Our focus is on extrapolating sets of sparse and variably-positioned measurements, a
context markedly different from the consistent mesh structures employed in traditional approaches. Unlike mesh-based models
where values are accessible at fixed points on an irregular mesh, our method tackles scenarios where the quantity and locations of
measurements can change dynamically from one data set to another. This unique aspect of our work necessitates a departure from
the conventional mesh framework. Mesh-based simulators, while effective in their domains, are not equipped to handle the sporadic
and non-uniform nature of our data. For instance, in applications such as airspace monitoring, data points represent measurements
taken only where planes are present, leaving vast areas without data. Our methodology, therefore, diverges fundamentally from



https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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Dataset dim(X) dim(I) dim(Q) # Train. points # Val. points URL
Wind Nowcasting 3 2 2 26.956.857 927.906 Pannatier et al.[(2021) Dataset page
Poisson Equation 2 3 1 409.600 102.400 Alet et al.[{(2019) Github Repository
Navier Stokes Equation 2 1 1 48.883.20 11.673.600 Li et al.[(2021)) Github Repository
Darcy Flow Equation 2 1 1 409.600 102.400 Li et al.| (2021)) Github Repository
ERAS 2 7 2 8.648.704 2.107.392  |Hersbach et al.| (2023))(Copernicus Climate Dataset Store
Random 2 1 1 640.000 64.000 Randomly generated
Sine 2 1 1 640.000 64.000 Randomly generated

Table 2: Description of the different datasets used in this study.
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Figure 3: Displaying the importance given to points in the context to do the prediction for the different models for a given query
point (orange). We used the norm of the input gradients for that purpose and highlight the context values that have the largest
gradient with respect to the output. The opacity of the dots corresponds to the relative magnitude of the input gradients compared
to other points in the context.

mesh-based techniques, as it requires innovative handling of sparse and irregular data inputs, rather than relying on a fixed, uniform
mesh structure.

Furthermore, our approach markedly differs from trajectory prediction models|Yuan et al.|(2021); [Nayakanti et al.| (2023)); \Girgis
et al.| (2022). While these models excel in forecasting future points along established trajectories, our work diverges in both intent
and application. Our primary concern is not the sequential prediction of trajectories but rather the interpretation and forecasting of
phenomena in a spatially and temporally sparse environment. In the context of wind nowcasting, for example, our model excels at
processing limited and scattered data points from multiple trajectories to generate a comprehensive forecast. This capability to
assimilate sparse measurements from varied locations and synthesize them into a coherent prediction sets our work apart from

traditional trajectory-focused models. These models, such as Wayformer [Nayakanti et al.| (2023)) and Agentformer Yuan et al.

(2021), are primarily designed for time series forecasting and trajectory completion.

4  ATTENTION MATRIX FOR WIND NOWCASTING

For all models, we can plot the norm of the input gradients to see how changing a given value would impact the prediction [fig. [3].
We see that Transformers seem to find a trade-off between taking into account the neighboring nodes and the global context.


https://www.idiap.ch/en/dataset/skysoft
https://github.com/FerranAlet/graph_element_networks/tree/master/data
https://github.com/neural-operator/fourier_neural_operator
https://github.com/neural-operator/fourier_neural_operator
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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Figure 4: Context and targets represented in wind speed and 3D space. Both the context and targets correspond to 1-minute slices
of data. The targets capture wind measurements recorded 30 minutes following the context data. Additionally, the forecasts
generated by the MSA and GKA models are depicted. Notably, the GKA model is confined to predicting within the convex hull of
the context values, which is visually highlighted in grey. Conversely, the MSA model is unrestricted by this limitation and can
make predictions beyond the convex hull of the context values.

5 COMPARISON WITH GRAPH KERNEL AVERAGING

Smart averaging strategies such as GKA are limited by design to the range of the values in their context. However, these baselines
are useful as they are not prone to overfitting and in the case of time series forecasting (if the underlying variable has some
persistence), the last values would in general be the best predictor of the next value. We hypothesize that over sufficiently short
horizons, these methods would achieve performance similar to that from more complicated models, but when the prediction
horizon rises, this design limitation would become more pronounced.

Since, for extrinsic forecasting, target points need not lie in the convex hull of context points, the greater flexibility of MSA and
TFS can make correct forecasts that are impossible with GKA. fig. fa]demonstrates this fact, with a plot of the target variable, the
context points and the context convex hull in wind speed space.

But greater capacity means also more failure modes. As we saw in the metrics table of table [3]of the main paper, MSA and TFS
are the only models to outperform GKA whereas other models, even if they are more flexible, fail to beat this baseline. On average
27% of the predictions were outside the convex hull of the context. In fig. 4c|we analyze the percentage of measurements outside
the convex hull produced by the different models. We can see that GKA is limited as 100% of the measurements lies within the
convex hull whereas the other models can compensate and predict values outside it.

5.1 DECODER AND CONDITIONING FUNCTION

In the main paper, we presented a comparison of the key distinctions between our attention-based architectures. However, it could
be that the performance differences observed could be attributed to minor variations in the architecture design. For the sake of
completeness, in this section, we provide experimental results to address this aspect by comparing the remaining differences
between GEN and TFS. Specifically, we focus on analyzing the impact of the number of decoder layers and the conditioning
function. It is important to note that this analysis does not apply to MSA, as it does not possess an encoder-decoder structure.

GEN and TFS differ not only in their latent representation but also on two other points: (1) the way that they access the encoded
information in the decoder and (2) how much computing power is used in the decoder stack.

In all three models, we tried using either a distance-based function or cross-attention to combine the target position with the
encoded latents. CNP concatenate the same context vector to all target queries, which we model as equivalent to averaging the
latents based on the distance in the case that there is only one latent.

Specifically, each latent is associated with a position 1, in the underlying space with corresponding value 1,. Conditioning is made
by averaging the latent features based on their distance with the query t,. Its formula is given by:

=Y r(dist(ly, ta))l, (4)
1€latents

Where r : R — [0, 1] is a function that maps distances to weights, and 1,, represents the position associated with the latent nodes
with value 1,,. This vector z is then concatenated to the target position t, and fed to the decoder which is a MLP in this case.
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Table 3: Results of the ablation of the conditioning function used to combine the latents with the target position. We adapted the
architecture so that they used both a distance-based conditioning function, which combines the query position with a weighted
average of the nearest latents and standard cross-attention. We show in italics hybrid architecture where we had to switch the
default conditioning method. For GEN and CNP replacing the conditioning method does not impact the performance, but for TFS
switching to a distance-based conditioning function impacts the performance drastically.

Distance- Cross-

Model based attention

CNP A15+.015 119+ .014
GEN .024 £.004 .022 +.006
TFS 042 £.023 020 £+ .011

Table 4: Results of the decoder-layer ablation. One difference between TFS and GEN is that by default TES use multiple layers in
its decoder whereas GEN uses one, and delegates all processing to the encoder. We see that having multiple decoder layers helps
the transformer whereas it impacts the performance of the GEN.

# Decoder layers

Model 1 2 4

GEN .021 £.002 .040 +£.012 .106 £ .004
TFS .020 £.011  .019+.005 .013 +.001

GEN use this distance-based aggregation function by default whereas TFS uses cross-attention. We tried using cross-attention for
CNP and GEN and using the same distance-based aggregating function for TFS using the distance between context position and
target position as a reference for this scheme. For GEN and CNP using cross-attention give approximately the same results, but
using distance-based conditioning for TFS hurts the performance significantly.

We also ran ablations that created hybrid cases for both transformers and GEN and concluded that adding decoding layers helped
TFS to reach better performance. Adding layers to the GEN decoder drastically reduces model performance, which seems to be
coherent with the fact that GEN were shown to be more prone to overfitting in the results section.

Finally, we want to highlight that MSA outperforms all the models presented in this section by a large margin table

6 WIND NOWCASTING METRICS
This section defines the metrics used for wind nowcasting.

Root Mean Square Error (RMSE) It takes the square root of the square distance between the prediction and the output. It has
the advantage of having the same units as the forecasted values.

Su (b — t)?

N (5)

RMSE({,t) =

Mean Absolute Error for angle (angle MAE) It is interesting and sometimes more insightful to decompose the error made by
the models in their angular and norm components. This is the role of this metric and the following.

angle MAE(, ) = ||(a(t) — a(t))]|L, (6)
where « (:Z = (;)) = arctan(y, z) * 32
Mean Absolute Error for norm (norm MAE) Following the explanation of the last paragraph:

normMAE(tA7t):Z|ka\|2—Htk”2| D
k

Relative Bias (rel BIAS) x,y Additionally, we used weather metrics as in|Ghiggi et al.[|(2019). The relative bias measure if the
considered model under or overestimate one quantity. It is defined as:



Under review as a conference paper at ICLR 2024

. th —t
rel BIAS(, ) = W ®)
k

Ratio of standard deviation (rSTD) The ratios of standard deviation indicate whether the dispersion of the output of the model
matches the target distribution. It has an optimal value of 1.

std(f)

rSTD(#,t) = ()

€))

NSE The last domain metric used is the Nash-Sutcliffe efficiency (NSE), which compares the error of the model with the average
of the target data. A score of 1 is ideal and a negative score indicates that the model was worse than the average prediction on
average.

MSE(%, t)

NSE(t,1) = 1 = {SE (. mean(®)

(10)

7 INFLUENCE OF THE TIGHTNESS OF THE MEASUREMENTS ON THE PERFORMANCES

To evaluate the influence of the tightness of the measurements on the results we designed the following experiment: We start with
a pair of context (c,, ¢, ) and target points (¢, t,). We pick one point from the context and restrict the context to a small number
of measurements close to this point. Then, we calculate the error made by the model when it is given only this restricted context
and rank them by their distance to the context’s center. As the dimensions (longitude, latitude, altitude) differ, we first normalized
the data along each axis. We repeat this process and average the results.

Table 5: Influence of the tightness of the measurements on the performance. We restrict the context to measurements that are close
to the query point and then measure the error as a function of the distance from this query point averaged over the whole dataset.
We estimate the standard deviation using three random seeds.

Normalized Dist MSA TFS

0.5-1.0 5.56 +0.49 7.73 +0.37
1.0-1.5 6.62 £+ 0.35 7.35 £ 0.53
1.5-2.0 7.57 +£043 7.87 +0.36
2.0-2.5 9.52 +0.47 9.48 4+ 0.66
2.5-end 10.35+049 10.53 £0.61

We see that the error increases with the distance to the context. Now in practice, the context is not restricted and contains points all
over the space (so the mean minimum normalized distance to the target points is usually often below 1.0)

We assessed general uncertainty by training the model using various random seeds, resulting in an ensemble of models from which
we can determine the standard deviation and added it to the results table of the previous experiment.

8 INFLUENCE OF THE TARGET POSITIONS

In this section, we assess the impact of the target position on the training of the MSA model.

The context data for the Poisson equation is heavily prescribed (where context points belonged to the source or sink or boundary
conditions), while for the Darcy Flow equation, we constructed a similarly-shaped data set by subsampling the data set from Alet
et al.[|(2019) to create the context and targets. Thus, the Darcy flow test problem gives an ideal testbed for examining the influence
of target positions on the training. To examine the impact of the context position, we designed an additional experiment where we
sampled the context from the bottom left quadrant of the unit cube and the targets from the upper right quadrants of the unit cube.
We conduct our analysis for small (S5k parameters) and large (100k parameters) models. We report the test loss as a function of
the percentage of the context from the upper-right quadrants (where all targets are located, the remaining from the bottom-left
quadrant).

In the first column (0% of the data from the first quadrant), we see that the MSA model struggled to learn when the context and
targets are disjoint. The error improves with greater overlaps between context and target, with p = 100% corresponding to the case
in the paper (albeit on one-quarter of the data). Similar dynamics hold for both model sizes. We believe that this is due to the
Darcy Flow simulation being highly location-dependent, as can be seen in some examples from the dataset fig.
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Table 6: Influence of the target position on the training. We report the test error for the MSA model at two different sizes. We
devised an experiment in which we extracted the context from the bottom left quadrant of the unit cube, while the targets were
sampled from the upper right quadrants of the same unit cube.

0% 2% 25% 50% 100%

MSA 5k 0.14 0.15 0.14 0.09 0.03
MSA 100k 0.14 0.14 0.13 0.09 0.03

Regarding the training performance, we noticed no substantial difference in the total time to a solution, they all took approximately
1000 epochs in all cases. Larger models were always able to overfit the data.

Table 7: Influence of the target position on the training. We report the train error for the MSA model at two different sizes. Both
models were able to overfit the data.

0% 2% 25% 50% 100%

MSA 5k 0.07 0.07 0.07 005 0.02
MSA 100k 0.00 0.00 0.00 0.00 0.00

9 DIFFERENT MESSAGE PASSING SCHEME

We try here different message-passing schemes even one using attention, to help us demonstrate the fact that the whole family
of models that encodes the space as a single graph suffers from the same bottlenecking effect. Here are the results of the wind
nowecasting task:

Table 8: Performance of GEN with different message passing schemes for the wind nowcasting task. Various message-passing
schemes, including those with attention, were explored using PyTorch Geometric [Fey and Lenssen| (2019). The best-performing
GEN model with the default message-passing scheme is indicated with a reference line. While certain schemes showed improve-
ments over GEN’s performance, the overall performance remained relatively consistent and was still outperformed by MSA. For
additional information on the different message-passing schemes and related references, please refer to the PyTorch Geometric
documentation.

Model Score
TransformerConv  9.2830
GATv2Conv 9.3353
GeneralConv 9.3699
GATConv 9.7744
SAGEConv 9.7837
ARMAConv 9.8391
TAGConv 9.8653
SGConv 9.9465
SuperGATConv 10.0961
GCNConv 10.1344
LEConv 10.6062
GENConv 23.9847

Although certain message-passing schemes enhance the performance of the GEN model, it still falls short of the perfor-
mance achieved by MSA. We attribute this difference to the bottlenecking effect caused by the latent graph. For addi-
tional information on the various message-passing schemes and relevant references, please consult the PyTorch Geometric
documentation available at https://pytorch—-geometric.readthedocs.io/en/latest/modules/nn.html#
convolutional-layers.

10 BROADER IMPACTS

We do not anticipate any significant adverse effects on society due to this work. Generally, having an additional method for weather
nowcasting may lead to an increase in computational resources required, but this is a common consequence of many deep learning
systems.


https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

Under review as a conference paper at ICLR 2024

We believe that enhancing the reliability of weather forecasts and dynamical systems has a more positive impact on society. By
improving the accuracy and precision of these predictions, we can provide valuable information for various sectors, such as
agriculture, transportation, disaster management, and overall planning and decision-making processes.

11 LIMITATIONS

Our method, like other attention-based models, suffers from quadratic scaling. In the case of MSA, it is slightly more com-
putationally intensive compared to TFS due to the combination of target and context in the same sequence. This results in an
attention mechanism that scales with O((N, + N;)?), which is asymptotically equivalent to the scaling of transformers, which is
O(N? 4+ N? + N.N;), but in practice introduces an additional N, N; term. However, in all our experiments, this computational
overhead did not pose a problem. We acknowledge the issue in the scaling of the model and refer to possible solutions outlined in
the related work to address this challenge.

Another drawback of this study is the absence of a comparison between the models and other established models used for modeling
dynamical systems on a grid, as discussed in the work by [Li et al.|(2021). We anticipate that our approach may not perform as
effectively as competing models on grids due to two reasons. Firstly, the previously mentioned scaling issue becomes significant
when dealing with larger grid sizes, such as 1024 x 1024 grids. Additionally, our approach lacks certain inductive biases that
aid in grid-based modeling. Nonetheless, we believe that attention-based models still hold promise for grid-based systems, as
demonstrated by the success of Vision Transformers (ViT) in other domainsDosovitskiy et al.|(2020). However, tokenization may
be necessary for their effective implementation.

12  EXPERIMENT AND TRAINING DETAILS

In this supplementary material, we provide the code required to process the dataset and reproduce the experiments. We utilized
Hydra as a configuration manager [Yadan| (2019) and include the precise configuration for each case. The experiments were
executed multiple times on a GPU cluster, but each experiment can be conducted on a single GPU in a relatively short timeframe,
ranging from a few hours to a maximum of a few days.

13 ERROR BARS

We ran multiple runs of our experiments and report the standard deviation in all concerned tables.

14 AMOUNT OF COMPUTE NEEDED TO REPLICATE THE EXPERIMENTS

Training smaller models (5k, 20k) usually takes a few hours. Training larger models (except for CNP which is considerably faster)
runs in at most two GPU days. We estimate the number of GPU days to replicate all experiments for all models to be on the order
of 100 GPU days.

15 REPRODUCTIBILITY

We provide the link to the dataset and the whole code base for processing it and running the experiments.

16 LICENSES

All concerned databases are openly accessible on the web and have permissive licenses, we give a link to each dataset in table 2]
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