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A. Appendix

B. More Experiments
B.1. Single Behavior Policy v.s. Multiple Behavior Policies
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Figure 1. Learning curves of behavior cloning on AntMaze suites (*-v2) in D4RL, where the x-axis denotes the training steps, and the
y-axis denotes the training loss. The number N in the legend denotes the number of sub-tasks. If N = 1, we learn a single behavior
policy for the whole offline dataset.

In Figure 1, we provide empirical evidence that learning a single behavior policy (using BC) is not sufficient to characterize
the whole offline dataset, and multiple behavior policies (conducting task decomposition) deliver better resilience to
characterize the offline data than a single behavior policy.

B.2. Decomposition Rules

In DROP algorithm, we explicitly decompose an offline task into multiple sub-tasks, over which we then reframe the offline
policy learning problem as one of offline model-based optimization. In this section, we discuss three different designs for
the task decomposition rule.

Random(N,M): We decomposition offline datasetD := {τ} into N subsets, each of which contains at most M trajectories
that are randomly sampled from the offline dataset.

Quantization(N,M): Leveraging the returns of trajectories in offline data, we first quantize offline trajectories into N bins,
and then randomly sample at most M trajectories (as a sub-task) from each bin. Specifically, in the i-th bin, the quantized
trajectories {τi} satisfy Rmin +∆ ∗ i < Return(τi) ≤ Rmin +∆ ∗ (i + 1), where ∆ = (Rmax−Rmin)

N , Return(τi) denotes
the return of trajectory τi, and Rmax and Rmin denote the maximum and minimum trajectory returns in the offline dataset
respectively.

Rank(N,M): We first rank the offline trajectories descendingly based on their returns, and then sequentially sample M
trajectories for each subset. (We adopt this decomposition rule in main paper.)

In Figure 2, we provide the comparison of the above three decomposition rules (see the selected number of sub-tasks and
the number of trajectories in each sub-task in Table 5). We can find that across a variety of tasks, the decomposition rule
has a fundamental impact on the subsequent model-based optimization. Across different tasks and different embedding
inference rules, Random and Quantization decomposition rules tend to exhibit large performance fluctuations, which reveals
the importance of choosing a suitable task decomposition rule. In our paper, we adopt the Rank decomposition rule, as
it demonstrates a more robust performance shown in Figure 2. In Appendix B.4, we adopt the conditional variational
auto-encoder (CVAE) to conduct automatic task decomposition (treating each trajectory in offline dataset as an individual
task) and we find such implementation (DROP+CVAE) can further improve DROP’s performance. In future work, we also
encourage better decomposition rules to decompose offline tasks so as to enable more effective model-based optimization
for offline RL tasks.

Comparison with filtered behavior cloning. We also note that the Rank decomposition rule leverages more high-quality
trajectories than the other two decomposition rules (Random and Quantization). Thus, a natural question to ask is, is the
performance of Rank better than that of Random and Quantization due to the presence of more high-quality trajectories in
the decomposed sub-tasks? That is, whether DROP (using the Rank decomposition rule) only conducts behavioral cloning
over those high-quality trajectories, thus leading to better performance.

To answer the above question, we compare DROP (using the Rank decomposition rule) with filtered behavior cloning
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Figure 2. Comparison of three different decomposition rules on D4RL MuJoCo-Gym suite (*-v0) and AntMaze suite (*-v2), where
"Rand", "Quan" and "Rank" denote the Random, Quantization, and Rank decomposition rules respectively. We can find across 18 tasks
(AntMaze and MuJoCo-Gym suites) and 3 embedding inference methods (DROP-Grad, DROP-Best-Ada, and DROP-Grad-Ada), Rank is
more stable and yields better performance compared with the other two decomposition rules.
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Figure 3. Learning curves of DROP, where the x-axis denotes the training steps (k), the y-axis denotes the evaluation return (using
DROP-Best embedding inference rule). We only show two seeds for legibility.

(F-BC), where the latter (F-BC) performs behavior cloning after filtering for trajectories with high returns. We provide the
comparison results in Table 1. We can find that in AntMaze tasks, the overall performance of DROP is higher than that of
F-BC. For the MuJoCo-Gym suite, DROP-based methods outperform F-BC on these offline tasks that contain plenty of
sub-optimal trajectories, including the random, medium, and medium-replay domains. This result indicates that DROP can
leverage embedding inference (extrapolation) to find a better policy beyond all the behavior policies in sub-tasks, which is
more effective than simply performing imitation learning on a subset of the dataset.

B.3. Online Fine-tuning

Online fine-tuning (checkpoint-level). In Figure 3, we show the learning curves of DROP-Best on four DR4L tasks. We
can find that DROP exhibits a high variance (in performance) across training steps1, which means the performance of the
agent may be dependent on the specific stopping point chosen for evaluation (such instability also exists in prior offline RL
methods, Fujimoto and Gu (2021)).

To choose a suitable stopping checkpoint over which we perform the DROP inference (DROP-Grad, DROP-Best-Ada
and DROP-Grad-Ada), we propose to conduct checkpoint-level online fine-tuning (see Algorithm 1 in Section C for more
details): we evaluate each of the latest T checkpoint models and choose the best one that leads to the highest episode return.

1In view of such instability, we evaluate our methods over multiple checkpoints for each seed, instead of choosing the final checkpoint
models during the training loop (see the detailed evaluation protocol in Appendix C).
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Table 1. Comparison between our DROP (using the Rank decomposition rule) and filtered behavior cloning (F-BC) on D4RL AntMaze
and MuJoCo suites (*-v2). We take the baseline results of BC and F-BC from Emmons et al. (2021), where F-BC is trained over the top
10% trajectories, ordered by the returns. Our DROP results are computed over 5 seeds and 10 episodes for each seed.

Tasks BC F-BC DROP-Grad DROP-Best-Ada DROP-Grad-Ada

antmaze-umaze 54.6 60 72 ± 17.2 78 ± 11.7 80 ± 12.6
antmaze-umaze-diverse 45.6 46.5 48 ± 22.3 62 ± 16 66 ± 12
antmaze-medium-play 0 42.1 24 ± 10.2 34 ± 12 30 ± 21
antmaze-medium-diverse 0 37.2 20 ± 19 24 ± 12 30 ± 16.7
antmaze-large-play- 0 28 24 ± 8 36 ± 17.4 42 ± 17.2
antmaze-large-diverse 0 34.3 14 ± 8 20 ± 14.1 26 ± 13.6

halfcheetah random 2.3 2 2.3 ± 0 2.3 ± 0 2.3 ± 0
hopper random 4.8 4.1 5.1 ± 0.8 5.4 ± 0.7 5.5 ± 0.6
walker2d random 1.7 1.7 2.8 ± 1.7 3 ± 1.6 3 ± 1.8
halfcheetah medium 42.6 42.5 42.4 ± 0.7 42.9 ± 0.4 43.1 ± 0.4
hopper medium 52.9 56.9 57.5 ± 6.4 60.3 ± 6.1 59.5 ± 5.1
walker2d medium 75.3 75 76.5 ± 2.4 75.8 ± 3 79.1 ± 1.4
halfcheetah medium-replay 36.6 40.6 39.5 ± 1 40.4 ± 0.8 40.3 ± 1.2
hopper medium-replay 18.1 75.9 48 ± 17.7 83.4 ± 6.5 87.4 ± 2.1
walker2d medium-replay 26 62.5 37.4 ± 13.5 60.9 ± 7.4 61.9 ± 2.3
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Figure 4. Total normalized returns across all the tasks in Maze2d, AntMaze, and MuJoCo-Gym suites.

In Figure 4, we show the total normalized returns across all the tasks in each suite (including Maze2d, AntMaze, and
MuJoCo-Gym). We can find that in most tasks, fine-tuning (FT) can guarantee performance improvement. However, we
also find such fine-tuning causes negative impacts on performance in AntMaze(*-v0) suite. The main reason is that, in
this checkpoint-level fine-tuning, we choose the "suitable" checkpoint model using the DROP-Best embedding inference
rule, while we adopt the other three embedding inference rules (DROP-Grad, DROP-Best-Ada and DROP-Grad-Ada) at
the test time. Such a finding also implies that the success of DROP’s test-time adaptation is not entirely dependent on the
best embedding across sub-tasks 2 (i.e., the best embedding z∗0(s0) in DROP-Best), but requires switching between some
"suboptimal" embeddings (using DROP-Best-Ada) or extrapolating new embeddings (using DROP-Grad-Ada).

Online fine-tuning (embedding-level). Beyond the above checkpoint-level fine-tuning procedure, we can also conduct
embedding-level online fine-tuning: we aim to choose a suitable gradient update step for the gradient-based embedding
inference rules (including DROP-Grad and DROP-Grad-Ada). Similar to the checkpoint-level fine-tuning, we first conduct
the test-time adaptation procedure (DROP-Grad and DROP-Grad-Ada) over a set of gradient update steps, and then choose
the best step that leads to the highest episode return (see Algorithm 2 in Section C for more details).

2Conversely, if the performance of DROP depends on the best embedding across sub-tasks (i.e., z∗0(s0) in DROP-Best), then the
checkpoint model we choose by fine-tuning with DROP-Best should enable a consistent performance improvement for rules that perform
embedding inference with DROP-Best-Ada and DROP-Grad-Ada. However, we find a performance drop in AntMaze(*-v0) suite, which
means there is no explicit dependency between the best embedding z∗0(s0) and the inferred embedding using the adaptive inference rules.
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Table 2. Online fine-tuning results (initial performance→ performance after online fine-tuning). The baseline results of AWAC, CQL,
and IQL are taken from Kostrikov et al. (2021), where they run 1M online steps to fine-tune the learned policy. For our DROP method
(DROP-Grad and DROP-Grad-Ada), we run 0.3M (= 6checkpoint × 50Kmax × 1000steps per episode) online steps to fine-tune (embedding-level)
the policy, i.e., aiming to find the optimal gradient ascent step that is used to infer the contextual embedding z∗(s0) or z∗(st) for
π∗(at|st) := β(at|st, ·) (see Algorithm 2 for the details). Moreover, for medium-* and large-* tasks, we conduct additional parametric-
level fine-tuning, with 0.7M online steps to update the policy’s parameters.

Task (*-v0) AWAC CQL IQL DROP-Grad DROP-Grad-Ada

umaze 56.7 → 59 70.1 → 99.4 86.7 → 96 70→ 96 ± 1.2 76→ 98 ± 0
umaze-diverse 49.3 → 49 31.1 → 99.4 75 → 84 54→ 88 ± 8 66→ 94 ± 4.9
medium-play 0 → 0 23 → 0 72 → 95 20→ 56 ± 8.9 30→ 50 ± 6.3 → 94 ± 2.9
medium-diverse 0.7 → 0.3 23 → 32.3 68.3 → 92 12→ 44 ± 4.9 22→ 38 ± 4.9 → 96 ± 0.8
large-play 0 → 0 1 → 0 25.5 → 46 16→ 38 ± 8.9 16→ 40 ± 6.3 → 53 ± 1.3
large-diverse 1 → 0 1 → 0 42.6 → 60.7 20→ 40 ± 13.6 22→ 46 ± 10.2→ 58 ± 4.5

→︸︷︷︸
1M

→︸︷︷︸
1M

→︸︷︷︸
1M

→︸︷︷︸
0.3M

→︸︷︷︸
0.3M

→︸︷︷︸
0.7M

In Table 2, we compare our DROP (DROP-Grad and DROP-Grad-Ada) to three offline RL methods (AWAC (Nair et al.,
2020), CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021)), reporting the initial performance and the performance
after online fine-tuning. We can find that the embedding-level fine-tuning (0.3M) enables a significant improvement
in performance. The fine-tuned DROP-Grad-Ada (0.3M) outperforms the AWAC and CQL counterparts in most tasks,
even though we take fewer rollout steps to conduct the online fine-tuning (baselines take 1M online rollout steps, while
DROP-based fine-tuning takes 0.3M steps). However, there is still a big gap between the fine-tuned IQL and the embedding-
level fine-tuned DROP (0.3M). Considering that there remain 0.7M online steps in the comparison, we further conduct
"parametric-level" fine-tuning (updating the parameters of the policy network) for our DROP-Grad-Ada on medium-* and
large-* tasks, we can find which achieves competitive fine-tuning performance even compared with IQL.

B.4. DROP + CVAE Implementation

CVAE-based embedding learning. Similar to LAPO (Chen et al., 2022) and PLAS (Zhou et al., 2020), we adopt the
conditional variational auto-encoder (CVAE) to model offline data. Specifically, we learn the contextual policy and behavior
embedding:

β(a|s, z), ϕ(z|s)← argmax
β,ϕ

E(s,a)∼DE(z)∼ϕ(z|s)
[
log β(a|s, z)

]
− KL(ϕ(z|s)∥p(z)). (1)

Then, we learn the score model f with the TD-error and the conservative regularization:

f ← argmin
f

E(s,a,s′,a′)∼D

[(
R(s,a) + γf̄(s′,a′, ϕ(z|s))− f(s,a, ϕ(z|s))

)2]
, (2)

s.t. Es∼D,z∼µ(z),a∼β(a|s,z) [f(s,a, z)]− Es∼D,z∼ϕ(z|s),a∼β(a|s,z) [f(s,a, z)] ≤ η,

where f̄ denotes a target network and µ(z) denotes the uniform distribution over the Z-space.

In testing, we also dynamically adapt the outer-level optimization, setting policy inference with π∗(a|s) = β(a|s, z∗(s)),
where z∗(s) = argmaxz f

(
s, β(a|s, z), z

)
.

B.5. Ablation Study
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Figure 5. Ablation on the conservative regularization. The y-axis
represents the normalize return, and the x-axis represents the number
of gradient-ascent steps used for embedding inference at deployment.
We plot each random seed as a transparent line; the solid line corre-
sponds to the average across 5 seeds.

Note that our embedding inference depends on the learned
score model f . Without proper regularization, such in-
ference will lead to out-of-distribution embeddings that
are erroneously high-scored (Q2). Here we conduct an
ablation study to examine the impact of the conservative
regularization used for learning the score model.

In Figure 5, we compare DROP-Grad and DROP-Grad-
Ada to their naive implementation (w/o Reg) that ablates
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Table 3. Hyper-parameters of the task embedding function ϕ(z|s), the contextual behavior policy β(a|s, z), and the score function
f(s,a, z). The task embedding function ϕ(z|s): z← Enc_0(n). The contextual behavior policy β(a|s, z): a← Enc_2(z,Enc_1(s)).
The score function f(s,a, z): f ← Enc_4(z,Enc_3(s,a)).

Enc_0 Enc_1 Enc_2 Enc_3 Enc_4

Optimizer Adam Adam Adam Adam Adam
Hidden layer 2 2 3 2 3
Hidden dim 512 512 512 512 512
Activation function ReLU ReLU ReLU ReLU ReLU
Learning rate 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Mini-batch size 1024 1024 1024 1024 1024

the regularization on halfcheetah-medium-expert. We can find that removing the conservative regularization leads to
unstable performance when changing the update steps of gradient-based optimization. However, we empirically find that in
some tasks such a naive implementation (w/o Reg) does not necessarily bring unstable inference (Appendix D). Although
improper gradient update step leads to faraway embeddings, to some extent, embedding-conditioned behavior policy can
correct such deviation.

C. Implementation Details
For the practical implementation of DROP, we parameterize the task embedding function ϕ(z|n), the contextual behavior
policy β(a|s, z), and the score model f(s,a, z) with neural networks (see Appendix C for specific architectures). For
Equation 8 in the main paper, we construct a Lagrangian and solve the optimization through primal-dual gradient descent.
For the choice of µ(z), we simply set µ(z) to be the uniform distribution over the Z-space and empirically find that such
uniform sampling can effectively avoid the out-of-distribution extrapolation at inference.

Lagrangian relaxation. To optimize the constrained objective in Equation 8 in the main paper, we construct a Lagrangian
and solve the optimization through primal-dual gradient descent,

min
f

max
λ>0

EDn∼D[N]
E(s,a,s′,a′)∼Dn

[(
R(s,a) + γf̄(s′,a′, ϕ(z|n))− f(s,a, ϕ(z|n))

)2]
+

λ
(
En,µ(z)Es∼Dn,a∼β(a|s,z) [f(s,a, z)]− En,ϕ(z|n)Es∼Dn,a∼β(a|s,z) [f(s,a, z)]− η

)
.

This unconstrained objective implies that if the expected difference in scores of out-of-distribution embeddings and in-
distribution embeddings is less than a threshold η, λ is going to be adjusted to 0, on the contrary, λ is likely to take a larger
value, used to punish the over-estimated value function. This objective encourages that out-of-distribution embeddings
score lower than in-distribution embeddings, thus performing embedding inference will not lead to these out-of-distribution
embeddings that are falsely and over-optimistically scored by the learned score model.

In our experiments, we tried five different values for the Lagrange threshold η (1.0, 2.0, 3.0, 4.0, and 5.0). We did not
observe a significant difference in performance across these values. Therefore, we simply set η = 2.0.

Hyper-parameters. In Table 3, we provide the hyper-parameters of the task embedding ϕ(z|s), the contextual behavior
policy β(a|s, z), and the score function f(s,a, z). For the gradient ascent update steps (used for embedding inference), we
set K = 100 for all the embedding inference rules in experiments.

In Table 5, we provide the number of sub-tasks, the number of trajectories in each sub-task, and the dimension of the
embedding for each sub-task (behavior policy). The selection of hyperparameter N is based on two evaluation metrics:
(1) the fitting loss of the decomposed behavioral policies to the offline data, and (2) the testing performance of DROP.
Specifically,

• (Step1) Over a hyperparameter (the number of sub-tasks) set, we conduct the hyperparameter search using the fitting
loss of behavior policies, then we choose/filter the four best hyperparameters;

• (Step2) We follow the normal practice of hyperparameter selection and tune the four hypermeters selected in Step1 by
interacting with the simulator to estimate the performance of DROP under each hyperparameter setting.
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Algorithm 1 DROP: Online fine-tuning (checkpoint-level)
Require: Env, last T checkpoint models: βt(a|s, z) and ft(s,a, z) (t = 1, · · · , T ).
1: RMAX = −∞.
2: βbest ← None.
3: fbest ← None.
4: while t = 1, · · · , T do
5: s0 = Env.Reset().
6: z∗0(s0)← Conduct embedding inference with DROP-Best.
7: Return← Evaluate βt and ft on Env, setting π∗(a|s) = β(a|s, z∗0(s0)).
8: if RMAX < Return then
9: Update the best checkpoint models: βbest ← βt, fbest ← ft.

10: Update the optimal return: RMAX ← Return.
11: end if
12: end while
Return: βbest and fbest.

Table 4. Hyperparameter (the number of sub-tasks) set.

tasks the number of sub-tasks

Antmaze 500 (v0), 150 (v2)
Gym-mujoco 10, 20, 50, 100, 200, 500, 800, 1000
Adroit 10, 20, 50, 100, 200, 500, 800, 1000

We provide the hyperparameter sets in Table 4. In Step2,
we tune the (filtered) hyperparameters using 1 seed, then
evaluate the best hyperparameter by training on an addi-
tional 4 seeds and finally report the results on the 5 total
seeds (see next "evaluation protocol"). In Antmaze do-
main, a single fixed N works well for many tasks; while
in Gym-mujoco and Adroit domains, we did not find a
fixed N that provides good results for all tasks in the cor-
responding domain in D4RL, thus we use the above hyperparameter selection rules (Step1 and Step2) to choose the number.

Baseline details. For the comparison of our method to prior iterative offline RL methods, we consider the v0 versions of
the datasets in D4RL3. We take the baseline results of BEAR, BCQ, CQL, and BRAC-p from the D4RL paper (Fu et al.,
2020), and take the results of TD3+BC from their origin paper (Fujimoto and Gu, 2021). For the comparison of our method
to prior non-iterative offline RL method, we use the v2 versions of the dataset in D4RL. All the baseline results of behavior
cloning (BC), Decision Transform (DT), RvS-R, and Onestep are taken from Emmons et al. (2021). In our implementation
of COMs, we take the parameters (neural network weights) of behavior policies as the design input for the score model; and
during testing, we conduct parameters inference (outer-level optimization) with 200 steps gradient ascent over the learned
score function, then the rollout policy is initialized with the inferred parameters. For the specific architecture, we instantiate
the policy network with dim(S) input units, two layers with 64 hidden units, and a final output layer with dim(A).

Evaluation protocol. We evaluate our results over 5 seeds. For each seed, instead of taking the final checkpoint model
produced by a training loop, we take the last T (T = 6 in our experiments) checkpoint models, and evaluate them over 10
episodes for each checkpoint. That is to say, we report the average of the evaluation scores over 5seed × 6checkpoint × 10episode
rollouts.

Online fine-tuning (checkpoint-level): Instead of re-training the learned (final) policy with online rollouts, we fine-tune our
policy with enumerated trial-and-error over the last T checkpoint models (Algorithm 1). Specifically, for each seed, we
run the last T checkpoint models in the environment over one episode for each checkpoint. The checkpoint model which
achieves the maximum episode return is returned. In essence, this fine-tuning procedure imitates the online RL evaluation
protocol: if the current policy is unsatisfactory, we can use checkpoints of previous iterations of the policy.

Online fine-tuning (embedding-level): The embedding-level fine-tuning aims to find a suitable gradient ascent step that is
used to conduct the embedding inference in DROP-Grad or DROP-Grad-Ada. Thus, we enumerate a list of gradient update
steps and pick the best update step (according to the episode returns).

Codebase. Our code is based on d3rlpy: https://github.com/takuseno/d3rlpy. We provide our source code
in the supplementary material.

3We noticed that Maze2D-v0 in the D4RL dataset (https://rail.eecs.berkeley.edu/datasets/) is not available, so we used v1 version
instead in our experiment. For simplicity, we still use v0 in the paper exposition.

https://github.com/takuseno/d3rlpy
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Algorithm 2 DROP: Online fine-tuning (embedding-level)
Require: Env, last T checkpoint models: βt(a|s, z) and ft(s,a, z) (t = 1, · · · , T ).
1: RMAX = −∞.
2: βbest ← None.
3: fbest ← None.
4: kbest ← 0.
5: while t = 1, · · · , T do
6: while k = 1, · · · ,Kmax do
7: s0 = Env.Reset().

# Conduct embedding inference with DROP-Grad or DROP-Grad-Ada
8: Return← Evaluate βt and ft on Env, setting π∗(a|s) = β(a|s, z∗(s0)) or β(a|s, z∗(s)), where we conduct k gradient ascent

steps to obtain z∗(s0) or z∗(s).
9: if RMAX < Return then

10: Update the best checkpoint models: βbest ← βt, fbest ← ft.
11: Update the best gradient update step: kbest ← k.
12: Update the optimal return: RMAX ← Return.
13: end if
14: end while
15: end while
Return: βbest, fbest and kbest.

Computational resources. The experiments were run on a computational cluster with 22x GeForce RTX 2080 Ti, and 4x
NVIDIA Tesla V100 32GB for 20 days.

D. Additional Results
Comparison with iterative offline RL baselines. Here, we compare the performance of DROP (Grad, Best-Ada, and
Grad-Ada ) to iterative offline RL baselines (BEAR (Kumar et al., 2019), BCQ (Fujimoto et al., 2019), CQL (Kumar
et al., 2020), BRAC-p (Wu et al., 2019), and TD3+BC (Fujimoto and Gu, 2021)) that perform iterative bi-level offline RL
paradigm with (explicit or implicit) value/policy regularization in inner-level. In Table 6, we present the results for AntMaze,
Gym-MuJoCo, and Adroit suites in standard D4RL benchmark (*-v0), where we can find that DROP-Grad-Ada performs
comparably or surpasses prior iterative bi-level works on most tasks: outperforming (or comparing) these policy regularized
methods (BRAC-p and TD3+BC) on 25 out of 33 tasks and outperforming (or comparing) these value regularized algorithms
(BEAR, BCQ, and CQL) on 19 out of 33 tasks.
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Figure 6. The performance comparison of DROP-Grad-Ada and DROP-Grad-Ada w/o Reg, where we ablate the conservative regularization
for the w/o Reg implementation. The y-axis denotes the normalized return, the x-axis denotes the number of gradient-ascent steps used for
embedding inference at deployment.

Ablation studies. In Figure 6, we provide more results for the ablation of the conservative regularization term in Equation 8
in the main paper. We can find that for the halfcheetah-medium and hopper-medium tasks, the performance of DROP-Grad-
Ada w/o Reg depends on the choice of the gradient update steps, showing that too small or too large number of gradient
update step deteriorates the performance. Such a result is also consistent with COMs (Trabucco et al., 2021), which also
observes the sensitivity of naive gradient update (i.e., w/o Reg) to the number of update steps used for design input inference.
By comparison, the conservative score model learned with DROP-Grad-Ada exhibits more stable and robust performance to
the gradient update steps.

Further, we also find that in walker2d-medium and walker2d-medium-expert tasks, the naive gradient update (w/o Reg) does
not affect performance significantly across a wide range of gradient update steps. The main reason is that although the
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Table 5. The number (N ) of sub-tasks, the number (M ) of trajectories in each sub-task, and the dimension (dim(z)) of the embedding for
each sub-task.

Domain Task Name
Parameters (*-v0) Parameters (*-v2)

N M dim(z) N M dim(z)

Maze 2D
umaze 500 5 5
medium 150 50 5
large 100 15 5

Antmaze

umaze 500 50 5 150 50 5
umaze-diverse 500 50 5 150 50 5
Medium-play 500 50 5 150 50 5
Medium-diverse 500 50 5 150 50 5
Large-play 500 50 5 150 50 5
Large-diverse 500 50 5 150 50 5

halfcheetah

random 1000 1 5 1000 1 5
medium 100 2 5 100 2 5
medium-expert 1000 1 5 1000 1 5
medium-replay 50 10 5 50 10 5

hopper

random 100 2 5 100 2 5
medium 100 5 5 100 5 5
medium-expert 100 2 5 100 2 5
medium-replay 50 5 5 10 30 5

walker2d

random 500 2 5 500 2 5
medium 50 5 5 50 5 5
medium-expert 50 5 5 50 5 5
medium-replay 1000 5 5 10 50 5

door
cloned 1000 2 5
expert 500 5 5
human 50 3 5

hammer
cloned 1000 1 5
expert 500 5 5
human 20 3 5

pen
cloned 500 5 5
expert 500 5 5
human 50 5 5

relocate
cloned 500 5 5
expert 500 5 5
human 50 4 5

excessive gradient updates lead to faraway embeddings, conditioned on the inferred embeddings, the learned contextual
behavior policy can safeguard against the embeddings distribution shift. Compared to prior model-based optimization that
conducts direct gradient optimization (inference) over the design input itself, such "self-safeguard" is a special merit in the
offline RL domain as long as we reframe the offline RL problem as one of model-based optimization and conduct inference
over the embedding space. Thus, we encourage the research community to pursue further into this model-based optimization
view for the offline RL problem.
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Table 6. Comparison of our method to prior offline methods that perform iterative (regularized) RL paradigm on D4RL. We take the
baseline results of BEAR, BCQ, CQL, and BRAC-p from Fu et al. (2020), and the results of TD3-BC from Fujimoto and Gu (2021). For
all results of our method (DROP), we average the normalized returns across 5 seeds; for each seed, we run 10 evaluation episodes. For
proper comparison, we use ▲ and ▲ to denote DROP (*-Ada) achieves comparable or better performance compared with value and policy
regularized offline RL methods respectively.

Task Name
Value Reg. Policy Reg. DROP-

BEAR BCQ CQL BRAC-p TD3+BC Grad Best-Ada Grad-Ada

an
tm

az
e

umaze 73.0 78.9 74.0 50.0 – 72.0▲ 78.0▲▲ 80.0▲▲
umaze-diverse 61.0 55.0 84.0 40.0 – 48.0▲ 62.0▲▲ 66.0▲▲
medium-play 0.0 0.0 61.2 0.0 – 24.0▲ 34.0▲▲ 30.0▲▲
medium-diverse 8.0 0.0 53.7 0.0 – 20.0▲ 24.0▲▲ 30.0▲▲
large-play 0.0 6.7 15.8 0.0 – 24.0▲ 36.0▲▲ 42.0▲▲
large-diverse 0.0 2.2 14.9 0.0 – 14.0▲ 20.0▲▲ 26.0▲▲

ha
lf

ch
ee

ta
h random 25.1 2.2 35.4 24.1 10.2 2.3▲ 2.3▲▲ 2.3▲▲

medium 41.7 40.7 44.4 43.8 42.8 42.4▲ 42.9▲▲ 43.1▲▲
medium-expert 53.4 64.7 62.4 44.2 97.9 86.6▲ 88.5▲▲ 88.9▲▲
medium-replay 38.6 38.2 46.2 45.4 43.3 39.5▲ 40.4▲▲ 40.3▲▲

ho
pp

er

random 11.4 10.6 10.8 11.0 11.0 5.1▲ 5.4▲▲ 5.5▲▲
medium 52.1 54.5 58.0 32.7 99.5 57.5▲ 60.3▲▲ 59.5▲▲
medium-expert 96.3 110.9 98.7 1.9 112.2 103.5▲ 102.5▲▲ 105.9▲▲
medium-replay 33.7 33.1 48.6 0.6 31.4 48.0▲ 83.4▲▲ 87.4▲▲

w
al

ke
r2

d random 7.3 4.9 7.0 -0.2 1.4 2.8▲ 3.0▲▲ 3.0▲▲
medium 59.1 53.1 79.2 77.5 79.7 76.5▲ 75.8▲▲ 79.1▲▲
medium-expert 40.1 57.5 111.0 76.9 101.1 107.5▲ 106.8▲▲ 106.9▲▲
medium-replay 19.2 15.0 26.7 -0.3 25.2 37.4▲ 60.9▲▲ 61.9▲▲

do
or

cloned -0.1 0.0 0.4 -0.1 – 0.5▲ 2.5▲▲ 2.7▲▲
expert 103.4 99.0 101.5 -0.3 – 98.6▲ 102.2▲▲ 102.6▲▲
human -0.3 0.0 9.9 -0.3 – 3.3▲ 1.9▲▲ 3.0▲▲

ha
m

m
er cloned 0.3 0.4 2.1 0.3 – 0.3▲ 0.3▲▲ 0.3▲▲

expert 127.3 107.2 86.7 0.3 – 65.7▲ 73.3▲▲ 77.7▲▲
human 0.3 0.5 4.4 0.3 – 1.1▲ 0.3▲▲ 2.1▲▲

pe
n

cloned 26.5 44.0 39.2 1.6 – 76.7▲ 77.1▲▲ 82.4▲▲
expert 105.9 114.9 107.0 -3.5 – 113.1▲ 118.6▲▲ 116.7▲▲
human -1.0 68.9 37.5 8.1 – 71.1▲ 85.2▲▲ 81.5▲▲

re
lo

ca
te cloned -0.3 -0.3 -0.1 -0.3 – 0.1▲ 0.5▲▲ 0.2▲▲

expert 98.6 41.6 95.0 -0.3 – 2.5▲ 6.2▲▲ 5.4▲▲
human -0.3 -0.1 0.2 -0.3 – 0.0▲ 0.0▲▲ 0.0▲▲
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