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ABSTRACT

The motif scaffolding problem, crucial in drug and enzyme design, involves creating
a scaffold to support one or more specified motifs. Existing methods employ the
paradigm of inpainting, thereby limiting their applicability to scenarios where
only a single motif is present or the positions between multiple motifs are known.
However, in many significant scenarios, the positions between motifs are unknown,
leaving the multi-motif scaffolding problem open. To tackle this challenge, we
introduce a protein diffusion model called MoDiff. During the diffusion process,
MoDiff implicitly assigns motifs to the protein backbone, thereby achieving the
automatic design of relative positions among motifs. Our experiments demonstrate
that MoDiff can: 1) solve the multi-motif scaffolding problem even when the
positions between motifs are unknown, and 2) generate diverse scaffolds based on
multiple given motifs. This indicates that MoDiff is a potential general solution to
the multi-motif scaffolding problem.

1 INTRODUCTION

Protein design plays a crucial role in drug development and enzyme design, often abstracted into the
motif-scaffolding problem (Procko et al., 2014; Correia et al., 2014; Jiang et al., 2008; Siegel et al.,
2010). Here, ‘motif” refers to specific functional segments of protein structures. The objective of
this problem is to devise a scaffold that supports designated motifs, thereby imparting the desired
functionality to the designed protein. Recently, protein design approaches based on diffusion
models (Song et al., 2021) have made significant strides in generating scaffolds for single motif. For
instance, RFdiffusion (Watson et al., 2023), employing the inpainting paradigm, treats the given motif
as the known part of the protein, with the remaining amino acids treated as inpainting content to
generate the corresponding scaffold.

However, existing methods face significant limitations when applying the inpainting paradigm to
the design of scaffolds for multiple motifs (introduced later). At the same time, the multi-motif
scaffolding problem holds paramount importance in the design of antibodies and enzymes (Sec.2.1),
as proteins frequently contain more than one motif. Consequently, identifying a general solution for
the multi-motif scaffolding problem holds great significance.
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Figure 1: Challenges of multi-motif scaffolding problem. A) illustrating the uncertainty in the
spatial relationship between motif A and motif B , presenting various possible relative poses. B)
depicting the undefined amino acid correspondence 71, 2 between the motif and the protein.
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The limitations of existing methods in addressing the multi-motif scaffolding problem can be primarily
attributed to two aspects, as shown in Fig. 1. On one hand, the inpainting paradigm (Watson et al.,
2023) necessitates a defined and rational relative positioning of motifs, enabling the generation of a
scaffold by treating multiple motifs as a “single entire motif”. On the other hand, in many multi-motif
scaffolding problems (Sec.2.1), the positions between motifs are unknown and need to be designed,
posing a challenge for existing methods. This challenge persists even in the presence of alternative
motif-scaffolding approaches like Chroma (Ingraham et al., 2023) and SMCDiff (Trippe et al., 2022).
As a result, addressing the multi-motif scaffolding problem still demands extensive experimentation
and expert knowledge.

In this paper, we introduce a motif-conditioned generation model called MoDiff. MoDiff automati-
cally establishes the sequential and spatial relative positions between motifs, addressing the challenge
of unknown motif positions and providing the capability to generate diverse and designable scaffolds.
The core concept of MoDiff differs from inpainting. Through learning from data distributions, the
MoDiff network guides motifs to rational positions on the protein backbone during the diffusion
process, achieving the automatic design of relative positions among motifs.

However, we observed that traditional cross-attention methods are ineffective in guiding motif gener-
ation. To address this issue, we propose an implicit matching module. Specifically, during training, as
we utilize randomly cropped segments from the protein as virtual motifs, the correspondence between
motifs and the protein backbone is known. Consequently, within this module, this correspondence is
leveraged to provide matching supervision between motifs and the protein backbone, guiding the
model in placing motifs at reasonable positions along the backbone. Additionally, we introduce a
motif reconstruction loss to further guide motif generation, ultimately enhancing the success rate of
scaffold design.

In silico experiments demonstrate that MoDiff, when confronted with diverse motifs, exhibits the
capability to 1) effectively design the positions between motifs and 2) generate diverse and designable
scaffolds. Interestingly, we observe a significant increase in the novelty of proteins generated by
MoDiff compared to the unconditioned baseline, VFN-Diff (Mao et al., 2023). This phenomenon
arises because, in cases where specified motifs are sourced from different proteins, there may not be
any known protein containing the given motifs simultaneously. Consequently, the proteins designed
by MoDiff with a higher probability differ from all known proteins. Next, ablation experiments
indicate the effectiveness of the motif reconstruction loss and implicit matching module, significantly
enhancing the success rate of design. Those suggest that MoDiff represents a potential general
solution to the multi-motif scaffolding problem. The contributions of this study can be summarized
as follows:

* We highlight the limitations of existing methods in addressing the multi-motif scaffolding
problem and showcase the promising prospects of deep learning approaches in this domain.

* We introduce MoDiff, a method capable of efficiently designing proteins with multiple
motifs. Experimental results support MoDiff as a potential general solution to the multi-
motif scaffolding problem.

* The proposed implicit matching module and motif reconstruction loss effectively enhance
the success rate of design.

2 RELATED WORK

2.1 MULTI-MOTIF SCAFFOLDING PROBLEM

Many protein design problems are formulated as the multi-motif scaffolding problem (Cao et al., 2022;
Wang et al., 2022; Yang et al., 2021; Sesterhenn et al., 2020; Linsky et al., 2020; Wang et al., 2022).
For instance, 1) a protein (Roy et al., 2023) with high selectivity is designed by incorporating multiple
known binding motifs, and 2) through expert knowledge, two EF-hand motifs are successfully
integrated into a protein (Roel-Touris et al., 2023) to enhance enzyme activity. Notably, in many
cases (Roy et al., 2023; Roel-Touris et al., 2023; Davila-Hernandez et al., 2023; Jiang et al., 2023), at
least one position, either in terms of spatial or sequential relative positions between motifs, remains
uncertain. While some problems under this circumstance can be addressed, it still requires extensive
trial and error, human effort, and expert knowledge. Moreover, these methods exhibit significant
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limitations (Gelman & Gruebele, 2014; Tischer et al., 2020; Wu et al., 2021; Tischer et al., 2020;
Huang et al., 2022a), especially when faced with situations lacking suitable templates and references
in the Protein Data Bank (PDB). In contrast, MoDiff presents a potential general solution that does
not necessitate expert knowledge.

2.2 DIFFUSION MODELS FOR MOTIF SCAFFOLDING

With the emergence of numerous protein diffusion models (Wu et al., 2022; Yim et al., 2023;
De Bortoli et al., 2022; Huang et al., 2022b; Anand & Achim, 2022; Lee et al., 2023; Lisanza
et al., 2023; Martinkus et al., 2023), protein design has witnessed a revolutionary paradigm shift.
Motif-scaffolding stands as a central task in protein design, with various diffusion model methods
addressing this challenge over time. In SMCDiff (Trippe et al., 2022), the authors initially train an
unconditionally generated protein backbone diffusion model, ProtDiff. Subsequently, they introduce
guidance for motif generation based on ProtDiff. Chroma (Ingraham et al., 2023) adopts a similar
paradigm, further incorporating various types of guidance. RFdiffusion (Watson et al., 2023), on the
other hand, employs a different inpainting paradigm, treating motifs as given content and generating
scaffolds as inpainting components. However, these methods face a common limitation when
designing scaffolds to support multiple motifs: the inability to design the positions between motifs,
requiring predetermined rational positions for motifs. Nevertheless, as mentioned, determining the
positions between motifs is often challenging, restricting the applicability of these methods.

3 PRELIMINARIES

3.1 PARAMETERIZED REPRESENTATION

Proteins typically consist of /N amino acids, and the backbone of each amino acid is composed of four
atoms: C, C,, O, N. Following the approach of AlphaFold 2 (Jumper et al., 2021), a deterministic
frame T' € SE(3) can be established for the atoms C, C,, and N through the Gram—Schmidt process.
Consequently, -th amino acid can be represented by a backbone frame 7; € SE(3), and the structure
of the protein backbone is parameterized as N frames T = [T}, T3, ..., Tn] € SE3)N. In previous
protein studies, specific segments with distinct biological functions were identified. Any of these
segments can be referred to as a motif, denoted as T = [T, TsM ... . T{{] € SE(3)M. Here, M
represents the number of amino acids in a motif. As the motif is a segment within the protein T, an
alignment permutation 7 of the protein T exists such that T™ = T. Starting from this point, 7
represents a specific index permutation of amino acids.

3.2 MULTI-MOTIF SCAFFOLDING PROBLEM

Given the structures of multiple motifs, the objective of multi-motif scaffolding is to sample a protein
of length N that incorporates the given motifs. For the sake of brevity, we will describe the case of
having two motifs from this point onward, but these concepts can be straightforwardly extended to
scenarios with more motifs.

Definition 1. (Multi-motif Scaffolding Problem). Given two motifs TM € SE(3)M LM ¢
SE(3)M2 the task is to sample a protein structure T = [Tl, Tg, .. TN] € SE(3)" from the condi-

tional probability distribution pg(T|TM1, TM2), where T contains the motifs within the protein
structures. Here, M, and M> represent the numbers of amino acids in the two motifs, respectively.

Intractability. The structure of proteins must satisfy the natural constraints, meaning not all protein
structures are physically viable. This necessitates the proper arrangement between motifs T/
and TM2; otherwise, the corresponding protein T may not exist. However, 1) TM: and TM? are
respectively defined with respect to two distinct global frames 7!, 7¢> € SE(3), meaning that the
reasonable spatial relationship between T™M1 and T™M> is unknown and must be systematically
designed. 2) The amino acids correspondence 7 between the motif and the protein is also unknown,
requiring a method to establish this correspondence. For instance, the design of a rational slice
index 7 is necessary to ensure that motif T aligns appropriately with a segment of protein T,
simultaneously ensuring the existence of the protein. Similarly, a corresponding 72 also needs to be
designed for motif T2,
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Figure 2: The MoDiff pipeline. A) The framework of MoDiff. T and T2 represent the
given motifs. T(*) denotes the protein backbone with noise, depicted using frames (Sec.4.2). B)
The diffusion process, with tp,, indicating the maximum number of noise-injected steps. T (tm)
represents pure noise (Sec.3.3). C) Implicit Matching Module, responsible for matching the provided
motifs to the given backbone(Sec.4.3).

Evaluation. To assess the presence of a specified motif, e.g. T, in the generated protein, we
utilize the root mean squared distances (RMSD) of the motif, denoted as RMSD ,,tif, to measure the
structural similarity between the generated structure and the provided motif structure. If RMSD 3¢
is < 1 A, we consider the generated structure to contain the specified motif, as 1A represents
atom-level resolution.

Definition 2. (Motif RMSD). RMSD,,,.if represents the RMSD between a motif, e.g. T, and a
generated protein, e.g. T , after finding an optimal matching alignment (Ingraham et al., 2023). This
optimal alignment encompasses both spatial and sequential alignments. Spatial alignment involves
identifying the optimal transformation 7 aligning the motif with the protein. Sequential alignment
entails finding the optimal aligning indices 7 on residue sequences among all possible permutations
II. This can be formulated as:

o . . ||XM_TaO)A(ﬂ-a||
RMSDpotit = min min NTi ()

where x € RV *3 represents the coordinates of all C,, atoms in the generated protein T, and the
coordinates of the C,, atom in the ¢-th amino acid are the origin of the amino acid frame Ti, i.e.the
translation component of the frame. Similarly, x,, € R¥*? is the coordinates of all C,, atoms in
the motif, i.e.the origin of T™. 7% is a set of indices that extracts the elements corresponding to the
motif x, from the protein X. o represents a transformation operation.

3.3 SE(3) DIFFUSION MODEL FOR PROTEIN GENERATION

In our work, we adopt the paradigm of SE(3) diffusion (Yim et al., 2023), and we briefly review it
here. For more detailed information, please refer to the original paper. The goal of SE(3) diffusion is
to model the distribution of the data on the SE(3) manifold. This method is built upon the Rieman-
nian (Do Carmo & Flaherty Francis, 1992) score-based generative modeling approach (De Bortoli
et al., 2022; Huang et al., 2022b), where a score network is trained to minimize a denoising score
matching (DSM) loss:

L(8) = Ererio,m)Ep, (x)[Me| Vx log pt (X) — so(X, 1) I3] (2)

Here, t represents the diffusion time step, and 7 is the maximum time step. \; denotes a weight
associated with time ¢. In this context, the uppercase X represents a random variable, distinct from
the lowercase x used earlier to denote the coordinates of C,, atoms. The score network sy represents
a neural network encoding the protein structure. In this work, we start by utilizing VFN (Mao et al.,
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2023) as the neural network encoder sg. The input to this encoder is the structure T*) with the ¢-th
step noise, and its output is the denoised structure T(?):

(T®,4h) = VEN(T®, ¢) 3)

where 1,& is a group of parameters used to compute the angle for the position of atomic O.

4 METHODS

As shown in Fig. 2, MoDiff addresses the multi-motif scaffolding problem by introducing the motif
conditions as inputs to the neural network sg. This can be formulated as:

(T© 4p) = MoDiff(T®, TM: TM:= ¢) 4)

The motivation is straightforward: For previous methods, e.g.SMCDiff (Trippe et al., 2022), it
is necessary to establish the positional relationships between motifs reasonably before providing
the motifs guidance; however, the positions between motifs are sometimes uncertain, requiring a
significant amount of expert knowledge. In contrast, in this way, MoDiff can guide the rational
arrangement of motifs by leveraging prior knowledge learned from the data distribution, eliminating
the need for expert knowledge.

In the subsequent sections, we first present the methodology for constructing a training dataset (Sec.
4.1) with multiple motifs. Subsequently, we outline the overall framework (Sec. 4.2) of MoDiff,
consisting of two crucial components: the Implicit Matching Module (Sec. 4.3) and the Motif
Reconstruction Loss (Sec. 4.4). Finally, we provide a concise overview of the inference process (Sec.
??) employed by MoDiff.

4.1 MULTI-MOTIF TRAINING SET

Due to the fact that motifs can represent any arbitrary segment of a protein, we propose a random crop
method to construct a virtual multi-motif training set. Specifically, given a known protein structure
T € SE(3)", a RandomCrop function randomly extracts two segments from the protein T and
returns the corresponding indices 71 € {1,2,...N}t 1y € {1,2,...N}M2, With 71, 75, the virtual
motifs, TM: € SE(3), TM> ¢ SE(3)™2, on the protein T can be obtained through indexing
operations. This can be expressed as:

(71, m2) = RandomCrop(T)

(TMlvTMQ) = (TTFNTﬂ'z) ©)

4.2 FRAMEWORK OF MODIFF

MoDiff consists of two branches: the motif branch and the protein backbone branch. These branches
are employed to encode the geometric information of motifs, T**, T2 and the protein backbone
T, respectively. Furthermore, within the protein backbone branch, the representation of motifs is
aggregated into the protein backbone representation and utilized to predict the denoised structure
TO,

The motif branch. The two motifs, T, TM2  are separately fed into a same geometric encoder to
obtain corresponding d-dimensional geometric features HMt € RM1Xd and HM2 ¢ RM2*4, Here,
we employ a standard VEN network, VEN,, i, as the geometric encoder, treating each amino acid
as a node for encoding. This can be written as:

HM: = VFN 006 (TM) ©6)

The protein backbone branch. During training, the protein T is randomly noised at time step ¢ and
then used as the input T(*) for the protein backbone branch. This backbone T*) is similarly encoded
using a standard VFN network VFNy,, to obtain corresponding geometric features H € RV >4,
written as:

H = VENy,,(T®) )
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Figure 3: Visual results of 3 and 4 motifs on M"k"""_ Different motifs are distinguished by
different colors, with the color of each motif corresponding to the color of its respective motif ID
and RMSD ,tir- The motif ID and RMSDy,, ;¢ are displayed in the format ‘motif ID (RMSD,01if)’
at the top right corner of each sample. Here, scTM represents the protein’s designability, and
RMSD,,0tif represents the error between the given motif and the generated structure’s motif. A
design is considered successful if scTM > 0.5 and RMSDy,0tif < 1. A) Results with 3 given motifs.
B) Results with 4 given motifs.

Next, a component called the Implicit Matching Module (introduced later), IMM, aggregates the
representations HM and HM2 of motifs into H:
H « IMM(H, HM: HM2) ®)
The updated representation H is then encoded by a sequence transformer, SeqTrans, and subsequently
fed into a backbone update module, BackboneUpdate, to predict the denoised structure T© and
the angle 1/3:
H « SeqTrans(H)
(T©, %)) = BackboneUpdate(H, T®)
Here, SeqTrans and BackboneUpdate are standard modules in FrameDiff. The protein backbone

branch will be iteratively repeated four times, with the output of each round serving as the input for
the next iteration. Between each iteration, the model does not share parameters.

©))

4.3 IMPLICIT MATCHING MODULE

The goal of the Implicit Matching Module is to aggregate the motif features of H*1, HM2 into
the backbone representation H. Therefore, the most straightforward approach is to use cross at-
tention (Vaswani et al., 2017). However, we found that traditional cross attention is not effective
in aggregating these features because it overlooks the correspondence (71, m2) between motifs and
the protein backbone. Thus, we introduce explicit 7-related supervision on top of cross attention.
This allows the attention module to implicitly match motifs and amino acids of the protein when
aggregating features.

We begin by briefly revisiting the standard cross-attention mechanism. Taking the cross attention
between motif HM and protein H as an example, the h-th head in cross attention utilizes three linear
layers, denoted as ¢, ¢, and ¢y, to transform H into q;, € RV and HM into ky,, v, € RM1>dx,
Here, d;. represents the dimensionality of features. Subsequently, a similarity matrix, denoted as
ap € RV*Mi_ g obtained through the dot product of q; and kj. Following this, the matrix ay,
undergoes softmax operation to yield the final attention map A, € RV*M:_ Using A}, the values
vy, are aggregated. Finally, the outputs from different heads are concatenated to obtain the final
output O € RV > This can be written as:

_anky
ap =
Vi
A}, =Softmax(ap)
O = Linear(Concaty, (Apvy))

(10)
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Figure 4: Deep analysis of the success rate w.r.t motif features. We conduct separate analyses
on protein length, hydrogen bonds number per residue, contacts number per residue, and solvent-
accessible surface area to assess their impact on the design success rate and various influencing
factors.

Here, Concatj, denotes the concatenation of results from all heads, and Linear represents a linear
layer.

Next, we introduce matching supervision on ay. Specifically, each element in a;, can be regarded
as the residue-matching score between the motif and the protein backbone. Consequently, we
transform 7 into a binary one-hot encoding C € RY*M1 representing whether a pair of amino
acids match, through a binary OneHot operation. Subsequently, C is used to supervise a; via a
Binary Cross Entropy loss, BCE, enabling the model to learn the matching relationship between
motifs and the protein. Importantly, we refrain from directly supervising a;, to avoid constraining the
model’s expressive capability. Instead, we supervise the sum of a;, across all heads, mitigating the

aforementioned issue:
C; =OneHot (m;)

Lunaching = »_BCE [ > ay,, C; (1)
i h

4.4 MOTIF RECONSTRUCTION LOSS

We adopted the standard SE(3) diffusion loss, Eq.2, for guiding the model during training. However,
this loss does not effectively guide the model in generating structures with specified motifs. To
address this challenge, we introduce the Motif Reconstruction loss, denoted as Ly, on top of the
standard loss, Eq.2. Specifically, since during training, the correspondence 71, T between motifs and
the protein is known, we use 7, o to extract the amino acids corresponding to the motifs, resulting
in Tﬁf{ ,T&OR. The optimization objective is to minimize the error between (TSPR, ng)) and the
actual motifs (T, T™M2). This can be formulated as:

Lyr = FAPE(TM T() + FAPE(TM2, T(?) (12)

2

Here, FAPE represents the Frame Aligned Point Error, proposed by AlphaFold 2 (Jumper et al.,
2021), which is used to quantify the error between two structures.

5 EXPERIMENTS

In this section, we investigate two key questions through a series of experiments. 1) Whether MoDiff
can effectively solve the multi-motif scaffolding problem without the need for expert knowledge
and generate diverse scaffolds (Sec.5.3). 2) Whether the proposed enhancement module, IMM and
Lumr, is effective (Sec.5.4). Before addressing these questions, we first introduce the training details
(Sec.5.1) of our model and the in silico evaluation details (Sec.5.2).
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Figure 5: Metrics across design tasks on M, The figures illustrate the success rate, the ratio of
scTM > 0.5, and the ratio of RMSD ,0t;¢ < 1 for each task, respectively. The x-axis represents the
Protein Data Bank (PDB) ID of the proteins.

5.1 TRAINING DETAILS

To construct the training set, we employ the approach used in FrameDiff to select proteins meeting
specific criteria from the Protein Data Bank (Berman et al., 2000). The criteria requires protein
lengths to fall within the range of 60 to 512 amino acids and have a resolution lower than 5A. This
selection process results in a total of 21,399 proteins. Throughout the training procedure, pairs of
virtual motifs, each with lengths ranging from 10 to 20 amino acids, are randomly extracted from the
protein backbones (Eq.5) and subsequently input into the model. To speed up the training, we utilize
VEN-Diff (Mao et al., 2023) as pretraining weights and conducted training for 250,000 iterations.

5.2 EVALUATION

Motif test samples. The PROSITE dataset (Sigrist et al., 2012) contains 16,251 authentic motifs,
updated as of January, 2024. Therefore, we utilize PROSITE as our motif testing data source but
excluded those motifs present in our training set. Based on the filtered data, we randomly select 2 to
4 motifs to evaluate MoDiff. For a more detailed analysis and ablation studies, we choose 2 motifs
as the primary experimental setting. In this setting, all double motif test samples are categorized
into two classes: MUK and Mt A total of 52 motifs, with lengths ranging from 10 to 20
residues, are randomly selected from PROSITE to analyze the impact of different motif combinations
on the final performance. MUKW represents test samples where the two given motifs come from
different proteins. In this case, it is unknown whether there exists a protein that can simultaneously
contain the two given motifs. M represents test samples where the two given motifs both come
from a same protein. This implies that there is certainly a protein capable of containing both given
motifs simultaneously. For comprehensive benchmark details, please refer to Tab. 6 and Tab. 5 in the
appendix.

Protein sampling methods. Unless specified otherwise, MoDiff adopts the same inference settings
as FrameDiff (Yim et al., 2023) and VEN-Diff (Mao et al., 2023), with a noise scale of 0.1 and 500
diffusion steps. Similarly, due to potential variations in MoDiff’s performance across different protein
lengths, we conduct experiments for each given motif within the protein length range of 100 to 350,
with increments of 10. For each length, 10 protein structures are generated, resulting in a total of 260
proteins for each motifs samples. Subsequently, based on these 260 samples, success rates and other
relevant metrics are calculated, as elaborated upon later.

Metric. Similar to SMCDiff (Trippe et al., 2022) and SE(3) diffusion, the main evaluation metrics
include motif RMSD, scTM, success rate, diversity, and novelty. ‘scTMg 5’ represents the ratio of
proteins with scTM > 0.5, reflecting the designability. ‘RMSDL0 ..” indicates the ratio of proteins

with RMSD 04i¢ <1A. ‘SR’ represents the success rate metric. The diversity of the protein designs
is quantified by ‘Div.’. Finally, ‘pdbTMy 7” accounts for the ratio of proteins with pdbTM < 0.7 and
scTM > 0.5, assessing their novelty relative to existing structures in the PDB database. Details are
described in Sec.A.S.

5.3 MAIN RESULTS

Double motifs. We initially evaluate MoDiff under two motif settings: M"™*™°%" and M, as
illustrated in Tab.1. Subsequently, we visualize the success rates for a subset of deign tasks in Mt
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Table 1: Averge metrics across all benchmarks.
scTMp5 + RMSD!0.. 4+ SR Div. *  pdbTM, , t

motif

Meist 65.92% 31.50% 19.21% 93.11% 29.07%
Munknown—6() 839, 29.81% 16.35% 96.83% 31.99%

presented in Fig.5. As depicted in Tab.1, MoDiff demonstrates favorable success rates in both settings.
However, we observe a slightly higher success rate in Mt compared to M"™k%°%" indicating that
certain motif combinations might pose challenges in coexisting within the same protein.

In-depth analysis. We conduct a sta-

tistical analysis of the success rates in

relation to motif features, encompassing Table 2: Protein novelty enhancement driven by motif
solvent-accessible surface area (Con- conditions. VFN-DIff serves as the unconditioned base-
nolly, 1983), the average number of hy- line, while MoDiff introduces multi-motif conditions on
drogen bonds per residue, and the av- top of VEN-Diff. Mt and MUKW represent whether
erage number of contacts per residue. the given motifs originate from the same protein or dif-
To account for the influence of motif ferent proteins. Only successfully designed proteins are
features on design success rates, we fit included in the statistics.

the data using cubic polynomial curves VEN-Diff MoDiff Mt MoDiff Afunknown
with regulari;ation. In Fig. 4, we ob- pdbTM, . 1 24.90% 20.07% 31.99%
serve that a higher number of contacts -
and hydrogen bonds per residue inside
the motif correlated with higher design success rates. Conversely, larger motif surface areas are
associated with lower success rates, indicating increased difficulty in design. Our results support
the quantitative observations by Didi et al. (2023) regarding single-motif scaffolding. They find
that alpha-helix motifs, notable for their compact structure with reduced surface area coupled with a
denser network of hydrogen bonds and contacts, are scaffolded more easily when compared to motifs
of other SCOPe (Fox et al., 2014) classes. Further analysis can be found in Sec. A.6.

Novelty related to the given motifs. In Tab. 2, we assess the novelty of the protein structures
designed by MoDiff in comparison to the unconditional baseline model, VFN-Diff, utilizing the
ratio of proteins with pdbTM scores below 0.7 as a metric. MoDiff and VEN-Diff are aligned in
their experiment settings, sharing the same noise schedule and sample length. Within this controlled
experimental setup, MoDiff demonstrates a distinct advantage in generating novel structures, as
indicated by its higher pdbTM < 0.7 ratio, particularly with test samples in MUk The motifs in
Munknown griginate from two distinct proteins. The enhanced novelty is due to the potential absence
of proteins with the targeted motifs (M%) in the Protein Data Bank (PDB), increasing the
chances that MoDiff’s designs are unique among cataloged protein structures.

More motifs. MoDiff can be directly extended to accommodate more motifs and handle more
complex scenarios. Here, we present cases with three to four motifs, as illustrated in Fig. 3. To the
best of our knowledge, this is the first method capable of addressing the motif scaffolding problem
with such a multitude of motifs.

5.4 ABLATION STUDY

In this subsection, we first analyze the per-

formance improvements brought by our

proposed enhancement modules, IMM and Table 3: Ablation study on the Motif Reconstruction
Lwmr, and then compare the impact of dif- loss (Lyr) and Implicit Matching Module (IMM).

ferent diffusion hyperparameters. In Tab.3, IMM  scTM - RMSDL0 SR
we conduct ablation experiments on MXSt, R 05T motit 1 T

The experiments demonstrate that the two X X 93.21% 1.35% 1.22%
enhancement modules individually con- 3; ‘; g}gggﬁ SSZZO ;ZZZO

. . . . (¢ . (% . (4
tribute to approximately 10% and 14% in- v v 60.83% 20.81% 16.35%

creases in success rate. The reason for this
improvement lies in the fact that these mod-
ules enable MoDiff to better replicate the given motifs, leading to an increased proportion of
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RMSD otir < 1A. However, on the other hand, although motifs can appear more stably in the
designed proteins, the designability of the generated proteins slightly decreases. Tab.4 analyzes the
performance of MoDiff under different diffusion hyperparameter settings. Specifically, in settings
with lower noise, designability is enhanced, but RMSD,0is < 1A performance is relatively poorer.

6 CONCLUSIONS

The multi-motif scaffolding problem

is a critical issue in protein design,

contributing to the development of Table 4: Ablation study on diffusion noise scale and the
vaccines and enzymes. Unlike RFdif- numbers of diffusion steps.

fusion, which requires expert knowl-  noico Scale 1.0 0.5 0.1 0.1
edge to specify motif positions, MoD-

iff achieves the automatic assembly of ~ Num. Step 500 500 500 100
multiple motifs into the same protein. mean scTM 7+ 0.51 0.58 0.59 0.57
In silico experiments demonstrate that ~ scTMo.5 1 3936 %  59.87%  60.83%  55.13%
MoDiff can achieve a high success ~ RMSDLO.  + 38.72% 36.73%  29.81% 33.08%
rate in designing diverse motifs, even SRt 16.15% 23.65% 1635% 19.42%

in the absence of expert knowledge.
The generated scaffolds by MoDiff ex-
hibit significant diversity. Furthermore, by specifying motifs (M""X"%") from different proteins to
MoDiff, the novelty of the proteins generated in this scenario is notably superior to the unconditional
baseline, VFN-Diff. This is because, in such cases, proteins with given motifs (Munknown) may not
be present in the Protein Data Bank (PDB), increasing the probability that the designed protein is
distinct from all known proteins. However, while MoDiff may become a general solution to the
multi-motif scaffolding problem, the challenge of ensuring that multiple motifs exert the desired
biological functions remains unresolved and requires further exploration.
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A APPENDIX

A.1 LIMITATIONS

The problem of assembling motifs to achieve specific functionalities remains unresolved. In proteins
such as enzymes, motifs need to be assembled in a specific manner to realize particular biological
functions. In this study, while MoDiff successfully automates the assembly of different motifs, the
functionality resulting from the assembly of these motifs has not been explored. This aspect involves
wet-lab experimental testing and is left for future work.

Generating long proteins is challenging. Incorporating more motifs results in longer protein lengths.
However, both VFN-Diff and RFdiffusion exhibit noticeable limitations in generating proteins
exceeding 500 amino acids, with a significant decrease in designability. This limitation hinders the
success rate of MoDiff in assembling more motifs, such as five motifs, leading to lower success rates.
Addressing the unresolved issue of enhancing the diffusion-based model to generate long proteins
remains a critical area for future research. Further exploration is needed in future work to tackle this
challenge.

A.2 IMPLEMENT DETAILS

The model described in our study features a backbone architecture equivalent to the VEN-Diff model
for consistent performance, coupled with a motif module designed to enrich the representation
of protein features. The motif module comprises a VFN module with 4 blocks, a self-attention
mechanism with 2 blocks and 8 heads, and a cross-attention component with 2 blocks to integrate
motif and backbone information. Additionally, the motif node embedding size is set to 128.

A.3 TRAINING DETAILS

Hyper parameters. In our training protocol, we employ the Adam optimizer with a learning rate set
to 0.0001, and momentum hyperparameters (31 and 3o at 0.9 and 0.999, respectively. We maintain a
batch size of 64. For the loss function, we weight the motif fape loss Lyr at 3 and the matching loss
Lmaching at 10. All other settings are consistent with those outlined in the VFN-Diff.

A.4 MOTIF DATASET DETAILS

The motif dataset for this study originates from PROSITE, curated by the Swiss Institute of Bioinfor-
matics (SIB), with 16,251 motif fragments aligned to PDB motifs. PROSITE, updated as of January
24,2024, comprises 1942 documentation entries, 1311 patterns, and 1400 ProRules, encompassing
various protein sequence recognition tools.

To evaluate MoDiff, motifs from protein which is already present in the training are excluded. For
insights into MoDiff’s performance on more complex scaffolds, additional motifs used for triple or
quad configurations are documented in Tab. 7. Tab. 6 provides details for M""k""" and Tab. 5 for
Mt Within the tables, the term “Motif" corresponds to the Accession ID from PROSITE, “PDB"
denotes the protein in which the motif was identified, “Input" refers to the specific chain and the
start and stop residues of the motif on the protein, and “Length" denotes the number of amino acid
residues constituting the motif. For M, different motifs under the same PDB ID are grouped
together as one set of inputs; for Munknown - qifferent motifs associated with the same Task ID are
compiled as a single input set.
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Table 5: Double Motif Scaffolding Benchmark M st

Motif PDB Input Length  Description

PS00098  1PXT AI121-139 19 Thiolases acyl-enzyme intermediate signature.

PS00099 IPXT A398-411 14 Thiolases active site.

PS00137 6RUH A69-79 11 Serine proteases, subtilase family, histidine active site.

PS00138 6RUH  A222-232 11 Serine proteases, subtilase family, serine active site.

PS00181 1HTO  A258-273 16 Glutamine synthetase putative ATP-binding region signature.
PS00182 1HTO  A385-397 13 Glutamine synthetase class-I1 adenylation site.

PS00220 8GVE  A829-843 15 Anion exchangers family signature 2.

PS00219 8GVE  A682-693 12 Anion exchangers family signature 1.

PS00742  S5JVN  A764-782 19 PEP-utilizing enzymes signature 2.

PS00370 SJVN  A451-462 12 PEP-utilizing enzymes phosphorylation site signature.

PS00407 6UVS AS53-66 14 Connexins signature 1.

PS00408 6UVS  A169-185 17 Connexins signature 2.

PS00900 7Z2C4  A918-929 12 Bacteriophage-type RNA polymerase family active site signature 1.
PS00489  7Z2C4  A985-999 15 Bacteriophage-type RNA polymerase family active site signature 2.
PS00490 1R27  A776-793 18 Prokaryotic molybdopterin oxidoreductases signature 2.

PS00551 1R27 A47-65 19 Prokaryotic molybdopterin oxidoreductases signature 1.
PS00630 6B63  A199-213 15 Inositol monophosphatase family signature 2.
PS00629  6B63 A79-92 14 Inositol monophosphatase family signature 1.

PS00675 5EXP  A170-183 14 Sigma-54 interaction domain ATP-binding region A signature.
PS00676  SEXP  A232-247 16 Sigma-54 interaction domain ATP-binding region B signature.
PS60032  1JS4 A49-66 18 Glycosyl hydrolases family 9 (GH9) active site signature 1.
PS00698 1JS4  A413-431 19 Glycosyl hydrolases family 9 (GH9) active site signature 3.
PS00816 3MI3  A221-234 14 Alpha-isopropylmalate and homocitrate synthases signature 2.
PS00815  3MI3 A42-58 17 Alpha-isopropylmalate and homocitrate synthases signature 1.
PS00882  4GD3 A19-36 18 Nickel-dependent hydrogenases b-type cytochrome subunit signature 1.
PS00883 4GD3  A181-198 18 Nickel-dependent hydrogenases b-type cytochrome subunit signature 2.
PS00978 2QCU  A352-362 11 FAD-dependent glycerol-3-phosphate dehydrogenase signature 2.
PS00977 2QCU A9-26 18 FAD-dependent glycerol-3-phosphate dehydrogenase signature 1.
PS01061 6R6B  A188-200 13 Flagella transport protein fliP family signature 2.

PS01060 6R6B  A140-155 16 Flagella transport protein fliP family signature 1.

PS01090 1XWY A123-133 11 TatD deoxyribonuclease family signature 2.

PS01091 1XWY A189-205 17 TatD deoxyribonuclease family signature 3.

PS01126  3AVT A12-27 16 Elongation factor Ts signature 1.

PS01127  3AVT A75-85 11 Elongation factor Ts signature 2.

PS01174 2ZSH  Al185-197 13 Lipolytic enzymes “G-D-X-G" family, putative serine active site.
PSO01173  2ZSH  A109-125 17 Lipolytic enzymes “G-D-X-G" family, putative histidine active site.
PS01183 40BW  A78-93 16 ubiE/COQ5 methyltransferase family signature 1.

PS01184 40BW  A215-229 15 ubiE/COQS5 methyltransferase family signature 2.

PS01348  4J72  A187-198 12 MraY family signature 2.

PS01347  4J72 A70-82 13 MraY family signature 1.

Table 6: Double Motif Scaffolding Benchmark AUnknown

Task Motif PDB Input Length  Description
0 PS00220 8GV9 A829-843 15 Anion exchangers family signature 2.
0 PS00769 7YBR  A105-117 13 Transthyretin signature 2.
1 PS50837 7VTP  AS518-536 19 NACHT-NTPase domain profile.
1 PS00566  7SE9 A185-199 15 Fibrillarin signature.
2 PS00219 8GVH  A682-693 12 Anion exchangers family signature 1.
2 PS00295 8GP3 A61-79 19 Arrestins signature.
3 PS00606 6USW  A1294-1310 17 Ketosynthase family 3 (KS3) active site signature.
3 PS01009 3MZ8  All4-124 11 CRISP family signature 1.
4 PS00885 7TBU  A742-760 19 EPSP synthase signature 2.
4 PS00650  7SF7  A1093-1108 16 G-protein coupled receptors family 2 signature 2.
5 PS00140  7ZMO A84-100 17 Ubiquitin carboxyl-terminal hydrolase family 1 cysteine active-site.
5 PS00376 7RWS  Al131-141 11 S-adenosylmethionine synthase signature 1.
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Table 7: Additional Motif Details

Motif PDB Input Length  Description
PS00739  7ZD8 A214-230 17 S-adenosyl-L-homocysteine hydrolase signature 2.
PS00250 7YIR A282-297 16 TGF-beta family signature.
PS00962 7WUO A15-26 12 Ribosomal protein S2 signature 1.
PS00665 7KMO A41-58 18 Dihydrodipicolinate synthase signature 1.
PS00613 7KBU  AS523-533 11 Osteonectin domain signature 2.
PS00749 7DSA A256-266 11 F-actin capping protein alpha subunit signature 2.
PS00248 6YW8 A67-80 14 Nerve growth factor family signature.
PS00095 6W8V  A1576-1594 19 C-5 cytosine-specific DNA methylases C-terminal signature.
PS00062 6TUF Al44-161 18 Aldo/keto reductase family signature 2.
PS00381  6N80 A90-101 12 Endopeptidase Clp serine active site.
PS00751 6KRD A62-78 17 Chaperonins TCP-1 signature 2.
PS00973  6IIK A418-436 19 Ubiquitin specific protease (USP) domain signature 2.
PS60003 8108 A162-180 19 Phosphoketolase signature 2.
PS00219 8GVH  A682-693 12 Anion exchangers family signature 1.
PS00220 8GV9  A829-843 15 Anion exchangers family signature 2.
PS00310 8ATH A40-54 15 Lysosome-associated membrane glycoproteins duplicated domain signature.
PS00650  7SF7  A1093-1108 16 G-protein coupled receptors family 2 signature 2.
PS00566  7SE9 A185-199 15 Fibrillarin signature.
PS00785 7PBY A29-41 13 5’-nucleotidase signature 1.
PS00796 7057 A41-51 11 14-3-3 proteins signature 1.
PS00750  7X7Y A33-45 13 Chaperonins TCP-1 signature 1.
PS00237 7TWF7 A130-146 17 G-protein coupled receptors family 1 signature.
PS01255  7UAIL A87-96 10 Fetuin family signature 2.
PS00726  7TR7 A89-98 10 AP endonucleases family 1 signature 1.
PS00263  8S9Y A9-25 17 Natriuretic peptides signature.
PS00509 8E20  A1386-1400 15 Ras GTPase-activating proteins domain signature.
PS01307  8BRI A182-199 18 Flagellar motor protein motA family signature.
PS00930 7ZW1 A207-222 16 Peripherin / rom-1 signature.

A.5 METRIC DETAILS

Motif RMSD. As defined in Eq. 1, RMSD,,04i¢ assesses whether the given motif exists in the protein
structure.

scTM. scTM represents the protein’s designability, i.e.whether the generated protein structure is
feasible. Specifically, the generated structures are fed into ProteinMPNN (Dauparas et al., 2022)
to predict the corresponding sequences, which are then utilized by ESMFold (Hie et al., 2022) for
structure prediction. If the structure predicted by ESMFold is similar to the generated structure (high
scTM), it implies the generated structure is feasible.

Success rate. Success rate signifies the proportion of successful designs, where motifs are present
(RMSDy0ti¢ < 1A), and the protein is designable (scTM > 0.5).

Diversity: For assessing the diversity of the generated protein sequences, we follow the methodology
outlined in (Yim et al., 2023) and utilized MaxCluster (Herbert & Sternberg, 2008) for hierarchical
clustering of protein backbones. A selection criterion, scTM > 0.5, was impose for cluster considera-
tion to minimize the influence of proteins with low designability on the diversity metric. We select a
single protein with the highest scTM score from each diffusion sample, generated by ESMFold, for
inclusion. The diversity metric is then calculated as the ratio of the number of clusters to the total
diffusion samples, Ny; ¢, ensuring a more stringent and relevant evaluation.

pdbTM: Novelty in protein design is quantified by comparing the highest-scoring proteins from
ESMPFold-generated PDB files against the PDB database using Foldseek (van Kempen et al., 2023).
Proteins are required to have an scTM score greater than 0.5 to be included in this analysis. The
pdbTM score is used to measure structural novelty, with proteins considered novel at a threshold of
pdbTM < 0.7, referred to as pdbTM, .. This cutoff, less stringent than the pdbTM < 0.6 criterion
used in (Yim et al., 2023), allows for the recognition of a wider range of novel protein structures.
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A.6 ADDTIONAL QUALITATIVE ANALYSIS

Analysis of motif features’ influence. In Sec. 5.3, we investigate the relationship between the
success rate and various motif features: the number of hydrogen bonds per residue, the number of
contacts per residue, and the solvent-accessible surface area (SASA). Our findings reveal a positive
correlation between both the number of hydrogen bonds per residue and the number of contacts per
residue with the success rate, while the solvent-accessible surface area exhibits a negative correlation
with the success rate.

Building on this analysis, we further explore the impact of these motif features on scTM and
RMSD,01i¢ >1 ratio in Fig. 4. Interestingly, we observe no significant correlation between the motif
features and scTM. However, there is a positive correlation between both the number of hydrogen
bonds per residue and the number of contacts per residue with RMSD .3 >1 ratio, and a negative
correlation between solvent-accessible surface area and RMSD i >1 ratio.

These results suggest that the difficulty of a motif, as reflected by RMSD y,0tis >1 ratio, predominantly
influences the success rate. This also implies that the bottleneck of the MoDiff model lies in encoding
complex motifs and generating them with high precision under specified conditions.
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Figure 6: Deep analysis of ‘scTM; 5’ and ‘RMSDrlr;gtif’ w.r.t motif features. ‘scTMg 5’ represents
the ratio of proteins with scTM scores greater than 0.5, reflecting the designability. ‘RMSDLY >
metric indicates the ratio of proteins with RMSD ,,oti less than 1A. We conduct separate analyses
on hydrogen bonds number per residue, contacts number per residue, and solvent-accessible surface

area to assess their impact on the design success rate and various influencing factors.

Qualitative analysis of scTM in different ranges. In this section, we follow SMCDiff (Trippe
et al., 2022) to offer insights into backbone designs and ESMFold predictions across different scTM
values, facilitating the interpretation of scTM metrics we previously discussed. Fig. 7 explores a
categorization of scTM into four ranges:

* The first row corresponds to backbone designs with scTM > 0.8. The backbone designs are
observed to closely align with the ESMFold predictions.

* The second row corresponds to designs with 0.6 < scTM < 0.8. In this tier, ESMFold
predictions and backbone designs have a high degree of similarity, but there are subtle
differences and inconsistencies in flexible regions.

* The third row presents designs with 0.4 < scTM < 0.6. These designs represent the
boundary of what we consider designable (scTM > 0.5). Here, the ESMFold predictions
maintain the general shape of the backbone design, though differences may exist in the
ordering and composition of secondary structures.

* The final category is for scTM < 0.4, indicative of failure cases where the scTM is low. In
these instances, ESMFold predictions include numerous disordered regions and show little
structural resemblance to the original backbone design.

Qualitative analysis of RMSD,,.;¢ in different ranges. In this section, we analyze the RMSD ,tif
metric previously discussed. Fig. 8 categorizes RMSD ;¢ into three ranges:
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Figure 7: Qualitative analysisof scTM in different ranges. The light blue visualizations display
backbone designs generated by MoDiff, along with their respective sequence lengths. In contrast,
the golden visualizations highlight the top-scoring ESMFold (Hie et al., 2022) predictions based on
the scTM metric for sequences generated by ProteinMPNN (Dauparas et al., 2022) that correspond
to the backbone designs visualized in light blue. The first column illustrates the alignment results
between the second and third columns and provides the specific PDB ID for each design tasks.

* The first row represents cases where the root-mean-square deviation (RMSD) between the
conditionally provided motif and the model-designed backbone is less than 1. Under these
circumstances, the motif and backbone are observed to align very well, which is the standard
we consider indicative of a successful motif-scaffold pairing.

* The second row illustrates instances where the RMSD,,ot;f metric is between 1 and 2,
where the motif generally aligns with the backbone, but differences and discrepancies are
noticeable in the details of flexible regions, leading us to categorize these as design failures.

* The third row showcases cases where the RMSD ;¢ metric exceeds 2, highlighting a
significant divergence between the motif and the backbone. For instance, within the SEXP
design task, the alpha-helix region exhibits alignment difficulties, indicating a substantial
discrepancy in the structural fidelity of this motif when compared to the intended design.

A.7 ADDTIONAL MOTIF-SCAFFOLDING RESULTS

Known relative poses between motifs. Previous methods, such as RFDiffusion (Watson et al., 2023),
are capable of handling scenarios where the relative poses between motifs are known. Although
MoDiff implicitly assigns motifs to the protein backbone, thereby automating the design of relative
motif positions, our approach can still accommodate situations where the relative poses between
motifs are known. This is achieved by employing the same VFN module to encode a set of motifs, as
demonstrated by the cases outlined in Tab. 8.

Table 8: Results with given relative poses between motifs. ‘scTMg 5’ represents the ratio of proteins
with scTM scores greater than 0.5, reflecting the designability. ‘RMSD!:0...” metric indicates the

moti
ratio of proteins with RMSDy,o¢i less than 1A. ‘SR’ represents the success rate.

PDB  scTMg5 1 RNISD}Y;?)M i SRT

7TF68 91.92% 47.69% 42.31%
20E4  68.85% 27.31% 16.92%
7Q7A  75.77% 16.53% 11.54%

Large scaffold size. Constrained by the limitations of the unconditional generative model, there is a
decline in the self-consistency metric as the length of the generated protein increases, particularly
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Figure 8: Qualitative analysis of RMSD,,i¢ in different ranges. The visualization includes samples
from two motif-scaffold tasks, with the corresponding PDB ID and Motif ID associated with M¥ist,
demonstrating alignments across a spectrum of RMSD ,.ti¢ values.

when the protein backbone exceeds 400 residues in length. Nevertheless, our model retains the
capability to design proteins with larger scaffold sizes, as demonstrated by the following cases in Fig.
9.

616B, PS00951, PS00951 2QCU, PS00977, PS00978 2Z3X, PS00304, PS00684

Figure 9: Visualization of alignment results between motifs and backbones for three successful cases
of large scaffold sizes, each 500 amino acids in length. Each subplot highlights the precise positioning
of motifs (RMSD otir < 1A), labels the name of the design task, and indicates the scTM score,
signifying that the proteins are designable (scTM > 0.5).

Additional success cases. Similar to the enumeration of triple and quadruple motif scaffold cases in
Sec. 5.3, Fig. 10 extends the catalogue to include additional success cases involving double motif
scaffolds.

Failure cases. As discussed previously, MoDiff exhibits improved performance with motifs char-
acterized by a higher proportion of secondary structures. In contrast, when confronted with motifs
where flexible regions such as loops predominate, there is a decrease in scTM and motif rmsd. The
cases in Fig. 11 highlighted below indicate that the generation process may encounter challenges
in achieving the desired level of detail when dealing with intricate motifs. In subsequent work, we
aim to enhance the matching module and increase the model’s capacity to overcome this limitation,
thereby further advancing motif-scaffolding performance.
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Figure 10: Visualization of failure cases. Each subplot illustrates the deviation of motifs with a
high root-mean-square deviation (RMSD 4+ > 1A) and marks the design task where the structural
alignment did not meet the criteria for designability, as reflected by low scTM scores (scTM < 0.5).
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Figure 11: Further examples of successful motif integration are presented, with each subplot empha-

sizing the precise alignment of motifs (RMSD oti¢ < 1A). The subplots also annotate the respective
design tasks and display the scTM score, denoting the proteins’ designability with high confidence

(scTM > 0.5).
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